
55

C H A P T E R 3
Enterprise Java

Security Fundamentals

THE J2EE platform has achieved remarkable success in meeting enterprise
needs, resulting in its widespread adoption. The security infrastructure plays a key
role in the e-business strategy of a company. J2EE provides a standard approach to
allow enterprise applications to be developed without hard-coded security poli-
cies. Instead, declarative policies are bundled with an assembled set of application
components. Security policies specified using this security model are enforced in
any operational environments and deployed in any of the application servers that
host them.

The J2EE security model addresses authentication, authorization, delegation,
and data integrity for the components that make up a J2EE environment. This
environment includes J2EE applications—Web components, such as servlets and
JSP files, EJB components, Java 2 connectors, and JavaMail—and secure inter-
operability requirements. The J2EE security model also considers the organiza-
tional roles that define and enforce these security policies:

• Application Component Provider

• Application Assembler

• Deployer

• System Administrator

• J2EE Product Provider

This chapter provides an overview of J2EE, exploring the J2EE security
model. The chapter explains how various J2EE components are tied into enter-
prise security, describes how the J2EE security model addresses the security of
J2EE components, and identifies the responsibility of each of the organizational
roles in enforcing security. Declarative security policies and programmatic

Pistoia_ch03.fm Page 55 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS56

security APIs are explained, in addition to the security requirements on Java-
Mail, Java connectors, client applications, and containers. This chapter also
outlines the secure interoperability requirements that exist between various appli-
cation servers.

Since its inception, one of the top requirements of the J2EE security model
has been to support secure application deployments that do not rely on private net-
works or other application runtime isolation techniques. This allows application
portability between containers. Another requirement has been to reduce the appli-
cation developer’s burden by delegating the security responsibilities to the J2EE
roles. Finally, the policy-driven security model enables much of security enforce-
ment to be handled without custom code.

3.1 Enterprise Systems
An enterprise Java environment, or WAS environment, is nominally viewed as a
three-tier architecture (see Section 2.1.2 on page 25). Clients access the informa-
tion made available through middle-tier systems, which connect to the back-end
enterprise systems, as shown in Figure 3.1.

In an enterprise Java environment, the clients can be both Java based and non-
Java based. Clients access the servers over a variety of protocols, including HTTP,

Figure 3.1. WAS Environment

Client Middle Tier EIS

Web Application Server:
Servlets, JSP,
HTML, XML

EJB Server, JNDI,
JMS, JavaMail

RDBMS, ERP, Legacy
Applications

Pistoia_ch03.fm Page 56 Tuesday, January 6, 2004 1:56 PM

3.2 J2EE APPLICATIONS 57

IIOP, SSL, and other messaging protocols accessible through JMS. These clients
connect to and access a J2EE-based server environment providing a hosting sys-
tem for the enterprise components. These components constitute a presentation
layer in the form of servlets, JSP files, HTML files, or XML documents. Al-
ternatively, the components can abstract out the business logic in the form of
enterprise beans. Clients may also submit their requests by using e-mail protocols
through the JavaMail framework or connect to naming and directory services by
using the Java Naming and Directory Interface (JNDI). In an enterprise environ-
ment, middle-tier applications are likely to connect to back-end enterprise infor-
mation systems (EISs). Examples of back-end EISs include relational database
management systems (RDBMSs) and ERP applications.

Before delving into the security implications of this architecturally rich
environment, it is important to understand the technologies that comprise a J2EE
environment.

3.2 J2EE Applications
A J2EE application, an enterprise application that conforms to the J2EE specifica-
tion, is structured as shown in Figure 3.2 and consists of the following:

• Zero or more EJB modules

• Zero or more Web modules

• Zero or more application client modules

Figure 3.2. Contents of a J2EE Application

Enterprise Application (EAR File)

EJB Module
(JAR File)

Web Module
(WAR File)

Application
Client Module

(JAR File)
Utilities

Pistoia_ch03.fm Page 57 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS58

• Optionally, JAR files containing dependent classes or components required
by the application

• Any combination of the preceding, as long as it contains at least one
module

A J2EE application is represented by, and packaged in, an Enterprise Archive
(EAR) file. The modules that comprise the EAR file are themselves packaged in
archive files specific to their types. For example, a Web module is packaged in a
Web Archive (WAR) file, and an EJB module, containing one or more enterprise
beans, is packaged in a JAR file. WAR files can exist as independent deployment
units from EAR files.

EAR files also contain a deployment descriptor file—an XML document de-
scribing the contents of the application and containing instructions for the deploy-
ment of the application. In particular, the deployment descriptor specifies the
security settings to be enforced by the runtime environment. Each WAR file pack-
aging a Web module, JAR file packaging enterprise beans, or JAR file packaging
an application client module contains its own deployment descriptor as well.

3.2.1 EJB Modules

An enterprise bean is a Java component that can be combined with other re-
sources to create distributed client/server applications. Instantiated enterprise
beans reside in enterprise bean containers, or EJB containers. An EJB container
provides an interface between the enterprise beans and the application server on
which the enterprise beans reside. An enterprise bean is typically accessed using
Java RMI-IIOP. An ORB manages the interaction between clients and enterprise
beans, using IIOP. ORBs enable clients to make requests and receive responses
from servers in distributed computing environments. Alternatively, enterprise
beans are accessible through JMS. It is also possible to invoke an enterprise bean
as a Web service via SOAP, as explained in Chapter 14 on page 497.

There are three types of enterprise beans: entity beans, session beans, and
message-driven beans. Entity beans store persistent data and typically use data-
base connections. Entity beans are of two types: CMP entity beans and BMP
entity beans.

• Entity beans with container-managed persistence (CMP) let the EJB con-
tainer transparently and implicitly manage the persistent state. The enter-
prise bean developer does not need to code any database access functions
within the enterprise bean class methods.

• Entity beans with bean-managed persistence (BMP) manage persistent
data in a manner defined by the application developer in the bean code.
This usually includes writing to databases.

Pistoia_ch03.fm Page 58 Tuesday, January 6, 2004 1:56 PM

3.2 J2EE APPLICATIONS 59

Session beans do not require database access, although they can obtain it
indirectly, as needed, by accessing entity beans. Session beans can also obtain
direct access to databases and other resources through the use of resource refer-
ences, which include the use of JDBC. Session beans can be either stateless or
stateful.

• A session bean is said to be stateless if it provides a stateless service to the
client. A business method on a stateless session bean is similar to a pro-
cedural application or static method; there is no instance state. Therefore,
all the data needed to execute a stateless session bean’s method is provided
by the method arguments.

• A session bean is said to be stateful if it acts as a server-side extension of
the client that uses it. A stateful session bean is created by a client and will
work for only that client until the client connection is dropped or the bean
is explicitly removed. Unlike a stateless session bean, a stateful session
bean has state or instance fields that can be initialized and changed by the
client with each method invocation.

Message-driven beans are enterprise beans accessible asynchronously via
JMS rather than synchronously through such protocols as RMI-IIOP. The EJB
V2.1 specification expands the scope of message-driven beans beyond JMS to
support any messaging system.

An EJB module is one or more enterprise beans assembled into a single
deployable unit. As we have observed, an EJB module is stored in a standard JAR
file, commonly referred to as ejb-jar. This file contains

• One or more deployable enterprise beans

• A deployment descriptor, stored in an XML file

Specifically, an EJB module’s deployment descriptor file declares the contents
of the module, specifies the structure and external dependencies of the enterprise
beans in the module, explains how the enterprise beans are to be used at runtime,
and defines the security policies applicable to the enterprise beans within the mod-
ule. The format of the security policy is defined by the EJB specification (see
Chapter 5 on page 157).

3.2.2 Web Modules

A Web module represents a Web application—an application that can be accessed
over the Web using HTTP. A Web module is used to assemble servlets and JSP
files, as well as static content, such as HTML pages, into a single deployable unit.

Pistoia_ch03.fm Page 59 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS60

As we said earlier, Web modules are stored in WAR files, which are enhanced JAR
files with a .war file extension, and contain

• One or more servlets, JSP files, and other supporting files

• A deployment descriptor, stored in an XML file

The deployment descriptor file, web.xml, declares the contents of the Web
module. This file contains information about the structure and external dependen-
cies of the components in the Web module and describes the components’ runtime
use. In addition, the deployment description file is used to declare the security pol-
icies applicable to the universal resource identifiers (URIs) that are mapped to the
resources within the Web module. These security policies include both the autho-
rization policy and the login configuration information. The format of the security
policy is defined by the Java Servlet specification.

Servlets are Java programs running on a WAS and extend the Web server’s
capabilities. For example, servlets support generation of dynamic Web page con-
tent, provide database access, concurrently serve multiple clients, and filter data
by MIME type. Servlets use the Java Servlet API. By analogy, servlets are the
server-side equivalent of client-side browser applets.

JSP files enable the separation of the HTML coding from the business logic in
Web pages, allowing HTML programmers and Java programmers to more easily
collaborate in creating and maintaining pages. This process is described in greater
detail in Section 4.1.2 on page 104.

3.2.3 Application Client Modules

Application clients are first-tier Java-based client programs. Even though it is a
regular Java application, an application client depends on an application client
container to provide system services. An application client module packages
application client code in a JAR file. This JAR file includes a deployment descrip-
tor XML file, which specifies the enterprise beans and external resources refer-
enced by the application.

The security configuration of an application client determines how the appli-
cation will access enterprise beans and Web resources. If the J2EE components
that the client application accesses are secured, the client will be authenticated
accordingly. In order for an application client to retrieve authentication data from
an end user, configuration information must be specified in a deployment descrip-
tor XML file, application-client.xml, associated with the client application.
Application clients typically run in an environment that has a Java 2 security man-
ager installed and the security policies enforced based on the J2SE security policy
framework (see Chapter 8 on page 253).

Pistoia_ch03.fm Page 60 Tuesday, January 6, 2004 1:56 PM

3.3 SECURE INTEROPERABILITY BETWEEN ORBS 61

3.3 Secure Interoperability between ORBs
J2EE applications are required to use RMI-IIOP when accessing EJB components.
This allows enterprise beans to be portable between container implementations.

A J2EE container provides the runtime support for the J2EE components. A
J2EE container vendor enables access to the enterprise beans via IIOP. This
facilitates interoperability between containers by using the Common Secure Inter-
operability (CSI) protocol. Security is enabled and enforced by the ORBs, en-
suring authenticity, confidentiality, and integrity. Version 2 of this protocol
specification (CSIv2) is the accepted industry standard and is mandated by the
J2EE specification.

3.4 Connectors

A resource adapter is defined in the J2EE Connector Architecture specification as
a system-level software driver that a Java application uses to connect to an EIS.
The resource adapter plugs into an application server and provides connectivity
between the EIS, the J2EE application server, and the enterprise application.

The Java Connector Architecture (JCA) specification allows resource adapters
that support access to non-J2EE systems to be plugged into any J2EE envi-
ronment. Resource adapter components implementing the JCA API are called
connectors.

The JCA specification describes standard ways to extend J2EE services with
connectors to other non-J2EE application systems, such as mainframe systems
and ERP systems. The JCA architecture enables an EIS vendor to provide a stan-
dard resource adapter for a J2EE application to connect to the EIS. A resource
adapter is used by a Java application to connect to an EIS. For example, Web en-
ablement of business applications, such as IBM’s Customer Information Control
System (CICS), would imply that the J2EE-based presentation layer would con-
nect to a CICS application using a CICS connector. With this approach, protocol
details of connecting to a CICS system are transparent to the Web application and
are handled by the CICS connector implementation.

JCA defines a standard set of system-level contracts between a J2EE server
and a resource adapter. In particular, these standard contracts include a security
contract and enable secure access to non-J2EE EISs. The security contract helps
to reduce security threats to the information system and protects valuable informa-
tion resources managed by such a system. Given that most of these EIS systems
have facilities to accept some form of authentication data representing an identity
connecting to the system, the JCA security contract deals with the authentication
aspects of the EIS. Essentially, it is about a J2EE application signing on to an EIS
system. This means that the J2EE application accesses a connection to the EIS
system by providing authentication information. As discussed in Section 3.9.4 on

Pistoia_ch03.fm Page 61 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS62

page 87 and Section 3.10.3 on page 94, two organizational roles are involved in
addressing this issue: the Application Component Provider and the Deployer.
Specifically, the Application Component Provider can use either of two choices
related to EIS sign-on: the declarative approach or the programmatic approach.

• The declarative approach allows the Deployer to set up the resource prin-
cipal and EIS sign-on information. For example, the Deployer sets the user
ID and password—or another set of credentials—necessary to establish a
connection to an EIS instance.

• With the programmatic approach, the Application Component Provider
can choose to perform sign-on to an EIS from the component code by pro-
viding explicit security information. For example, the user ID and pass-
word—or another set of credentials—necessary to establish a connection
to an EIS instance are coded into the application code.

The Application Component Provider uses a deployment descriptor element,
such as res-auth for EJB components, to indicate the requirement for one of the
two approaches. If the res-auth element is set to Container, the application
server sets up and manages EIS sign-on. If the res-auth element is set to
Application, the component code performs a programmatic sign-on to the EIS.

Further details of the security aspects of a JCA-based connection to an
EIS from a J2EE application are discussed in Section 3.9.4 on page 87 and
Section 3.10.3 on page 94.

3.5 JMS
JMS is a standard Java messaging API that provides a common mechanism for
Java-language programs to access messaging systems. Java clients and middle-tier
components must be capable of using messaging systems to access the J2EE com-
ponents that are enabled via a messaging layer.

• Application clients, EJB components, and Web components can send or
synchronously receive a JMS message. Application clients can also re-
ceive JMS messages asynchronously.

• A new kind of enterprise bean introduced in EJB V2.0, the message-driven
bean, enables the asynchronous consumption of messages. A message-
driven bean can be accessed by sending a method invocation request over
a messaging infrastructure. A JMS provider may optionally implement
concurrent processing of messages by message-driven beans.

The J2EE specification requires JMS providers to implement both the reliable
point-to-point messaging model and the publish/subscribe model. The reliable

Pistoia_ch03.fm Page 62 Tuesday, January 6, 2004 1:56 PM

3.6 SIMPLE E-BUSINESS REQUEST FLOW 63

point-to-point messaging model allows one entity to send messages directly to
another entity that understands the format of the messages and the requests. The
publish/subscribe model is event driven; a message is published, and the message
is delivered to all subscribers of the event. One example is a StockQuote applica-
tion, with multiple traders wanting to get the latest stock quote. In this scenario,
the traders’ applications subscribe to the stock-quote messaging service. When the
stock values are published, the information is made available to all the subscrib-
ers. In a Java environment, both the StockQuote server and the traders’ applica-
tions can use the JMS mechanism with a JMS provider to achieve the required
messaging fucntionality.

However, JMS does not specify a security contract or an API for controlling
message confidentiality and integrity. Security is considered to be a JMS-
provider-specific feature. It is controlled by a System Administrator rather than
implemented programmatically or by the J2EE server runtime.

3.6 Simple E-Business Request Flow
It would be helpful to understand a simple e-business request flow in an enterprise
Java environment. Figure 3.3 presents a simple request flow that does not involve
security.

Figure 3.3. Simple E-Business Request Flow

EJB Container

EJB Method Request

EJB Method Request

Web Server

Servlet Request

AccountBean

Web Container

Data Store

/servlet/account

Pistoia_ch03.fm Page 63 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS64

Let us consider two types of clients: HTTP clients, such as Web browsers, and
IIOP clients, regular applications capable of using IIOP to send requests and
receive responses over the network. An HTTP client invokes a URL: for instance,
/servlet/account/. The request from the user’s browser gets handled by the
Web server, which routes the request to a Web, or servlet, container serving the
URL resource. The logic behind the URL is implemented as a Java servlet. This
servlet, packaged in a Web module, is hosted in a J2EE Web container, which in
turn invokes an enterprise bean, AccountBean, via IIOP. AccountBean is an entity
bean, packaged in an EJB module, with its business data stored in a data store. The
same enterprise bean is accessed directly from an IIOP client, packaged in an ap-
plication client module. In this case, the request is not routed by the servlet but is
directly accessed as a remote object from the Java client.

The request flow just described does not involve security considerations. The
next sections in this chapter provide an overview of the J2EE specification as it
pertains the security of an enterprise. The platform roles reflect the organizational
responsibilities, from application development, application assembly, and applica-
tion deployment, to administration.

3.7 J2EE Platform Roles

J2EE defines roles that reflect the responsibilities within an organization. Any
person or software involved in the process of making an application available
within an enterprise can usually be categorized into organization roles, called
J2EE platform roles. The J2EE platform roles having security responsibilities are
the Application Component Provider, Application Assembler, Deployer, System
Administrator, J2EE Product Provider, and Tool Provider. The J2EE security
model is defined with respect to these J2EE roles.

Figure 3.4 shows the interactions among the Application Component Pro-
vider, Application Assembler, Deployer, and System Administrator. These are the
roles involved, from a security perspective, in the stages between development and
deployment.

Figure 3.4 depicts the software process cycle from the perspective of J2EE
platform roles.1 In a typical J2EE software process cycle, application component
developers build enterprise application components, such as servlets or enterprise

1. The J2EE V1.3 platform role called Tool Provider is responsible for supplying tools used
for the development and packaging of application components. Because it depicts the
software life cycle in development and deployment of a J2EE application and the users
involved in the process, Figure 3.4 does not include the roles of Tool Provider and J2EE
Product Provider.

Pistoia_ch03.fm Page 64 Tuesday, January 6, 2004 1:56 PM

3.7 J2EE PLATFORM ROLES 65

beans. The greatest opportunity for component reuse and flexibility in reconfigur-
ing security policy is when the components are written to be security unaware,
meaning that they do not contain embedded security policy code. Conversely,
components containing embedded security policy code are said to be security
aware. Security-aware components are difficult to reuse, and flexibility is limited
because it often requires changing the source code to reflect various security poli-
cies. For some applications, this may be unavoidable.

An Application Assembler integrates a set of components supplied by one or
more Application Component Providers. The Application Assembler has the in-
depth knowledge of the application. The Application Assembler specifies security
policies as hints to the Deployer. For example, the Application Assembler can
provide hints such that the approve() method of an enterprise bean should be
accessed only by those principals granted the role of a Manager.

A Deployer deploys enterprise applications, assembled by Application As-
semblers, into an operational environment. When tailoring the security policies to
the operational environment, the Deployer consults the security policy hints pro-
vided by the Application Assembler. For example, the Deployer can assign the
role of a Manager to a user named Bob.

Figure 3.4. J2EE Platform Roles with Security Responsibilities in the Development and
Deployment of a J2EE Application

Application
Component Provider

Application
Assembler Deployer

System
Administrator

if (isUserInRole(”Manager"))
listEmployees();

else
sayHello();

Allow
on AccountBean if

approve()

"Manager"

Assign Bob to
be a "Manager"

Use LDAP server
as the user registry

Pistoia_ch03.fm Page 65 Thursday, January 15, 2004 1:14 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS66

A System Administrator is responsible for administering the system, includ-
ing security. This may include configuring the J2EE product to use an LDAP
server for managing security information, including user and group membership.

The following subsections provide a more detailed description of the four
J2EE roles. The J2EE platform roles that we have listed are considered to be the
typical roles, although in practice, the roles are adapted to better match the organi-
zation’s application development and deployment work flow. The rest of this sec-
tion summarizes the major responsibilities of the individual J2EE platform roles
with respect to security management.

3.7.1 Application Component Provider

The Application Component Provider is the J2EE platform role responsible for
implementing the business logic as a set of J2EE application components—enter-
prise beans, servlets, and/or JSP files. These components are packaged in an ejb-
jar file containing one or more enterprise beans and/or a WAR file containing one
or more servlets and/or JSP files, and/or a JAR file containing an application client
module.

The Application Component Provider has numerous responsibilities in code
development. These responsibilities range from resource access to programmatic
access of the caller’s security context. Following are the Application Component
Provider’s key security responsibilities:

3.7.1.1 Access of Resources in the Underlying Operating System
The J2EE architecture does not define the operating system principal—for exam-
ple, the operating system user—under which EJB methods or servlets execute.
Therefore, the Application Component Provider cannot rely on a specific princi-
pal for accessing the underlying operating system resources. The Application
Component Provider should design the applications so that special privileges are
not required to access system resources.

3.7.1.2 Security Recommendations
The Application Component Provider should avoid implementing security mecha-
nisms or hard-coded security policies in the component but instead should rely on
the security mechanisms provided by the J2EE container. The Application Com-
ponent Provider should let the Application Assembler and the Deployer define the
appropriate security policies for the application. The Application Component Pro-
vider can use the deployment descriptors to convey security-related information to
the Application Assembler.

Pistoia_ch03.fm Page 66 Tuesday, January 6, 2004 1:56 PM

3.7 J2EE PLATFORM ROLES 67

3.7.1.3 Programmatic Access to the Caller’s Security Context
Programmatic-security APIs should be avoided when possible. However, they
should be used when the J2EE component methods need access to security-
context information because the J2EE declarative security model is insufficient to
implement application security requirements.

3.7.1.4 Conveying the Use of Role References
A security role is a set of J2EE authorizations. The Application Component
Provider may build a security-aware application and use role references—secu-
rity role names within the application components. For example, a component
may call isUserInRole("Manager") on a javax.servlet.http.HttpServlet-
Request object. When security role names are hard-coded in an application com-
ponent, the Application Component Provider must identify these role names for
the Application Assembler so that it can map component-defined security role
references in each of the components in the deployment to a single application-
level security role name. For example, two components in an application may use
the security role references Manager and Boss within the component, whereas
both of these roles imply the application security role of a Supervisor.

3.7.2 Application Assembler

The Application Assembler is the J2EE platform role responsible for combining
J2EE components into deployable application units. The Application Assembler
also simplifies the Deployer’s job by providing a security view of the enterprise
beans, servlets, and JSP files in the relevant deployment descriptors. A security
view consists of a set of J2EE security roles. A security role is a semantic group-
ing of J2EE authorizations, or permissions—implemented as java.security.
Permission objects—that a given type of application users must have in order to
successfully use the application. The Application Assembler defines one or more
security roles in the deployment descriptor and specifies and associates J2EE per-
missions with these roles. For example, the security role Manager could be
granted the J2EE permissions to invoke an enterprise bean to grant loans and view
the loan status of all the customers using Web applications. In contrast, the secu-
rity role HelpDesk could be granted only a subset of these J2EE permissions—for
example, only the J2EE permission to view the loan status of the customers—by
having been granted access to the relevant URIs.

Following are some of the Application Assembler’s security responsibilities.

Pistoia_ch03.fm Page 67 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS68

3.7.2.1 Defining EJB Method Permissions
The home, local home, remote, and local interfaces of an enterprise bean are de-
fined as part of the EJB specification.

• The home interface of an enterprise bean is a Java interface used to create,
find, or delete an instance of the enterprise bean. The methods defined in
the remote interface can be accessed from within the same container or
remotely via RMI-IIOP.

• The local home interface of an enterprise bean is functionally similar to
the home interface, but the methods defined in the local home interface are
accessible only from within the same container.

• The remote interface of an enterprise bean is a Java interface that defines
the operations that can be performed on the enterprise bean to access the
business logic associated with the enterprise bean itself. The methods
defined in the remote interface can be accessed from within the same con-
tainer or remotely via RMI-IIOP.

• The local interface of an enterprise bean is functionally similar to the
remote interface, but the methods defined in the local interface are acces-
sible only from within the same container.

The home, local home, remote, and local interfaces of an enterprise bean
define which methods the enterprise bean exposes to a client. An EJB method per-
mission is defined by an XML method-permission element in an EJB module’s
deployment descriptor and is used to assign groups of methods of the home, local
home, remote, and local interfaces of an enterprise bean packaged in that EJB
module to the security roles. This way, the Application Assembler can define the
security view of the enterprise bean.

An EJB method permission specifies the methods of the home, local home,
remote, and local interfaces that each of the listed security roles is allowed to
invoke. This implies that an EJB method permission may include a list of one or
more security roles and a list of one or more methods. In addition, a security role
or a method may appear in multiple XML method-permission elements. Users of
particular security roles are granted access to all the methods listed in all the EJB
method permission elements where those security roles appear. EJB method
permissions and the deployment descriptor are discussed further in Chapter 5 on
page 157.

3.7.2.2 Defining Web Resources Security Constraints
An Application Assembler uses a Web module’s deployment descriptor to define
security constraints for a Web application packaged in that module. The Web

Pistoia_ch03.fm Page 68 Tuesday, January 6, 2004 1:56 PM

3.7 J2EE PLATFORM ROLES 69

module’s deployment descriptor’s auth-constraint element is used for this pur-
pose. This element consists of one or more security roles and a list of URL pat-
terns that users with any of those security roles are authorized to invoke.
Specifically, deployment descriptors are used to assign groups of URL patterns to
the security roles, thus defining security views of Web applications. Login config-
uration information, such as requiring a user to be authenticated using a form-
based login mechanism, and transport guarantee constraints, such as requiring
access to a URL pattern to be submitted only using an HTTPS connection, can
also be specified in the deployment descriptor.

3.7.2.3 Declaring Security Roles within a J2EE Application
An Application Assembler defines each security role by using the security-role
XML element in the relevant deployment descriptor.

• If the deployment descriptor belongs to an ejb-jar file, the security-role
element is scoped to that ejb-jar file and applies to all the enterprise beans
in that EJB module.

• If the deployment descriptor belongs to a WAR file, the security role ele-
ment is scoped to that WAR file and applies to all the servlets and/or JSP
files in that Web module.

• If the deployment descriptor belongs to an EAR file, the security-role
element applies to all the JAR and WAR files that are packaged within that
EAR file. Effectively, the set of security roles declared in the EAR file’s
deployment descriptor is the union of the security roles defined in the de-
ployment descriptors of the JAR and WAR files packaged within that EAR
file. Technically, however, the security roles described in the constituent
modules of an EAR file are the ones that are used to enforce authorization,
because those roles are associated with authorization policies. The roles
declared in the EAR file’s deployment descriptor are typically used for ad-
ministration and management purposes only. For example, they can be
used to assign security roles to principals with regard to the whole appli-
cation packaged in the EAR file.

The deployment descriptor of an application client module does not contain secu-
rity role elements, because security roles are specific to the server side of a J2EE
application, not for the client.

Within each security-role element, the Application Assembler will use the
role-name subelement to define the name of the security role and, optionally, will
use the description subelement to provide a description of the security role.

Pistoia_ch03.fm Page 69 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS70

3.7.3 Deployer

For each J2EE application, the Deployer takes the modules comprising that appli-
cation and deploys the module components into a specific operational, or runtime,
environment. The modules were produced by an Application Assembler. The
operational environment in which the application is deployed includes a specific
J2EE container. The Deployer is also responsible for ensuring the security of an
assembled application when it is deployed in the target operational environment.

The Deployer has the following responsibilities with respect to security
management.

3.7.3.1 Reading the Security View of the J2EE Application
The Deployer uses the deployment tools supplied by the J2EE Product Provider to
read the security view of the application. The Deployer should treat the security
policies specified in a deployment descriptor as hints and modify those policies as
appropriate to the operational environment in which the application is being
deployed.

3.7.3.2 Configuring the Security Domain
A security domain within an enterprise represents an instance of an authentication
authority and relevant security infrastructure. For example, a security domain may
point to a particular Kerberos domain for authentication and an LDAP user repos-
itory to deduce user and group membership to be used for authorization. In the
case of multiple security domains within the enterprise, the Deployer is responsi-
ble for configuring the J2EE product to use the appropriate security domains.

3.7.3.3 Assigning of Principals to Security Roles
The Deployer is responsible for assigning principals and/or groups of principals
used for managing security in the runtime to the security roles defined in the XML
security-role elements of the deployment descriptors. The process of assigning
the logical security roles defined in the J2EE application’s deployment descriptor
to the operational environment’s security concepts is specific to the configuration
capabilities of a particular J2EE product.

3.7.3.4 Configuring Principal Delegation
Delegation allows an intermediary to perform a task, initiated by a client, under an
identity based on a delegation policy. The Deployer is responsible for configuring
principal delegation for intercomponent calls by using the appropriate deployment
descriptor elements, as follows.

• If the deployment descriptor belongs to an ejb-jar file, the Deployer uses
the security-identity deployment descriptor element for this purpose.

Pistoia_ch03.fm Page 70 Tuesday, January 6, 2004 1:56 PM

3.7 J2EE PLATFORM ROLES 71

When the value of the security-identity element is use-caller-
identity, the identity of the caller of the enterprise bean will be used
when calling other components from the enterprise bean. When the value
specified is run-as, the identity of the caller to the enterprise bean will be
propagated in terms of the security role name defined in the run-as ele-
ment of the descriptor. For example, if the caller to an enterprise bean is
user Bob, Bob’s identity will be used if the security-identity element
is set to use-caller-identity. If the security-identity element is set
to run-as and the role name is Teller, the downstream calls from the
enterprise bean will be performed in terms of the Teller role.

• If the deployment descriptor belongs to a WAR file, the Deployer uses the
run-as deployment descriptor element for this purpose. If the run-as
element is not declared in the WAR file, the identity of the servlet’s caller
will be used for components called from the servlet. If the run-as element
is declared in the deployment descriptor, the identity passed when the
servlet makes calls to other components will be that of the security role
name defined in the run-as element of the descriptor. For example, if the
caller to a servlet is user Bob, Bob’s identity will be used if no run-as
element is declared in the WAR file’s deployment descriptor. If the run-as
element is declared in the deployment descriptor and the role name is
Teller, the downstream calls from the servlet will be performed in terms
of the Teller role.

3.7.4 System Administrator

The System Administrator is responsible for the configuration and administration
of the enterprise’s computing and networking infrastructure, including the J2EE
container. The System Administrator is also responsible for the overall manage-
ment and operational aspects of the J2EE applications at runtime. The following
list describes the security-related responsibilities of the System Administrator.
Some of these responsibilities may be carried out by the Deployer or may require
the cooperation of both the Deployer and the System Administrator.

3.7.4.1 Administering the Security Domain
The System Administrator is responsible for administering the security domain.
This includes the principal administration, user account management, group mem-
bership assignment, deployment of J2EE products within an enterprise environ-
ment, including configuration of DMZs, firewalls, user registries, and so on.
These are typically performed using the tools provided by the relevant product
vendor; for example, user registry management is performed using an LDAP
server product, firewall configuration using the firewall product, and so on.

Pistoia_ch03.fm Page 71 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS72

3.7.4.2 Assigning Application Roles to Users and Groups
The System Administrator is responsible for assigning principals and/or groups of
principals used for managing security in the runtime to the security roles defined
in the XML security-role elements of the deployment descriptors. The process
of assigning the logical security roles defined in the J2EE application’s deploy-
ment descriptor to the operational environment’s security concepts is specific to
the configuration capabilities of a particular J2EE product. For example, using the
tools provided by a J2EE product, the System Administrator can assign a Teller
role scoped to a J2EE application FinanceApp to user Bob and group TellerGroup.

3.7.5 J2EE Product Provider

The J2EE Product Provider has the following areas of responsibility.

3.7.5.1 Supplying Deployment Tools
The J2EE Product Provider is responsible for supplying the deployment tools that
the Deployer uses to perform all the deployment tasks, including the security-
related tasks. For example, the J2EE Product Provider will supply tools to perform
security-role-to-principal and/or -user and/or -group assignment.

3.7.5.2 Configuring Security Domains
The J2EE Product Provider is responsible for configuring the J2EE product to use
appropriate security domains. For example, the J2EE Product Provider needs to
supply facilities to configure the J2EE product to use a particular authentication
mechanism—for example, to use a Kerberos domain.

3.7.5.3 Supplying Mechanisms to Enforce Security Policies
The J2EE Product Provider is responsible for supplying the security mechanisms
necessary to enforce the security policies set by the Deployer. This includes
authentication of principals, authorization to perform EJB/servlet calls, configura-
tion of resource adapters defined in the JCA, and secure communication with re-
mote clients, integrity, and confidentiality.

3.7.5.4 Providing Tools for Principal Delegation
The J2EE Product Provider is responsible for passing principals on EJB/servlet
calls. In particular, the J2EE Product Provider is responsible for providing the de-
ployment tools that allow the Deployer to configure principal delegation for calls
from one J2EE component to another.

3.7.5.5 Providing Access to the Caller’s Security Context
The J2EE Product Provider is responsible for providing access to the caller’s secu-
rity context information when programmatically queried from enterprise beans

Pistoia_ch03.fm Page 72 Wednesday, January 14, 2004 11:22 AM

3.8 J2EE SECURITY ROLES 73

and servlets using the J2EE-defined security APIs. For example, when a servlet
calls getUserPrincipal() on a javax.servlet.http.HttpServletRequest
object, the J2EE Product Provider must return the java.security.Principal
object representing the caller of the servlet.

3.7.5.6 Supplying Runtime Security Enforcement
One of the most significant responsibilities of the J2EE Product Provider is to sup-
ply runtime security enforcement, as follows.

• Provide enforcement of the client access control as specified by the current
security policy.

• Isolate an enterprise bean instance from other instances and other applica-
tion components running on the server, thus preventing unauthorized
access to privileged information.

• Provide runtime facilities to implement the principal-delegation policies
set in the deployment descriptor.

• Allow a J2EE application to be deployed independently multiple times,
each time with a different security policy.

3.7.5.7 Providing a Security Audit Trail
Optionally, the J2EE Product Provider may provide a security audit trail mecha-
nism whereby secure access to enterprise beans and Web resources is logged.
Such audit logs can be used to determine the information about the activity on the
J2EE components. For example, these logs can be used to discover unauthorized
attempts to access enterprise beans and Web resources.

3.8 J2EE Security Roles
The J2EE authorization model is based on the concept of security roles. Security
roles are different from J2EE platform roles. As noted in Section 3.7.2 on page 67,
a security role is a semantic grouping of permissions that a given type of applica-
tion users must be granted to be authorized to use the application. In contrast, a
J2EE platform role represents the organizational responsibility in making a J2EE
application available to an enterprise, as described in Section 3.7 on page 64. Both
declarative and programmatic security are based on the security roles.

Security roles are defined by the Application Component Provider and the
Application Assembler. The Deployer then maps each security role to one or
more security identities, such as users and groups, in the runtime environment.
Listing 3.1 is an example of an XML description of two security roles declared
within the deployment descriptor of an application’s EAR file.

Pistoia_ch03.fm Page 73 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS74

Declarative authorization can be used to control access to an enterprise bean
method. This contract is specified in the deployment descriptor. Enterprise bean
methods can be associated with method-permission elements in EJB modules’
deployment descriptors. As described in Section 3.7.2 on page 67, a method-
permission element specifies one or more EJB methods that are authorized for
access by one or more security roles. In Section 3.7.3 on page 70, we observed
that the mapping of principals to security roles is performed by the Deployer.
If the calling principal is in one of the security roles authorized access to a
method, the caller is allowed to execute the method. Conversely, if the calling
principal is not a member of any of the roles, the caller is not authorized to execute
the method. Listing 3.2 is an example of an XML method-permission element in
an EJB module’s deployment descriptor.

Access to Web resources can be similarly protected. An action on a Web re-
source URI can be associated with an XML security-constraint element in a

Listing 3.1. Description of Security Roles Teller and Supervisor

<assembly-descriptor>
<security-role>

<description>
This role is intended for employees who provide
services to customers (tellers).

</description>
<role-name>Teller</role-name>

</security-role>
<security-role>

<description>
This role is intended for supervisors.

</description>
<role-name>Supervisor</role-name>

</security-role>
</assembly-descriptor>

Listing 3.2. Example of an XML method-permission Element in an EJB Module’s
Depolyment Descriptor

<method-permission>
<role-name>Teller</role-name>
<method>

<ejb-name>AccountBean</ejb-name>
<method-name>getBalance</method-name>

</method>
<method>

<ejb-name>AccountBean</ejb-name>
<method-name>getDetails</method-name>

</method>
</method-permission>

Pistoia_ch03.fm Page 74 Tuesday, January 6, 2004 1:56 PM

3.8 J2EE SECURITY ROLES 75

Web module’s deployment descriptor. The security-constraint element con-
tains one or more URI patterns that can be authorized for access by one or more
security roles. If the calling principal is a member of one or more of the security
roles authorized to access an HTTP method on a URI, the principal is authorized
to access the URI. Conversely, if the calling principal is not a member of any of
the roles, the caller is not allowed to access the URI. Listing 3.3 shows a Web
module’s deployment descriptor fragment that defines access authorization re-
quirements for a Web application.

In a J2EE environment, the security roles form the basis for the security pro-
vided by the containers that host the components. A container can provide two
types of security: declarative and programmatic.

In the declarative security model, an application expresses its security policies
through security constraints in a form external to the application. In J2EE, security
constraints are specified in the deployment descriptors. This allows the applica-
tion to be security-mechanism agnostic, or security unaware. Application code is
not required to enable security or enforce the application security policy.

With declarative security, the application’s logical security requirements are
defined in the deployment descriptors and then mapped by the Deployer and
the System Administrator to a deployment environment. The Deployer uses
container-deployment tools to process the deployment descriptors. At runtime,
the container uses the security policy configured by the Deployer and the Sys-
tem Administrator to enforce authorization.

Declarative security allows greater opportunities for application portability
because all the security issues related to the underlying container and operating
system are defined in configuration files external to the application. In addition, an
application that makes use of declarative security is easier to develop because
security and policy configuration issues are managed outside the application.

Listing 3.3. Example of an XML security-constraint Element in a Web Module’s
Deployment Descriptor

<security-constraint>
<web-resource-collection>

<web-resource-name>
Account servlet protected area

</web-resource-name>
<url-pattern>/finance/account/</url-pattern>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>Teller can access the URIs</description>
<role-name>Teller</role-name>

</auth-constraint>
</security-constraint>

Pistoia_ch03.fm Page 75 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS76

Application developers need not to be security experts, and an application based
on declarative security can be more easily extended. Therefore, declarative secu-
rity should always be used instead of programmatic security unless declarative se-
curity alone is insufficient to describe the security requirements of an application.

In the programmatic security model, the application programmer is respon-
sible for explicitly writing the code that defines and enables security. The ap-
plication security policy is an integral part of the application. An application
conforming to this model is said to be security aware.

Programmatic security makes application development more difficult and
severely limits the portability and extensibility of an application, because security
issues related to the specific application, container, and operating system on which
the application is running must be hard-coded. For these reasons, programmatic
security should be used only when declarative security alone is insufficient to
express the security model of an application. For example, the declarative security
capabilities of J2EE V1.3 do not allow expressing a policy whereby a user cannot
withdraw more than $1,000 from an automatic teller machine (ATM). Similarly,
instance-level authorization to impose that only Bob can access Bob’s account
cannot be defined declaratively. In these cases, the application needs to enforce
these rules programmatically.

3.9 Declarative Security Policies
Security policies associated with URIs and enterprise beans include the following:

• Login configurations associated with URIs: for example, use of form-
based login

• Authorization policies associated with URIs and enterprise beans based on
J2EE security roles

• Principal-delegation policies that apply to Web applications and enterprise
beans

• Connection policies associated with JCA connectors that dictate how
applications access EIS in a secure manner

Such authorization and delegation policies can be specified declaratively within
the relevant deployment descriptors.

3.9.1 Login-Configuration Policy

Authentication is the process of proving the identity of an entity. Authentication
generally is performed in two steps: (1) acquiring the authentication data of a prin-
cipal and (2) verifying the authentication data against a user (principal) registry.

Pistoia_ch03.fm Page 76 Tuesday, January 6, 2004 1:56 PM

3.9 DECLARATIVE SECURITY POLICIES 77

J2EE security authenticates a principal on the basis of the authentication pol-
icy associated with the resource the principal has requested. When a user requests
a protected resource from a Web application server, the server authenticates the
user. J2EE servers use authentication mechanisms based on validating credentials,
such as digital certificates (see Section 10.3.4 on page 372), and user ID and pass-
word pairs. Credentials are verified against a user registry that supports the re-
quested authentication scheme. For example, authentication based on user ID and
password can be performed against an LDAP user registry, where authentication is
performed using an LDAP bind request.

A Web server is responsible for servicing HTTP requests. In a typical J2EE
environment, a Web server is a component of a J2EE WAS. In this case, the WAS
hosts servlets, JSP files, and enterprise beans. The login—authentication—config-
uration is managed by the WAS, which drives the authentication challenges and
performs the authentication. Similarly, if the Web server is independent of the
WAS and the Web server is the front end for the WAS, the Web server acts as a
proxy for J2EE requests. Again, the authentication is typically performed by the
WAS.

The authentication policy for performing authentication among a user, a Web
server, and a WAS can be specified in terms of the J2EE login configuration ele-
ments of a Web application’s deployment descriptor. The authentication policy
can specify the requirement for a secure channel and the authentication method.
The requirement to use a secure channel when accessing a URI is specified
through the user-data-constraint descriptor.

The authentication method is specified through the auth-method element in
the login-config descriptor. There are three types of authentication methods:

1. HTTP authentication method. The credentials that the client must sub-
mit to authenticate are user ID and password, sent to the server as part of
an HTTP header and typically retrieved through a browser’s dialog win-
dow. The two modes of HTTP authentication are basic and digest. In both
cases, the user ID is sent as cleartext.2 In basic authentication, the pass-
word is transmitted in cleartext as well; in digest authentication, only a
hash value of the password is transmitted to the server (see Section 10.2.2.4
on page 356).

2. More precisely, the cleartext is encoded in base64 format, a commonly used Internet stan-
dard. Binary data can be encoded in base64 format by rearranging the bits of the data stream
in such a way that only the six least significant bits are used in every byte. Encoding a string
in base64 format does not add security; the algorithm to encode and decode is fairly simple,
and tools to perform encoding and decoding are publicly available on the Internet. There-
fore, a string encoded in base64 format is still considered to be in cleartext.

Pistoia_ch03.fm Page 77 Wednesday, January 14, 2004 11:26 AM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS78

2. Form-based authentication method. The credentials that the client
must submit to authenticate are user ID and password, which are retrieved
through an HTML form.

3. Certificate-based authentication method. The credential that the client
must submit is the client’s digital certificate, transmitted over an HTTPS
connection.

3.9.1.1 Authentication Method in Login Configuration
The auth-method element in the login-config element specifies how a server
challenges and retrieves authentication data from a user. As noted previously,
there are three possible authentication methods: HTTP (user ID and password),
form based (user ID and password), and certificate based (X.509 certificate).

With the HTTP authentication method, the credentials provided by the user
consist of a user ID and password pair, transmitted as part of an HTTP header.
When HTTP authentication is specified, a user at a Web client machine is chal-
lenged for a user ID and password pair. The challenge usually occurs in the fol-
lowing way:

1. A WAS issues an HTTP unauthorized client error code (401) and a
WWW_Authenticate HTTP header.

2. The Web browser pops up a dialog window.

3. The user enters a user ID and password pair in this dialog window.

4. The information is sent to the Web server.

5. The WAS extracts the information and authenticates the user, using the
authentication mechanism with which it has been configured.

With HTTP authentication, a realm name also needs to be specified. Realms
are used to determine the scope of security data and to provide a mechanism for
protecting Web application resources. For example, a user defined as bob in one
realm is treated as different from bob in a second realm, even if these two IDs rep-
resent the same human user, Bob Smith.

Once specified, the realm name is used in the HTTP 401 challenge to help the
Web server inform the end user of the name of the application domain. For exam-
ple, if the realm is SampleAppRealm, the dialog window prompting the user for a
user ID and password pair during authentication will include that the user ID and
password are to be supplied for the SampleAppRealm realm.

HTTP authentication can be either basic or digest. In basic authentication, the
credentials requested of the user are user ID and password, and both are transmit-
ted as cleartext. In order for the authentication method to be basic, the auth-
method element in the login-config descriptor must be set to BASIC. Listing 3.4

Pistoia_ch03.fm Page 78 Wednesday, January 14, 2004 11:27 AM

3.9 DECLARATIVE SECURITY POLICIES 79

is a deployment descriptor fragment showing an example of login configuration
requiring basic authentication.

This scheme is not considered to be a secure method of user authentication, unless
used in conjunction with some external secure systems, such as SSL.

In digest authentication, the user ID and a hash value of the password are
transmitted to the server as part of an HTTP header. Therefore, the password does
not appear in cleartext, which is the biggest weakness of basic authentication.

When digest authentication is specified, the Web server responds to the
client’s request by requiring digest authentication. A one-way hash of the pass-
word (see Section 10.2.2.4 on page 356), as specifed by the Request for Com-
ments (RFC) 2617,3 is computed by the client, based on a random number, called
nonce, uniquely generated by the server each time a 401 response is made. The
hash value of the password is sent to the server, which computes the digest of the
password for the user ID and compares the resulting hash value with the one sub-
mitted by the client. The requesting user is considered to be authenticated if the
hash values are identical.

This mode of authentication assumes that the server has access to the user’s
password in cleartext—a necessary requirement in order for the server to compute
the hash of the password. However, this is rarely the case in most enterprise envi-
ronments, as the password in cleartext is not retrievable from a user repository
containing the user ID and password information. Rather, the server typically del-
egates responsibility to the user repository to validate a user’s password. There-
fore, digest authentication is not widely adopted in enterprise environments and
hence is not required to be supported by a J2EE container.

J2EE servers that do support digest authentication can be configured to issue
a digest authentication challenge by setting the value of the auth-method element
in the login-config descriptor to DIGEST. Listing 3.5 is a deployment descriptor
fragment illustrating how a J2EE server can be configured to require digest
authentication.

Listing 3.4. Login Configuration for Basic Authentication

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>SampleAppRealm</realm-name>

</login-config>

3. See http://www.ietf.org/rfc/rfc2617.txt.

Pistoia_ch03.fm Page 79 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS80

The second authentication method is form based. With this method, the auth-
method element in the login-config element must be set to FORM. The form-
based authentication method assumes that the server is configured to send the
client an HTML form to retrieve the user ID and password from the Web user, as
opposed to sending a 401 HTTP unauthorized client error code as in the basic
challenge type.

The configuration information for a form-based authentication method is
specified through the form-login-config element in the login-config element.
This element contains two subelements: form-login-page and form-error-
page.

• The Web address to which a user requesting the resource is redirected is
specified by the form-login-page subelement in the Web module’s
deployment descriptor. When the form-based authentication mode is spec-
ified, the user will be redirected to the specified form-login-page URL.
An HTML form on this page will request a user ID and password.

• If the authentication fails, the user is redirected to the page specified by the
form-error-page subelement.

Listing 3.6 is a sample HTML page for the login form.

Listing 3.6. Login Page Contents

Listing 3.5. Login Configuration for Digest Authentication

<login-config>
<auth-method>DIGEST</auth-method>
<realm-name>SampleAppRealm</realm-name>

</login-config>

<HTML>
<HEAD>

<TITLE>Sample Login page.</TITLE>
</HEAD>
<BODY>

<TR><TD>
<HR>Please log in!

</TD></TR>
<CENTER>
Please enter the following information:

<FORM METHOD=POST ACTION="j_security_check">

Account <INPUT TYPE=text NAME="j_username"
SIZE=20>

Password <INPUT TYPE=password
NAME="j_password" SIZE=20>

Pistoia_ch03.fm Page 80 Tuesday, January 6, 2004 1:56 PM

3.9 DECLARATIVE SECURITY POLICIES 81

Listing 3.7 is a deployment descriptor fragment showing an example of login
configuration that requires form-based authentication.

The third type of authentication method is certificate based (X.509 certifi-
cate). In order for the authentication method to be certificate based, the auth-
method element in the login-config descriptor must be set to CLIENT-CERT. Τhe
certificate-based authentication method implies that the Web server is configured
to perform mutual authentication over SSL. The client is required to present a cer-
tificate to establish the connection. When the CLIENT-CERT mode is specified, the
client will be required to submit the request over an HTTPS connection. If the re-
quest is not already over HTTPS, the J2EE product will redirect the client over an
HTTPS connection. Successful establishment of an SSL connection implies that
the client has presented its own certificate and not anyone else’s. The details of
how the server ensures that the client certificate really belongs to the client are ex-
plained in Section 10.3.4 on page 372 and Section 13.1.2 on page 452. The certif-
icate used by the client is then mapped to an identity in the user registry the J2EE
product is configured to use.

Listing 3.8 is a deployment descriptor fragment showing an example of login
configuration that requires certificate-based authentication.

<INPUT TYPE=submit NAME=action
VALUE="Submit Login">

</FORM><HR>
</CENTER>

</BODY>
</HTML>

Listing 3.7. Login Configuration for Form-Based Authentication

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>

/login-failed.html
</form-error-page>

</form-login-config>
</login-config>

Listing 3.8. Login Configuration for Certificate-Based Authentication

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

Pistoia_ch03.fm Page 81 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS82

Note that the user registry is not specified in this XML deployment descriptor
fragment because it is not part of the J2EE specification.

3.9.1.2 Secure-Channel Constraint
Establishing an HTTPS session between the client and the Web server is often a
necessary requirement to provide data confidentiality and integrity for the infor-
mation flowing between the HTTP client and the server. In a J2EE environment,
the security policy can require the use of a secure channel, specified through the
user-data-contraint deployment descriptor element. When the requirement for
a secure channel is specified, the request to the URI resource should be initiated
over an HTTPS connection. If access is not already via a HTTPS session, the
request is redirected over an HTTPS connection.

Specifying INTEGRAL or CONFIDENTIAL as the value for the transport-
guarantee element in the user-data-constraint descriptor will be treated as a
requirement for the HTTP request to be over SSL. This requirement can be speci-
fied as part of the user-data-constraint element in a Web application’s login
configuration. In theory, INTEGRAL should enforce communitcation integrity,
whereas CONFIDENTIAL should enforce communication confidentiality, and it
could be possible to select different cipher suites to satisfy these requirements.
However, a J2EE server typically does not differentiate INTEGRAL from CONFI-
DENTIAL but instead treats both of these values to indicate the need to require an
SSL connection with a particular cipher suite, not based on whether INTEGRAL or
CONFIDENTIAL was specified.

Listing 3.9 is a deployment descriptor fragment showing an example of login
configuration that contains the user-data-constraint element. More details are
provided in Section 4.6.6 on page 132.

3.9.2 Authorization Policy

The role-permission interpretation of the J2EE security model treats a security
role to be a set of permissions. The security role uses the role-name label defined
in the method-permission element of an EJB module’s deployment descriptor
and in the security-constraint element of a Web module’s deployment de-
scriptor as the name of the set of permissions. The set of permissions defines a
number of resources—the enterprise beans and the Web resources to which the

Listing 3.9. Specifying the Requirement for a Secure Channel

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

Pistoia_ch03.fm Page 82 Tuesday, January 6, 2004 1:56 PM

3.9 DECLARATIVE SECURITY POLICIES 83

method-permission and security-constraint elements refer, respectively—
and a set of actions—the methods listed by the method-permission and the
security-constraint descriptors. For example, in Listing 3.2 on page 74, the
security role Teller is associated with the permissions to invoke the getBalance()
and getDetails() methods on the AccountBean enterprise bean. Similarly, in
Listing 3.3 on page 75, the security role Teller is associated with the permission to
perform a GET invocation over HTTP to the /finance/account/ URI. If multiple
method-permission and security-constraint descriptors refer to the same se-
curity role, they are all taken to contribute to the same role permission. In other
words, the sets of permissions associated with that security role are merged to
form a single set.

This model has the advantage of dramatically reducing the number of objects
in a security object space—a set of pairs (subject, <target, operation>), where the
subject is an entity requesting to perform a security-sensitive operation on a given
target. The Deployer and the System Administrator can define authorization poli-
cies, associated with EJB or URI targets and the operations of enterprise bean
methods and HTTP methods, respectively, for the security roles in their applica-
tions. Then, they associate subjects to security roles; by extension, those subjects
are granted the permissions to perform the operations permitted by the security
roles.

Based on the J2EE security model, a protected action can be performed by a
subject who has been granted at least one of the security roles associated with the
action. The security roles associated with a protected action are the required secu-
rity roles—the permissions necessary to perform the action itself. The roles asso-
ciated with a subject are the granted security roles—the permissions that have
been given to that subject. This means that the subject will be allowed to perform
an action if the subject’s granted security roles contain at least one of the required
security roles to perform that action. For example, if the action consisting of ac-
cessing the EJB method getDetails() on the AccountBean enterprise bean can
be performed only by the security roles Teller and Supervisor and if subject Bob
has been granted the security role of Teller, Bob will be allowed to perform that
action, even if Bob has not been granted the security role of Supervisor.

The table that represents the association of security roles to sets of per-
missions is called the method-permission table. A method-permission table (see
Table 3.1) can be used to deduce the set of required security roles. The rows in the
table represent security roles; the columns represent protected actions.

It can be inferred from Table 3.1 that in order to access the getBalance()
method on AccountBean, the required security roles are Teller and Supervisor. In
order to access any URI that matches the pattern /public/*, a PublicRole is
required.

Pistoia_ch03.fm Page 83 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS84

The table that represents the association of roles to subjects is called the
authorization table, or protection matrix. In such a table, the security role is de-
fined as the security object, and users and groups are defined as security subjects.
An authorization table (see Table 3.2) can be used to deduce the set of granted
security roles. The rows in the table refer to the users and user groups that are
security subjects in the protection matrix; the columns represent the J2EE security
roles that are security objects in the protection matrix.

The method-permission table and the protection matrix reflect the con-
figuration specified in the deployment descriptors. For example, the first row in
Table 3.1 reflects the deployment descriptor obtained from the deployment
descriptor fragments of Listing 3.2 on page 74 and Listing 3.3 on page 75. It can
be inferred from Table 3.2 that user Bob and group TellerGroup are granted the
security role of Teller, everyone is granted the PublicRole, and only users in the
ManagerGroup are granted the security role of Supervisor.

Combining Table 3.1 and Table 3.2, it follows that Bob can access the
getBalance() and getDetails() methods on the AccountBean enterprise bean
and can issue an HTTP GET request on the /finance/account/ URI. Bob can-
not, however, issue an HTTP PUT request on the /finance/account/ URI. Note
that Bob will be able to access any URI that matches /public/*, as everyone
has been granted the role PublicRole, which is the role necessary to get access to
/public/*.

In the J2EE security model, the Application Assembler defines the initial
mapping of actions on the protected resources to the set of the required security

Table 3.1. Example of Method-Permission Table

/finance/

accountGET

/finance/

accountPUT /public/*

AccountBean.

getBalance()

AccountBean.

getDetails()

Teller Yes No No Yes Yes

Supervisor Yes Yes No Yes Yes

PublicRole No No Yes No No

Table 3.2. Example of Authorization Table

Teller Supervisor PublicRole

TellerGroup Yes No No

ManagerGroup No Yes No

Everyone No No Yes

Bob Yes No No

Pistoia_ch03.fm Page 84 Tuesday, January 6, 2004 1:56 PM

3.9 DECLARATIVE SECURITY POLICIES 85

roles (see Section 3.7.2 on page 67). This can be done using the application
assembly tool. Subsequently, the Deployer will refine the policies specified by the
Application Assembler when installing the application into a J2EE environment
(see Section 3.7.3 on page 70). The Deployer also can use the application assem-
bly tool to redefine the security policies, when necessary, and then install the
application into the J2EE container. The method-permission table is formed as a
result of the required security roles getting specified through the process of appli-
cation assembly and refinement during deployment.

Authorization policies can be broadly categorized into application policies,
which are specified in deployment descriptors and map J2EE resources to roles,
and authorization bindings, which reflect role to user or group mapping. As dis-
cussed in Section 3.7.2 on page 67, a set of security roles is associated with
actions on J2EE protected resources. These associations are defined in the J2EE
deployment descriptors when an application is assembled and deployed. The secu-
rity roles specified in this way are the required security roles—the sets of permis-
sions that users must be granted in order to be able to perform actions on protected
resources. Pragmatically, before a user is allowed to perform an action on a pro-
tected resource, either that same user or one of the groups that user is a member of
should be granted at least one of the required security roles associated with that
protected resource. The authorization table that relates the application-scoped re-
quired security roles to users and user groups is managed within the J2EE Product
Provider using the J2EE Product Provider configuration tools.

3.9.3 Delegation Policy

Earlier in this chapter, we defined delegation as the process of forwarding a prin-
cipal’s credentials with the cascaded downstream requests. Enforcement of dele-
gation policies affects the identity under which the intermediary will perform the
downstream invocations on other components. By default, the intermediary will
impersonate the requesting client when making the downstream calls. The down-
stream resources do not know about the real identity, prior to impersonation, of
the intermediary. Alternatively, the intermediary may perform the downstream in-
vocations using a different identity. In either case, the access decisions on the
downstream objects are based on the identity at the outbound call from the inter-
mediary. To summarize, in a J2EE environment, the identity under which the
intermediary will perform a task can be either

• The client’s identity—the identity under which the client is making the
request to the intermediary

• A specified identity—an identity in terms of a role indicated via deploy-
ment descriptor configuration

Pistoia_ch03.fm Page 85 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS86

The application deployment environment determines whether the client or a spec-
ified identity is appropriate.

The Application Assembler can use the security-identity element to
define a delegation identity for an enterprise bean’s method in the deployment
descriptor. Consider an example in which a user, Bob, invokes methods on a
SavingsAccountBean enterprise bean. SavingsAccountBean exposes three meth-
ods—getBalance(), setBalance(), and transferToOtherBank()—and its del-
egation policy is defined as in Table 3.3. Figure 3.5 shows a possible scenario
based on the delegation policy specified in Table 3.3.

The method setBalance() will execute under the client’s identity because the
delegation mode is set to use-caller-identity. The method getBalance() will
execute under the client’s identity as well because no delegation mode is specified,
and the default is use-caller-identity. Therefore, if Bob invokes the method
getBalance() on AccountBean, the method will execute under Bob’s identity,
bob. Suppose that the getBalance() method invokes a lookup() method on

Table 3.3. SavingsAccountBean Enterprise Bean’s Delegation Policy

Method Delegation Mode Specified Role

getBalance()

setBalance() use-caller-identity

transferToOtherBank() run-as Supervisor

Figure 3.5. Delegation Policy Scenario

getBalance()

setBalance()

transferToOtherBank()

AccountBean

Bob

lookup()

saveRecord()

executeTransfer()

bob

SavingsAccountBean

TransferBean

bob

bob

alice

BankBean

Pistoia_ch03.fm Page 86 Tuesday, January 6, 2004 1:56 PM

3.9 DECLARATIVE SECURITY POLICIES 87

SavingsAccountBean. This invocation will still be executed under Bob’s identity
and will succeed only if Bob has been granted the permission to invoke lookup()
on SavingsAccountBean.

Any downstream call from transferToOtherBank() will perform method
calls on a TransferBean enterprise bean. These invocations will need to execute
under a principal that has been granted the Supervisor role. The Deployer or the
System Adminstrator needs to map the Supervisor role to a principal that has been
granted the Supervisor role. This can be done by specifying a valid user ID and
password pair corresponding to a user who has been granted that role. For
example, if user Alice has been granted the Supervisor role and if the user ID and
password pair for Alice is associated with the Supervisor role, the calls to
transferToOtherBank() will occur under Alice’s identity.

3.9.4 Connection Policy

Information in any EIS must be protected from unauthorized access. An EIS sys-
tem is likely to have its own authorization model. At a minimum, most of these
systems have facilities to accept some form of authentication data representing an
identity connecting to the EIS. The JCA is designed to extend the end-to-end secu-
rity model for J2EE-based applications to include integration with EISs. A WAS
and an EIS collaborate to ensure the proper authentication of a resource principal
when establishing a connection to a target EIS. As discussed in Section 3.4 on
page 61, the JCA allows for two ways to sign on to an EIS: container-managed
sign-on and component-managed sign-on.

With container-managed sign-on, the connection to an EIS is obtained
through declarative security. In order for a connection to be container managed,
the deployment descriptor will indicate that the res-auth element associated with
a resource definition is declared as Container. If the connection is obtained by
passing the identity information programmatically, the value for res-auth should
be set to Application. Details of component-managed sign-on are discussed in
Section 3.10.3 on page 94.

A deployment descriptor fragment that declares that the authentication
facilitated by the resource adapter should be set to be Container is shown in
Listing 3.10.

Listing 3.10. An XML res-auth Element in a Deployment Descriptor

<resource-ref>
<description>Connection to myConnection</description>
<res-ref-name>eis/myConnection</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Pistoia_ch03.fm Page 87 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS88

The container is responsible for obtaining appropriate user authentication in-
formation needed to access the EIS. The connection to the EIS is facilitated by the
specified resource adapter. The JCA allows specifying the authentication mecha-
nism. The authentication-mechanism-type element in the deployment descrip-
tor is used to specify whether a resource adapter supports a specific authentication
mechanism. This XML element is a subelement of the authentication-
mechanism element. The JCA specification supports the following authentication
mechanisms:

• Basic authentication. The authentication mechanism is based on user
ID and password. In this case, the authentication-mechanism-type
XML element in the deployment descriptor is set to BasicPassword.

• Kerberos V5. The authentication mechanism is based on Kerberos V5.
In this case, the authentication-mechanism-type element in the deploy-
ment descriptor is set to Kerbv5.

Other authentication mechanisms are outside the scope of the JCA specification.
In a secure environment, it is likely that a J2EE application component, such

as an enterprise bean, and the EIS system that is accessed through the component
are secured under different security domains, where a security domain is a scope
within which certain common security mechanisms and policies are established.
In such cases, the identity under which the J2EE component is accessed should be
mapped to an identity under which the EIS is to be accessed. Figure 3.6 depicts a
possible scenario.

In this scenario, an enterprise bean in a J2EE container is accessed by a user,
Bob Smith. The enterprise bean is protected in a way that it allows only users from
a specified LDAP directory to access it. Therefore, the identity under which Bob
Smith will access the enterprise bean must be registered in that LDAP directory.
Bob Smith uses the identity of bsmith when he accesses the enterprise bean.

In a simplistic case, where the run-as policy of the enterprise bean is set to be
the caller identity, the connections to the EIS will be obtained on behalf of Bob
Smith. If the connections are obtained through user ID and password, when the
enterprise bean obtains a connection to a back-end system, such as a CICS system,
the J2EE container will retrieve a user ID and password to act on behalf of user
bsmith. The application invokes the getConnection() method on the javax.
resource.cci.ConnectionFactory instance (see Listing 3.10 on page 87) with
no security-related parameters, as shown in Listing 3.11, a fragment of Java code.

Pistoia_ch03.fm Page 88 Tuesday, January 6, 2004 1:56 PM

3.9 DECLARATIVE SECURITY POLICIES 89

The application relies on the container to manage the sign-on to the EIS in-
stance. This is possible in simple deployment scenarios in which the identity
under which the EIS system is accessed is specified by the Deployer. This effec-
tively means that all identities accessing the application are mapped to a single
identity to access the EIS system: a many-to-one identity mapping.

Figure 3.6. Credential Mapping when Accessing an EIS from a J2EE Container

Listing 3.11. Getting a Connection to an EIS with Container-Managed Sign-On

// Construct the InitialContext
Context initctx = new InitialContext();

// Perform a JNDI lookup to obtain a ConnectionFactory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory) initctx.lookup
("java:comp/env/eis/MyEIS");

// Invoke the ConnectionFactory to obtain a connection.
// The security information is not passed to the
// getConnection() method
javax.resource.cci.Connection cx = cxf.getConnection();

J2EE
Container

User ID: bobsmith
Password: db2foobar

CICS on
HostA

Credential Mapping

WAS Security
Domain

CICS on HostA SAP on SystemB

bsmith bobsmith
[db2foobar]

bsmith
[cicspwd]

alice alice
[dogs23]

agg
[cats45]

Who is on
CICS on HostA?
What is the password?

bsmith

Resource Adapter
(A connector to a CICS
back end)JCAApplication

Accessed as
bsmith

Pistoia_ch03.fm Page 89 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS90

In more sophisticated deployment scenarios, a many-to-one identity mapping
may not be sufficient for security policy reasons. For example, it may be neces-
sary for the EIS system to log all the identities that accessed it. For this logging
facility to be useful, the identities accessing a J2EE application must not all be
mapped to the same identity on the EIS system. A one-to-one or many-to-many
identity mapping is recommended in this case. In particular, the container may use
a credential mapping facility whereby bsmith is mapped to user ID bobsmith and
password db2foobar, as shown in Figure 3.6.

If connections require Kerberos credentials or other generic credentials to be
passed, the mapping facility is responsible for mapping one form of the creden-
tial to another that can be used by the target security domain. The manner in
which these mappings happen and the level of sophistication in mapping avail-
able in J2EE application servers are server specific and not dictated by the J2EE
specification.

In enterprise environments consisting of multiple departments, organizations,
and even acquired companies, it is typical for systems to be interconnected and the
applications shared. In such environments in which J2EE applications are de-
ployed, it is a good architectural approach to design the application integration in
a way that applications use JCA to obtain connections to other applications and to
follow the declarative approach to define connection sign-on, as explained in this
section. The use of JCA will make applications unaware of cross-security domains
when accessing non-J2EE systems, and the use of declarative security will en-
hance application flexibility and portability. JCA with declarative security will
also help manage the mapping of credentials and identities outside the application
as enforced and facilitated by the enterprise-level mapping infrastructure.

3.10 Programmatic Security

Declarative security should always be used instead of programmatic security
whenever possible. However, when declarative security is insufficient, it may be
necessary to retrieve security-sensitive information programmatically from the
container. This section explains how to retrieve the user’s identity and privilege in-
formation programatically.

Applications that make use of programmatic security typically invoke the fol-
lowing EJB and servlet/JSP security APIs:

• EJB method isCallerInRole() in interface javax.ejb.EJBContext.
This method is used to test whether the current caller, the client, has been
assigned to a specified security role.

Pistoia_ch03.fm Page 90 Tuesday, January 6, 2004 1:56 PM

3.10 PROGRAMMATIC SECURITY 91

• EJB method getCallerPrincipal() in interface javax.ejb.EJB-

Context. This method is used to obtain a Principal object representing
the current caller, the client.

• Servlet/JSP method isUserInRole() in interface javax.servlet.
http.HttpServletRequest. This method, similar to the EJB method
isCallerInRole(), returns a boolean indicating whether the authenti-
cated user, the client, is a member of the specified security role.

• Servlet/JSP method getUserPrincipal() in interface javax.servlet.
http.HttpServletRequest. This method, similar to the EJB method
getCallerPrincipal(), returns a Principal object representing the cur-
rent authenticated user, the client.

3.10.1 Retrieving Identity Information

The Java Servlet and EJB specifications provide mechanisms to programmatically
obtain identity information about the user invoking a method on a servlet or an
enterprise bean.

3.10.1.1 From a Servlet or JSP File
The HttpServletRequest object passed to a servlet method can be used to obtain
information about the user invoking the method. Invoking the getRemoteUser()
method on the HttpServletRequest object returns the name of the user if the
user has been authenticated, null otherwise.

The getRemoteUser() method can be invoked as shown in Listing 3.12.

The getUserPrincipal() method in the HttpServletRequest object re-
turns the Principal object corresponding to the user if the user has been authen-
ticated, null otherwise. The name of the user can then be obtained by calling the
getName() method on the Principal object, if this not null, as shown in List-
ing 3.13.

Listing 3.12. Retrieving the User Name from a Servlet

public void doGet(HttpServletRequest req,
HttpServletResponse res)

{
// other code...

// obtain the user name
String userName = req.getRemoteUser();

// other code...
}

Pistoia_ch03.fm Page 91 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS92

3.10.1.2 From an Enterprise Bean
The getCallerPrincipal() method can be called on a javax.ejb.EJBContext
object to obtain the Principal object corresponding to the user making the enter-
prise bean method invocation. The Principal object can then be used to obtain
information about the user. A code example is shown in Listing 3.14.

3.10.2 Proactive Authorization

The Java Servlet and EJB specifications provide mechanisms to programmatically
obtain information about the user’s privileges by invoking a method on a servlet or
an enterprise bean.

3.10.2.1 From a Servlet or JSP File
The HttpServletRequest object passed to a servlet method can be interrogated
to obtain information about whether the user invoking the method has been
granted a particular security role. Based on the result, the servlet may make deci-
sions on how to proceed. For example, if the caller is granted the Boss role, the
servlet redirects to a page that has managerial capabilities; otherwise, it might re-
direct to a different page. Note that when the servlet checks for the Boss role, this

Listing 3.13. Retrieving the Principal Object and the User Name from a Servlet

public void doGet(HttpServletRequest req,
HttpServletResponse res)

{
// other code...

// obtain the user Principal
Principal userPrincipal = req.getUserPrincipal();

// obtain the user name
String userName;

if (userPrincipal != null)
userName = userPrincipal.getName();

// other code...
}

Listing 3.14. Retrieving the User Name from an Enterprise Bean

public String getUserName(EJBContext context)
{
 // obtain and return the user name
 return context.getCallerPrincipal().getName();
}

Pistoia_ch03.fm Page 92 Tuesday, January 6, 2004 1:56 PM

3.10 PROGRAMMATIC SECURITY 93

role is scoped to the servlet. The Application Assembler performs the mapping of
this role reference to an enterprise application role by using the role-link tag in
the deployment descriptor, as shown in Listing 3.15.

A code example is shown in Listing 3.16.

3.10.2.2 From an Enterprise Bean
The isCallerInRole() method on an EJBContext object can be used to obtain
information about the roles granted to a particular user. This is similar to what
we saw in Section 3.10.1.1 on page 91. A code fragment example is shown in
Listing 3.17.

Listing 3.15. An XML role-link Element in a Deployment Descriptor

<security-role-ref>
<role-name>Boss</role-name>
<role-link>Manager</role-link>

</security-role-ref>

Listing 3.16. Retrieving the User’s Role Information from a Servlet

public void doGet(HttpServletRequest req,
HttpServletResponse res)

{
// other code...

if (req.isUserInRole("Boss"))
{

// code to redirect to Manager's page...
}
else
{

// code to redirect to generic page...
}

// other code...
}

Listing 3.17. Retrieving the User’s Role Information from an Enterprise Bean

public Object getOrganizationInfo(EJBContext context)
{

// other code...

// obtain the user name
if (context.isCallerInRole ("Boss")
{

(continues)

Pistoia_ch03.fm Page 93 Thursday, January 15, 2004 1:37 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS94

3.10.3 Application-Managed Sign-On to an EIS

Section 3.9.4 on page 87 described container-managed sign-on, whereby a con-
nection to an EIS is obtained through declarative security. An alternative approach
is to use programmatic security by allowing the sign-on to an EIS to be managed
directly by the application. In order for a connection to be application managed,
the value of the res-auth XML element associated with a resource definition in
the deployment descriptor must be set to Application, as shown in Listing 3.18.

In the case of application-managed sign-on, the application is responsible for
retrieving appropriate user information, such as the user ID and password, neces-
sary to connect to the EIS. The connection is facilitated by a resource adapter. The
application invokes the getConnection() method on the ConnectionFactory in-
stance with the security information: user ID and password. Specifying security
information is dependent on the resource adapter type and the way in which the
adapter accepts the user ID and password. For example, in order to connect to an
EIS system called MyEIS, the application may be required to pass user ID and
password through a com.myeis.ConnectionSpecImpl object. Listing 3.19 is a
Java code fragment showing such a scenario, which is similar to the one discussed
in Section 3.9.4 on page 87, except that the security information is coded into the
application and is passed to the getConnection() method.

// code to access the Boss entity bean and get the
// budget info...

}
else
{

// code to access the employee bean and get the
// organization chart...

}

// other code...
}

Listing 3.18. Setting the res-auth Deployment Descriptor Tag to Application

<resource-ref>
<description>Connection to myConnection</description>
<res-ref-name>eis/myConnection</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Application</res-auth>

</resource-ref>

Listing 3.17. Retrieving the User’s Role Information from an Enterprise Bean

Pistoia_ch03.fm Page 94 Tuesday, January 6, 2004 1:56 PM

3.11 SECURE COMMUNICATION WITHIN A WAS ENVIRONMENT 95

3.11 Secure Communication within a WAS Environment

A fundamental aspect of any distributed computing system is remote communica-
tion. In an enterprise environment, components, such as Web servers, plug-ins,
and WASs; external servers, such as LDAP directory servers; and clients commu-
nicate with one another over multiple protocols.

• HTTP clients invoke URL requests to Web servers over HTTP.

• WASs communicate with one another over IIOP.

• Some WASs may communicate with external systems by using other pro-
tocols. For instance, a WAS can communicate with an LDAP directory
server over LDAP.

Because these components can host and distribute security-sensitive informa-
tion, it is necessary to provide secure communication channels. The quality-of-
service (QoS) should include encryption, integrity, and, possibly, authentication.
The SSL protocol is generally used to meet these QoS requirements. Typically,
two modes of SSL connections are used in J2EE:

1. Server-side SSL. The client connects to the server and attempts to verify
the authenticity of the server’s identity. The server does not verify the
client’s identity. If the client can authenticate the server successfully, the
client/server communication is performed over an encrypted channel.

Listing 3.19. Getting a Connection to an EIS with Container-Managed Sign-On

// Method in an application component
Context initctx = new InitialContext();

// Perform a JNDI lookup to obtain a ConnectionFactory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory) initctx.lookup
("java:comp/env/eis/MyEIS");

// Insert here the code to get a new ConnectionSpec
com.myeis.ConnectionSpecImpl props = // ...

// Set user ID and password
props.setUserName("bobsmith");
props.setPassword("db2foobar");

// Invoke the ConnectionFactory to obtain a connection.
// The security information is passed explicitly to the
// getConnection() method.
javax.resource.cci.Connection cx = cxf.getConnection(props);

Pistoia_ch03.fm Page 95 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS96

2. Mutual-authentication SSL. The client connects to the server. Both
client and server attempt to authenticate to each other. If the mutual-
authentication process is successful, client and server communicate over
an encrypted channel.

The SSL configuration on the server side dictates whether a client connecting
to the server should connect over server-side SSL or mutual-authentication SSL.
In both cases, the strength of encryption depends on the configured cipher suite. In
a Java environment, JSSE-compliant SSL providers are used to establish secure
communication using SSL between the end points (see Chapter 13 on page 449).

The following list shows possible combinations of securely communicating
parties:

• Web client to Web server. Any Web browser can issue a request to a
Web server over a secure connection. This communication can be over
either server-side SSL or mutual-authentication SSL. The Web server
should be configured to accept connections from Web browsers over a
secure-socket port—typically, port 443. If a WAS requires a client to
present a client certificate in order to be authenticated to access a servlet,
the underlying Web server should be configured to require mutual-authen-
tication SSL connections from Web browsers. This configuration is spe-
cific to the underlying Web server that is used, whereas the client
certificate information is configured on the Web browser and is specific to
the browser settings.

• Web server to WAS. In general, a Web server needs a plug-in to com-
municate with a back-end WAS, unless the Web server and the WAS are
integrated to form a single component. In a typical scenario, a Web server
plug-in may communicate with an application server over HTTP. This can
be configured to be over SSL, in which case the resulting protocol is
HTTPS. In order for this to happen, the WAS transport must be configured
to accept only secure connections. In the case of mutual-authentication
SSL, the WAS transport can also be configured to trust only a set of
selected clients to connect to the WAS. By properly configuring the digi-
tal-key storage facility—for example, a key file—both the plug-in and the
WAS can be configured to accept a list of trusted Certificate Authorities
(CAs), so that a trusted communication link can be established with only
the clients whose certificates have been authenticated by one of the trusted
CAs (see Section 10.3.4 on page 372).

• WAS to WAS. WASs communicate to other WASs by using IIOP. In a
secure environment, all these communications are over SSL. The digital-
key databases can be configured to reflect the trust policy by using the

Pistoia_ch03.fm Page 96 Tuesday, January 6, 2004 1:56 PM

3.12 SECURE E-BUSINESS REQUEST FLOW 97

tools provided with J2EE. In general, it is also possible to configure the
strength of encryption enforced in such a secure connection.

• Application client to WAS. Similar to a Web browser’s making a re-
quest to a Web resource, Java clients can use the EJB programming model
to invoke methods on an enterprise bean by connecting to the WAS that
hosts the enterprise bean. In a secure environment, the communication
from the client to the protected resources should be protected by the SSL
protocol. At that point, an application client can securely communicate
with a WAS over SSL. This is achieved by configuring the WAS with a list
of trusted application clients. Alternatively, the WAS can be configured to
accept a list of trusted CAs, so that a trusted communication link can be es-
tablished with only the application clients whose digital certificates have
been authenticated by one of the trusted CAs.

• WAS to LDAP directory server. A WAS may need to connect to exter-
nal systems. For example, a WAS may be configured to use an LDAP di-
rectory server as a user registry. In this case, the WAS will make calls
against the LDAP directory. The protocol of communication between these
two entities is LDAP. User ID and password pairs are verified by perform-
ing LDAP bind operations against the LDAP directory. In a scenario like
this, these values will flow over the wire unencrypted unless the commu-
nication is protected by the SSL protocol. For this reason, an LDAP direc-
tory server should be configured to require that all connections be over
SSL. The set of digital certificates trusted by the directory server can be
imported into the WAS’s digital-key storage facility so that the WAS can
successfully establish an SSL connection with the LDAP directory server.

3.12 Secure E-Business Request Flow

We are now ready to revisit the simple e-business request flow presented in
Section 3.6 on page 63 with the security semantics added to the flow. The secure
e-business request flow takes the security model and security technologies
available in the J2EE environment into account and depicts the use of those
components.

Figure 3.7 enhances the diagram depicted in Figure 3.3 on page 63 and shows
how the J2EE security technologies presented in this chapter can play a role in a
secure e-business request flow.

Let us consider the request flow discussed in Section 3.6 on page 63 and
understand how security technologies play a role when that request is secured. A
user, say, Bob, invokes URL http://samples.com/servlet/account, which is
handled by the Web container that hosts the account servlet. Based on the security

Pistoia_ch03.fm Page 97 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS98

constraints defined, the URI /servlet/account is a protected resource. The login
configuration associated with the Web application is set to BASIC. Therefore,
when the request arrives, the Web container issues an HTTP 401 response back to
the browser. Bob resubmits his request by providing his user ID (bob) and his
password (see step 1 in Figure 3.7). The Web container validates the user ID and
password by authenticating the pair against the underlying user registry.

After the credentials are validated, the Web container performs an autho-
rization check. The URI is protected in a way to grant access only to the Teller
role. The container checks whether user Bob is granted the role (see step 2 in
Figure 3.7). As Bob has been granted the Teller role, he is allowed to access the
URI.

The servlet invokes the AccountBean enterprise bean, and the request is dis-
patched to the enterprise bean. The delegation policy on the servlet is not set to
run-as, which means that the downstream requests will be performed by using
the caller’s identity. In this case, the caller is Bob, and therefore the identity under

Figure 3.7. Secure E-Business Request Flow

EJB Container

/servlet/account

Web Container

AccountBean

EJB Method Request

<alice, password>

bob

admin

Login
Configuration

1
Role Checks (declarative
and programmatic)

2

Delegation
3

CSIv2 4

JSSE
5

JCA
7JAAS Login

6

EIS

Servlet Request

Authentication Challenge

<bob, password>

Web Server

Pistoia_ch03.fm Page 98 Thursday, January 15, 2004 1:38 PM

3.12 SECURE E-BUSINESS REQUEST FLOW 99

which the enterprise bean is called consists of Bob’s credentials, as depicted in
step 3 in Figure 3.7.

The Web container dispatches the request to the EJB container when the ac-
count servlet makes a call to the AccountBean enterprise bean. The request is sent
over IIOP. Given that this request is sent over a secure environment, the CSIv2
protocol is in effect (see Section 3.3 on page 61). The servers hosting the Web
container and the EJB container establish a secure association using the CSIv2
technology as depicted in step 4 in Figure 3.7. Based on a successful establish-
ment of the connection and the validity of Bob’s credentials, the received identity
at the EJB container is Bob’s.

The connections between the Web server and the Web container, and the Web
container and the EJB container are over SSL. This ensures confidentiality and in-
tegrity of the messages sent over the wire. It is essential for all communications in
an enterprise to be over a secure connection. JSSE is used to establish the SSL
connection as depicted in step 5 in Figure 3.7.

The AccountBean enterprise bean can also be invoked from a Java client. In
this case, a user, say, Alice, sends the request directly over IIOP. The request is
made from a J2EE client. In this case, the J2EE security technology used for
authentication and authorization is JAAS, which is discussed in detail in Chapter 9
on page 289. The client is configured with a javax.security.auth.callback.
CallbackHandler and performs a JAAS login against the server hosting the EJB
container (step 6 in Figure 3.7). Alice needs to provide a valid user ID and pass-
word pair. Then, she can perform a method invocation on the AccountBean enter-
prise bean. J2EE supports a Java client to submit a user ID and password pair over
an IIOP message. Using the CSIv2 protocol, the user ID and password pair is in a
Generic Security Services Username Password (GSSUP) token within the CSIv2
ESTABLISH_CONTEXT message.4 In order for this communication to be protected,
transport-level SSL is recommended.

The AccountBean enterprise bean is protected by J2EE declarative security. A
method permission definition declares the enterprise bean’s methods to be acces-
sible only by those who are granted the Teller role. Both users, Bob and Alice, are
granted the Teller role. Therefore, the requests that come through the servlet and
the one directly submitted are allowed to be invoked. The AccountBean enterprise
bean is succesfully accessed after the authorization check.

The AccountBean enterprise bean needs to access the data source in order to
retrieve the account information. The bean uses a JCA connection manager to ob-
tain a connection to an EIS. When the connection is obtained, based on the con-
nector security configuration, an identity is associated with the connection. The

4. Note that there is no standard declarative way to specify this type of authentication. The
details are specific to the J2EE container.

Pistoia_ch03.fm Page 99 Tuesday, January 6, 2004 1:56 PM

CHAPTER 3 ENTERPRISE JAVA SECURITY FUNDAMENTALS100

admin identity is used to obtain the connection and access the back-end EIS. This
access is enforced by the JCA capability and ensures that the EIS is accessed
securely, based on the security configuration, as depicted in step 7 in Figure 3.7.

As illustrated in the simple request flow enhanced with security characteris-
tics, the J2EE security model provides the capability and infrastructure to perform
secure transactions in an e-business environment.

Pistoia_ch03.fm Page 100 Tuesday, January 6, 2004 1:56 PM

343

C H A P T E R 10
The Theory of Cryptography

ONE of the essential ingredients of e-business and enterprise computing is
cryptography. Cryptography plays a critical role in J2SE and J2EE security, as
Part IV of this book demonstrates.

This chapter explains the theory of cryptography that will be used in Chap-
ters 11, 12, and 13. First, this chapter describes secret-key cryptographic systems,
as they are at the heart of most cryptographic services, including bulk-data en-
cryption, owing to their inherent performance advantage. Next is an overview of
public-key encryption, which is essential for conducting e-business, particularly
across public networks, because of the relative ease of distributing cryptographic
keys. In Chapter 11, secret- and public-key cryptography services are described
in the context of the standard Java APIs: the Java Cryptography Architecture and
the Java Cryptography Extension.

For readers who may feel intimidated by the mathematical jargon associated
with cryptography, we have tried to explain the mathematics associated with cryp-
tography in a clear and simple way. Our intent is to demystify the concepts and
terms surrounding cryptography.

10.1 The Purpose of Cryptography
The purpose of cryptography is to protect data transmitted in the likely presence
of an adversary. As shown in Figure 10.1, a cryptographic transformation of data
is a procedure by which plaintext data is disguised, or encrypted, resulting in an
altered text, called ciphertext, that does not reveal the original input. The cipher-
text can be reverse-transformed by a designated recipient so that the original
plaintext can be recovered.

Cryptography plays an essential role in

• Authentication. This process to prove the identity of an entity can be
based on something you know, such as a password; something you have,

Pistoia_ch10.fm Page 343 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY344

such as an encryption key or card; something you are, such as biometric
measurements, including retinal scans or voice recognition; or any com-
bination of these.

• Data confidentiality. With this property, information is not made avail-
able or disclosed to unauthorized individuals, entities, or processes. When
two or more parties are involved in a communication, the purpose of con-
fidentiality is to guarantee that only those parties can understand the data
exchanged. Confidentiality is enforced by encryption.

• Data integrity. This property refers to data that has not been changed,
destroyed, or lost in an unauthorized or accidental manner. The need for
data integrity is especially evident if data is transmitted across a nonsecure
network, such as the Internet, where a man-in-the-middle attack can easily
be mounted. Integrity is enforced by mathematical functions applied to the
message being transmitted.

• Nonrepudiation. Repudiation is the denial by one of the entities in-
volved in a communication of having participated in all or part of the com-
munication. Nonrepudiation is protection against repudiation and can be of
two types.

• Nonrepudiation with proof of origin provides the recipient of data with
evidence that proves the origin of the data and thus protects the recip-
ient against an attempt by the originator to falsely deny sending the
data. Its purpose is to prove that a particular transaction took place, by
establishing accountability of information about a particular event or
action to its originating entity.

• Nonrepudiation with proof of receipt provides the originator of data
with evidence proving that data was received as addressed and thus pro-
tects the originator against an attempt by the recipient to falsely deny
receiving the data.

Figure 10.1. The Process of Encryption and Decryption

Plaintext PlaintextCiphertext

Pistoia_ch10.fm Page 344 Friday, January 16, 2004 1:34 PM

���� �����	
��������
�����
���� ���

��� ����� �	�
��� ��
� �
�� ��������������� ��� ��
�� 	�� 	� �������� ��� ����

����������������������������� �������
����
���������
����	���������	�
����

�	��
�	���	�� ���������� 	����
�� ��� ��
� �	�	� �
���� �
�
	�
�� ������ ��

�	��	������

�

������
�
������	��������	�������	����������������������
������	���	�������

�
�
����
����
�����������������
��������	���������
��� !���	��
�	��
��
�
��

������ ����
�
� ��� �������� ��� ����
��� �	�
�� ��� ������� �
�"����� ����� 	�� ��

���
�
��

��

� 	
� �"�� ���	�� 	���	��
�� ��� ������	���� #�

� $���
� �!�%&�� ��

�
�
���
��������	�������
��
����
������
�������
�����
�
'�������
��	�
�	����

�
����	��"	����
�����
��������
������	����	���
'��������������
��������	�������

�
����
������
�������
�����
�
'���������

�����������
�	�
�������
��
����	��"	�

��
�����
��������
������	����	���
'��

(���	���	����	��������
������	���"
	��
��
���)	��������
�������	����

�
���
��
��
���
�	�����	�������

����
������	���	��
���*�"
�
�������	�����	�

������
�
���
��"���������
�	"	
������
����
�������	����
����	������
����
��

$��
'	���
���������
�����++��
�	��
��,
����"�
��	
�����	"	
� ��	������

��������	����
�
���
��������	����	
�
��
���	���	��������
�++����������

-	��
����"
��	��������	�����������	�������	����	��	��
	�������

����

	���
'��	������ �
�
���� ����� ��� ��
� ������
���	����� ���
��� ��	�� ������	���

	����������*�"
�
�����
�
��
���	��������	����� �
���
��	
������
���,�
�

'��	������	��
��	�
��"�
��
�
�����
���������"
����
��"	�������
�����������
��

�����+��
��
���	�����	��������������
�"������	���	�
�������
����
��
��	�
�

.	�	����
������
����	�����������
��	���
����	�������
������������
��
��	�
��,	�

��
��
��	�
�������
�����
���	��"
��������
�����
��
��	�
/�0��
�"
�	��
�����	�

��
� �
��	�
� ��� ���� 	�� 	���
����	�
��
������ 	��� "	�� ���� ������
�� 	��
� �
���

�
	�
���"
�	����"	������������
�"�
��
���
��
��
��	��
����	�
1�
����
���

���1��
��
��	�
������	��������	�����
��
�����
���
�������	������
����
����

�����	
��� +
�
���
��	���2�������
��(��������

Different but Related Keys

Public-Key, or Asymmetric, Cryptography

Secret-Key, or Symmetric, Cryptography

Same Shared Key

Pistoia_ch10.fm Page 345 Monday, January 19, 2004 3:24 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY346

authenticate the message. Therefore, nonrepudiation is an essential feature of
cryptographic systems e-businesses use.

10.2 Secret-Key Cryptography
In secret-key cryptography, a sequence of bits, called the secret key, is used as an
input to a mathematical function to encrypt a plaintext message; the same key is
also used to decrypt the resulting ciphertext message and obtain the original plain-
text (see Figure 10.3). As the same key is used to both encrypt and decrypt data, a
secret key is also called a symmetric key.

10.2.1 Algorithms and Techniques

In this section, we examine the most common cryptographic algorithms that are
based on the use of a secret key.

10.2.1.1 Substitutions and Transpositions
Some very early cryptographic algorithms manipulated the original plaintext,
character by character, using the techniques of substitution and transposition.

• A substitution, or permutation, replaces a character of the input stream by
a character from the alphabet set of the target ciphertext.

• A transposition replaces a character from the original plaintext by another
character of that same plaintext. This results in shuffling yet still preserv-
ing the characters of the original plaintext.

An example of a substitution is the famous Caesar Cipher, which is said to
have been used by Julius Caesar to communicate with his army. The Caesar

Figure 10.3. Secret-Key Encryption and Decryption

Plaintext PlaintextCiphertext

Encryption Decryption

Secret Key

Pistoia_ch10.fm Page 346 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 347

Cipher replaces each character of the input text by the third character to its right
in the alphabet set. In Figure 10.4, the value 3 is added to the position of the input
character; then modulo 26 is taken to yield the replacement character. If we
assign numerical equivalents of 0–25 to the 26-letter alphabet A–Z, the trans-
formation sends each plain character with position P onto the character with posi-
tion f(P) := P + 3 (mod 26).

A transposition cipher consists of breaking the original plaintext into separate
blocks first. A deterministic procedure is then applied to shuffle characters across
different blocks. For example, a transposition can split the secret message "PHONE
HOME" into the two separate blocks "PHONE" and " HOME". Then, characters are
cyclically shuffled across the two blocks to result in the ciphertext of "POMHE
HOEN". Another example of a simple transposition cipher consists of writing the
plaintext along a two-dimensional matrix of fixed rows and columns and then sim-
ply transposing the matrix, as shown in Figure 10.5.

Figure 10.4. The Caesar Cipher

Figure 10.5. Transposition Matrix

D E F G H I J K L M N O P Q R S T U V W X Y Z A B CSubstitution

A B C D E F G H I J K L M N O P Q R S T U V W X Y ZOriginal

This is my will.

Build 4 x 4 matrix A.

A =
Transpose matrix A.

AT =

Get the ciphertext.

T mihiylis ls w.

1 3

2T h i s
i s

m y w
i l l .

T m i
h i y l
i s l
s w .

Pistoia_ch10.fm Page 347 Wednesday, January 21, 2004 2:52 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY348

Generally, transposition ciphers are easy to break. However, composing them
by setting the result of one transposition as the input of another one greatly en-
hances the ciphering against attacks.

With the age of computers, early modern cryptography carried on these same
concepts, using the various elementary transformations that we have listed. The
primary difference is that these transformations now apply at the bit level of the
binary representation of data instead of characters only.

10.2.1.2 The XOR Operation
A common transformation is the exclusive OR (XOR) operation, denoted by the
symbols XOR, or ⊕. XOR is a bitwise function that maps an element of {0, 1} ×
{0, 1} onto the set {0, 1}, as shown in Figure 10.6. If we interpret the second
operand as a key value, the XOR operation can be thought of as a bit-level substi-
tution based on the bit values of the key. With such an assumption, XOR sends a
0 or 1 to itself when the corresponding key bit is 0 and inverts a 0 into a 1 and a
1 into a 0 when the corresponding key bit is 1.

The last property implies that when using a fixed-key value, the XOR operation
can be applied to encipher a plaintext, which can then be recovered by simply
applying the XOR operation to the ciphertext with the same key value. This prop-
erty has led to the proliferation of many variants of weak encryption methods that
rely solely on the simple XOR operation and thus are easily breakable.

Figure 10.7 shows how to XOR blocks of some plaintext P with a fixed-length
key K, leading to ciphertext P′. The figure also shows that if P′ is then XORed with
K, the original plaintext P is produced.

Knowing a block of plaintext and its XOR transformation directly leads to K,
by way of XORing the plaintext with the corresponding ciphertext, as shown in Fig-
ure 10.8. Similarly, by knowing two ciphertext blocks P′ and Q′ alone, one can
XOR them together to yield the XOR of the corresponding plaintext blocks P and Q,
as in Figure 10.9.

Figure 10.6. The XOR Operation Table

XOR:{0,1} {0,1} {0,1}� �

011

100

10XOR

Pistoia_ch10.fm Page 348 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 349

Figure 10.7. XORing Plaintext Blocks with a Fixed-Length Key

Figure 10.8. How to Get the Fixed-Length Key by XORing a Plaintext Block with Its
Corresponding Ciphertext Block

Figure 10.9. Ciphertext-Block XOR and Plaintext-Block XOR Equality

P = 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1

K = 1 1 0 0 0 1 0 1

P’ = 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0

0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0= P’

1 1 0 0 0 1 0 11 1 0 0 0 1 0 11 1 0 0 0 1 0 1XOR K

1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1P

1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1= P

1 1 0 0 0 1 0 11 1 0 0 0 1 0 11 1 0 0 0 1 0 1XOR K

0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0P’

1 1 0 0 0 1 0 1K

0 1 1 0 1 0 0 1XOR P’ block

1 0 1 0 1 1 0 0P block

0 1 1 0 1 0 0 1P’ block

1 0 1 0 1 1 0 0P block

1 0 0 1 1 0 1 1Q’ block

0 1 0 1 1 1 1 0Q block

1 1 1 1 0 0 1 0P’ block XOR Q’ block

1 1 1 1 0 0 1 0P block XOR Q block

Pistoia_ch10.fm Page 349 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY350

Therefore, examining the bit patterns of P ⊕ Q can easily result in recovering
one of the plaintexts by knowing some information about the other. The plaintext
can then be XORed with its ciphertext to yield the keystream, where the keystream
is the key used to encipher the plaintexts.

Despite the simplicity of the XOR operation and the weakness of encryption
algorithms that use it with fixed keys, there is a way to make the sole use of such
basic operation result in a perfect encryption scheme. A one-time pad is a key of
randomly generated digits that is used only once. Use of such a key yields a per-
fect cipher. Such a cipher is provably secure against attacks in which a code
breaker has knowledge of a set of ciphertexts.

The security of the one-time pad stems from the fact that the uncertainty in
attempting to guess the keystream is equal to that of directly guessing the plain-
text. Note, however, that the length of the keystream for the one-time pad is equal
to that of the plaintext being encrypted. Such a property makes it difficult to main-
tain and distribute keys, which could be very long. This difficulty has led to the
development of stream ciphers whereby the key is pseudorandomly generated
from a fixed secret key.

10.2.1.3 Stream Ciphers
Stream ciphers are geared for use when memory buffering is limited or when
characters are individually transformed as they become available for transmission.
Because stream ciphers generally transform plaintext bits independently from one
another, error propagation remains limited in the event of a transmission error. For
example, the XOR operation lends itself to be used as a stream cipher.

10.2.1.4 Block Ciphers
Block ciphers divide a plaintext into identically sized blocks. Generally, the blocks
are of length greater than or equal to 64 bits. The same transformations are applied
to each block to perform the encryption.

All the widely known secret-key block-cipher algorithms exhibit the crypto-
graphic properties desired in a block cipher. Foremost of these is the fact that each
bit of the ciphertext should depend on all key bits. Changing any key bit should
result in a 50 percent chance of changing any resulting ciphertext bit. Further-
more, no statistical relationships should be inferrable between a plaintext and its
corresponding ciphertext. In the reminder of this section, we present the most
common secret-key block-cipher algorithms.

Feistel Ciphers. A Feistel cipher uses a noninvertible function f, obtained as a
sequence of substitutions and transpositions. A Feistel cipher consists of the fol-
lowing basic steps:

1. A plaintext message m is divided into two separate blocks of equal size:
the left block, L, and the right block, R.

Pistoia_ch10.fm Page 350 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 351

2. The original message, m, is transformed into an intermediate message, m′,
in which the left block, L′, is the same as R, and the right block, R′, is L ⊕
f(R), where the symbol ⊕, as usual, denotes the XOR operation.

These two steps are shown in Figure 10.10. Even though f is a noninvertible
function, this design permits recovering m from m′ by concatenating R′ ⊕ f(L′) =
R′ ⊕ f(R) = L with L′ = R.

Steps 1 and 2 must be iteratively repeated a number of times for a Feistel
cipher to be secure. The number of iterations depends on the strength of the func-
tion f. It is possible to prove that, even with the strongest-possible function f, the
iterations must be at least three in order for the Feistel cipher to be reliable.

DES. One of the most widely recognized secret-key block ciphers is the Data
Encryption Standard (DES) algorithm. DES was developed by IBM cryptogra-
phers in the early 1970s and was adopted as a U.S. government standard in 1976.
DES is intended for the protection of sensitive but unclassified electronic informa-
tion. Because it uses the same key for both encryption and decryption, the algo-
rithm is referred to as a symmetric cipher.

DES is a block cipher in which a 64-bit input plaintext block is transformed
into a corresponding 64-bit ciphertext output. DES uses a 56-bit key expressed as
a 64-bit quantity in which the least relevant bit in each of the 8 bytes is used for
parity checking. DES is a Feistel algorithm that iterates over the data 16 times,
using a combination of permutation and substitution transformations along with
standard arithmetic and logical operations, such as XOR, based on the key value.

For many years, the DES algorithm withstood attacks. Recently, as the result
of increased speed of computing systems, DES has succumbed to brute-force
attack on several occasions, demonstrating its vulnerability to exhaustive search-
ing of the key space.

Figure 10.10. Basic Steps of a Feistel Cipher Algorithm

L Rm

m′

ƒ

⊕

L′ R ′

=

Pistoia_ch10.fm Page 351 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY352

Triple-DES. Triple-DES is the DES algorithm applied three times, using either
two or three keys.

• With two keys, Triple-DES proceeds by using the first key to encrypt a
block of data. The second key is then used to decrypt the result of the pre-
vious encryption. Finally, the first key is once more used to encrypt the re-
sult from the second step. Formally, let us indicate the encrypting and
decrypting functions based on a given key k with Ek and Dk, respectively.
If k1 and k2 are the two Triple-DES keys and if m is the message to be en-
crypted, the encrypted message m′ is obtained as

To decrypt m′ and obtain the original plaintext m, it is necessary to
compute

• The three-key Triple-DES, stronger than the two-key Triple-DES, uses a
separate key for each of the three steps described. With the notation that
we have introduced, if , , and are three distinct keys, a plaintext
message m is encrypted into its corresponding ciphertext message m′ by

To decrypt m′ and obtain the original plaintext m, it is then necessary to
compute

In Triple-DES, the second key is used for decryption rather than for encryp-
tion to allow Triple-DES to be compatible with DES. A system using Triple-DES
can still initiate a communication with a system using DES by using only one key
k. Formally, by choosing , the ciphertext m′ corresponding to a
plaintext message m is obtained from

By contrast, m is obtained from m′ by computing

This shows that Triple-DES with only one key reduces itself to DES.

Ek1
Dk2

Ek1
m()()()

Dk1
Ek2

Dk1
m ′()()()

k1 k2 k3

Ek3
Dk2

Ek1
m()()()

Dk1
Ek2

Dk3
m ′()()()

k1 k2 k3 k= = =

Ek Dk Ek m()()() Ek m()=

Dk Ek Dk m′()()() Dk m′()=

Pistoia_ch10.fm Page 352 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 353

IDEA. Although less visible than DES, the International Data Encryption Algo-
rithm (IDEA) has been classified by some contemporary cryptographers as the
most secure and reliable block algorithm. Like DES, IDEA encrypts plaintext data
organized in 64-bit input blocks and for each, outputs a corresponding 64-bit
ciphertext block. IDEA uses the same algorithm for encryption and decryption,
with a change in the key schedule during encryption. Unlike DES, IDEA uses a
128-bit secret key and dominantly uses operations from three algebraic groups;
XOR, addition modulo 216, and multiplication modulo 216 + 1. These operations are
combined to make eight computationally identical rounds, followed by an output
transformation resulting in the final ciphertext.

Rijndael. Recently chosen as the Advanced Encryption Standard (AES), a re-
placement of DES by the U.S. government, Rijndael is an iterated block cipher
with a variable block length and a variable key length, both of which can indepen-
dently be 128, 192, or 256 bits. The strong points of Rijndael are its simple and
elegant design and its being efficient and fast on modern processors. Rijndael uses
only simple whole-byte operations on single- and 4-byte words and requires a
relatively small amount of memory for its implementation. It is suitable for imple-
mentations on a wide range of processors, including 8-bit hardware, and power-
and space-restricted hardware, such as smart cards. It lends itself well to parallel
processing and pipelined multiarithmetic logic unit processors.

A major feature of the Rijndael algorithm is that it presents a departure from
the traditional Feistel ciphers. In such ciphers, some of the bits in the intermediate
states of a cipher are transposed unchanged. The Rijndael algorithm does not
adopt the Feistel structure. Instead, each round of transformations is composed of
three distinct invertible subtransformations that treat each bit of the intermediate
state of the cipher in a uniform and similar way.

10.2.1.5 Modes of Operation
Modes of operation are cryptographic techniques using block ciphers to encrypt
messages that are longer than the size of the block. The most common modes of
operation are electronic codebook (ECB) and cipher block chaining (CBC).

ECB. With the ECB mode of operation, a message is divided into blocks of
equal size. Each block is then encrypted using a secret key. Figure 10.11 shows
how ECB works, assuming the following.

1. The original message m is divided into n blocks .

2. For all , the plaintext block is encrypted into a cipher-
text block with a secret key k. The encryption function associated with k
is indicated with . In ECB mode, the block-cipher algorithm typically
used for encryption is DES.

m1 m2 … mn, , ,
i 1 2 … n, , ,= mi

ci
Ek

Pistoia_ch10.fm Page 353 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY354

3. The ciphertext blocks are concatenated to form the cipher-
text c corresponding to the message m.

ECB presents some limitations because each ciphertext block depends on one
plaintext block only, not on the entire message.

CBC. Given a secret key k, the CBC mode of operation works as follows (see
Figure 10.12).

1. The original message m is divided into n blocks .

2. A randomly chosen block of data is selected as the initial vector v. This
initial vector must be known to the receiver as well. Therefore, a possibil-
ity is for both the sender and the receiver to be able to generate v indepen-
dently as a function of the key k.

3. The first ciphertext block, , is obtained by XORing v with and en-
crypting the result of the XOR operation with the secret key k. In other
words,

Figure 10.11. ECB Mode

Figure 10.12. CBC Mode

m m1 m2 m
n

…

c c1 c2 c
n

…

E
k

E
k

E
k

c1 c2 … cn, , ,

m1 m2 … mn, , ,

c1 m1

c1 Ek v m⊕ 1()=

mm1 m2 m
n

…

cc1 c2 c
n

…

�

E
k

E
k

E
k

� �

v

Pistoia_ch10.fm Page 354 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 355

where is the encrypting function associated with the key k.

4. For all , the ciphertext block is obtained by XORing the
plaintext block with the ciphertext block and encrypting the
result of the XOR operation with the secret key k. In other words,

5. The ciphertext blocks are concatenated to form the cipher-
text c of the message m.

One of the key characteristics of CBC is that it uses a chaining mechanism that
causes the decryption of a block of ciphertext to depend on all the preceding
ciphertext blocks.

10.2.2 Secret-Key Security Attributes

This section examines the security implications of using secret-key cryptography.

10.2.2.1 Key Space
The strength of modern secret-key encryption methods no longer rests in the
secrecy of the algorithm being used but rather in the secrecy of the encryption key.
Breaking such cryptographic systems, therefore, can be achieved using a brute-
force attack, the process of exhaustive searches over the key space. The latter is
the set of all possible key values that a particular enciphering method can take.

For example, a generalization of the Caesar Cipher is an arbitrary permutation
over the English alphabet. This results in 26! (factorial) possible keys correspond-
ing to each of the permutations. Further constraining the permutation method to
one that simply maps each letter in the alphabet to one at a fixed number of posi-
tions to its right (with a wraparound) and by enciphering each letter at a time
(block length = 1), the key space narrows down to the much smaller set of the first
26 integers, {1, 2, … , 26}. It should be noted, however, that the level of a secret-
key encryption algorithm’s security is not necessarily proportional to the size of
the key space. For example, even though 26! is a very large number, it is possible
to break the generalization of the Caesar Cipher by means of statistical analysis.

Most common secret-key cryptographic systems use unique, randomly gener-
ated, fixed-size keys. These systems can certainly be exposed to the exhaustive
search of the key space. A necessary, although not sufficient, condition for any
such cryptographic systems to be secure is that the key space be large enough to
preclude exhaustive search attacks using computing power available today and for
the foreseeable future. As ironic as it may sound, efficiency of enciphering meth-
ods will aid in the exhaustive brute-force search attacks.

Ek

i 2 … n, ,= ci
mi ci 1–

ci Ek ci 1– mi⊕()=

c1 c2 … cn, , ,

Pistoia_ch10.fm Page 355 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY356

10.2.2.2 Confidentiality
Using a secret-key algorithm to encipher the plaintext form of some data content
allows only entities with the correct secret key to decrypt and hence retrieve the
original form of the disguised data. Reliability of the confidentiality service in this
case depends on the strength of the encryption algorithm and, perhaps more im-
portant, the length of the key used. The long lifetime of a secret key also might
help diminish assurance in such a confidentiality service. Increasing the frequency
with which a key is used increases the likelihood that an exhaustive key-search
attack will succeed. Most modern systems make use of secret keys that remain
valid for only the lifetime of a particular communication session.

10.2.2.3 Nonrepudiation
Secret-key cryptography alone is not sufficient to prevent the denial of an action
that has taken place, such as the initiation of an electronic transaction. Although
one can apply data privacy in such a scenario, the fundamental flaw of a non-
repudiation scheme based on secret-key cryptography alone is inherent in the fact
that the secret key is dispensed to more than one party.

10.2.2.4 Data Integrity and Data-Origin Authentication
At a much lesser cost than encrypting the entirety of a plaintext, data integrity and
data-origin authentication can be afforded by a secret cryptographic scheme using
a message authentication code (MAC) function. The basic idea is to attach to each
message m that is sent across a network the result h(m) of a mathematical function
h applied to the message m itself. If an error has occurred during the message
transmission, such that the received message a is different from the message m
that was originally sent, the message receiver will be able to detect the anomaly by
independently computing h(a) and comparing it to h(m) (see Figure 10.13).

The main component of a MAC function is a hash digest function (see Fig-
ure 10.14). Hash digest functions are considered one of the fundamental
primitives in modern cryptography. By definition, a hash digest function is a de-
terministic function that maps a message of arbitrary length to a string of fixed
length n. Typically, n is 128 or 160 bits. The result is commonly known as a mes-
sage digest. As the original data is often longer than its hash value, this result is
sometimes also referred to as the original message’s fingerprint.

Of course, a hash digest function is inherently noninjective. This simply
means that multiple messages will be mapping to the same digest. In fact, the uni-
verse of the messages that can be digested is potentially unlimited, whereas the
universe of all the message digests is limited by the set of the 2n strings with n bits.
However, the fundamental premise is that, depending on the strength of the hash-
ing algorithm, the hash value becomes a more compact representation of the
original data. This means that, although virtually possible, it should be computa-

Pistoia_ch10.fm Page 356 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 357

tionally infeasible to produce two messages having the same message digest or to
produce any message having a given, prespecified target message digest.

Message Digest V5 (MD5) and Secure Hash Algorithm V1 (SHA-1) are the
most widely used cryptographic hash functions. MD5 yields a 128-bit (16-byte)
hash value, whereas SHA-1 results in a 160-bit (20-byte) digest. SHA-1 appears to
be a cryptographically stronger function. On the other hand, MD5 edges SHA-1 in
computational performance and thus has become the de facto standard.

Hash functions alone cannot guarantee data integrity, because they fail in
guaranteeing data-origin authentication, defined as the ability to authenticate the
originator of a message (see Figure 10.15). The problem with digest functions is
that they are publicly available. If a message m is intercepted by an adversary after
being transmitted by Alice, the adversary can change m into a different message,
m′, compute h(m′), and send Bob the pair (m′, h(m′)). By simply applying the
function h to the received message m′, Bob has no means of detecting that an ad-
versary has replaced m with m′.

Data-origin authentication is inherently supported by secret-key cryptography,
provided that the key is shared by two entities only. When three or more parties
share the same key, however, origin authenticity can no longer be provided by

Figure 10.13. Data-Integrity Verification: Basic Scenario

Figure 10.14. Producing a Message Digest with a Hash Function

Alice

h

h(m)Message m

1. Apply function to messageh m.
2. Attach () to message .h m m
3. Send (()) to Bob.m,h m

1. Receive () from Alice.a,b
2. Apply function to .h a
3. If () , an anomaly has occurred.h a b≠

h

h(a)Message a

Bob

Hash

Function
hhh

Fixed Length,
Short Number
(16/20 bytes)

Message of Length n h

Pistoia_ch10.fm Page 357 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY358

secret-key cryptography alone. Various secret-key-based authentication protocols
have been developed to address this limitation. Public-key cryptography, de-
scribed in Section 10.3 on page 359, provides a simpler and more elegant solution
to this problem.

In contrast to using a pure and simple hash function to digest a message, a
MAC function combines a hash digest fuction with secret-key encryption and
yields a value that can be verified only by an entity having knowledge of the
secret key. This way, a MAC function takes care of the problem described in Fig-
ure 10.15 and enables both data integrity and data-origin authentication.

Another simple solution to achieve data integrity and data-origin authentica-
tion is to apply a regular hash function h, such as SHA-1 or MD5, but rather than
hashing the message m alone, the message is first concatenated with the key k, and
then the result of the concatenation is hashed. In other words, the sender attaches
to the message m the tag h(k, m). This solution, however, exposes some theoretical
weaknesses. A more reliable solution consists of attaching the tag h(k, h(k, m)).

A MAC can even be computed by using solely a secret-key block-cipher algo-
rithm. For example, the last ciphertext block, encrypted in CBC mode, yields the
final MAC value. This is a good choice for a MAC because one of the key charac-
teristics of CBC is that it uses a chaining mechanism that causes the decryption of
a block of ciphertext to depend on all the preceding ciphertext blocks. Therefore,

Figure 10.15. Data-Integrity Verification in the Presence of an Adversary

Alice Bob

h

h(m)Message m

Adversary

h(m)Message m

h

h(m�)Message m�

h

h(m�)Message m�

Pistoia_ch10.fm Page 358 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 359

the MAC so defined is a compact representation of the entire message that can be
computed only by an entity having knowledge of the secret key. Known instances
of this procedure use DES and Triple-DES, resulting in DES-MAC and Triple-
DES-MAC, respectively. A MAC mechanism that uses a cryptographic hash func-
tion is also referred to as HMAC. HMAC is specified in RFC 2104.1

10.3 Public-Key Cryptography
Public-key cryptography emerged in the mid-1970s with the work published by
Whitfield Diffie and Martin Hellman.2 The concept is simple and elegant yet has
had a huge impact on the science of cryptography and its application. Public-key
cryptography is based on the notion that encryption keys are related pairs, private
and public. The private key remains concealed by the key owner; the public key is
freely disseminated to various partners. Data encrypted using the public key can
be decrypted only by using the associated private key and vice versa. Because the
key used to encrypt plaintext is different from the key used to decrypt the cor-
responding ciphertext, public-key cryptography is also known as asymmetric
cryptography.

The premise behind public-key cryptography is that it should be computation-
ally infeasible to obtain the private key by simply knowing the public key. Toward
achieving this premise, modern public-key cryptography derives from sophisti-
cated mathematical foundations based on the one-way functions existing in the
abstractions of number theory.

A one-way function is an invertible function that is easy to compute but com-
putationally difficult to invert. A one-way trapdoor function is a one-way function
that can be easily inverted only if one knows a secret piece of information, known
as the trapdoor. Encryption is the easy one-way trapdoor function; its inverse,
decryption, is the difficult direction. Only with knowledge of the trapdoor—the
private key—is decryption as easy as encryption. Two of these currently known
one-way functions, factoring large numbers and computing discrete logarithms,
form the basis of modern public-key cryptography. Factoring large numbers is a
one-way trapdoor function, whereas computing discrete logarithms is a one-way
function with no trapdoors.

1. See http://www.ietf.org/rfc/rfc2104.txt.
2. W. Diffie and M. E. Hellman. “New Directions in Cryptography,” IEEE Transactions on

Information Theory 22, 6, (1976): 644–654.

Pistoia_ch10.fm Page 359 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY360

10.3.1 Algorithms and Techniques

This section examines the most common cryptographic algorithms that are based
on the use of a public- and private-key pair.

10.3.1.1 RSA
The most famous of the well-known trapdoor one-way functions is based on the
ease of multiplying two large prime numbers; the reverse process, factoring a very
large number, is far more complex. This consideration is at the basis of Rivest-
Shamir-Adleman (RSA), certainly the most widely used public-key encryption
algorithm.

Basic RSA Concepts. A prime number, by definition, is an integer that has no
positive divisors other than 1 and itself. A nonprime integer is called composite.
Two integers a ≥ 1 and b ≥ 2 are said to be relatively prime if their greatest com-
mon divisor GCD(a, b) is 1. The number of elements in the set

{a ∈ Z : 1 ≤ a < b, GCD(a, b) = 1}

where Z is the set of all integers, is often denoted by φ(b). The function φ is called
the Euler phi-function.

Every integer b ≥ 2 can be factored as a product of powers of primes in a
unique way. For example, 60 = 22 × 3 × 5. Factoring large numbers—numbers that
expressed in binary format take 1,024 bits or more—is known to be computation-
ally infeasible with current computing technology. Consequently, the one-way
trapdoor problem is to make a very large number a public knowledge and secretly
maintain its prime factors. With this in mind, we can now summarize the widely
adopted RSA public-key algorithm.

How the RSA Algorithm Works. In simple terms, the RSA algorithm centers
on three integer numbers: the public exponent, e; the private exponent, d; and the
modulus, n. The modulus is obtained as the product of two distinct, randomly
picked, very large primes, p and q. A well-known result from number theory im-
plies that φ(n) = (p − 1)(q − 1). The two numbers e and d are characterized by the
fact that they are greater than 1 and smaller than φ(n). In addition, e must be rela-
tively prime with φ(n), and it must also be de = 1 (mod φ(n)), which means that d
and e are the multiplicative inverse of the other modulo φ(n). The pair (e, n) is the
RSA public key, whereas the pair (d, n) is the RSA private key.

A block of plaintext P whose numerical equivalent is less than the modulus is
converted into a ciphertext block by the formula Pe (mod n). Conversely, a cipher-
text block C is converted back to its corresponding plaintext representation by the
formula Cd (mod n). These two formulas are the inverse of the other. Therefore,

Pistoia_ch10.fm Page 360 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 361

whatever is encrypted with the public key can be decrypted only with the corre-
sponding private key; conversely, whatever is encrypted with the private key can
be decrypted only with the corresponding public key.

To better understand how RSA works, let us consider an example involving
small numbers. We randomly pick two prime numbers, p = 7 and q = 11. This
implies that n = = 77 and φ(n) = (p − 1)(q − 1) = 60. A valid choice for
the public exponent is e = 13. By solving the equation 13d = 1 (mod 60), we get
d = 37. Therefore, the RSA public key in this case is the pair (13, 77), and the
corresponding RSA private key is the pair (37, 77). Let us now consider the
plaintext message P = 9. By encrypting it with the RSA public key, we obtain
the ciphertext message C = 913 (mod 77) = 58. To decrypt this message, we have
to apply the RSA private key and compute 5837 (mod 77) = 9, which yields the
original plaintext P.

To encrypt or decrypt a message, the RSA algorithm uniquely represents a
block of data in either a plaintext or ciphertext form as a very large number, which
is then raised to a large power. Note here that the length of the block is appropri-
ately sized so that the number representing the block is less than the modulus.
Computing such exponentiations would be very time consuming were it not for an
eloquent property that the operation of exponentiation in modular arithmetic
exhibits. This property is known as the modular exponentiation by the repeated
squaring method.

Note that the one-way trapdoor function discussed in this section requires
deciding on whether a randomly picked very large integer is prime. Primality test-
ing, however, is a much easier task than factorization. Several methods have been
devised to determine the primality of an odd number p, the most trivial of which is
to run through the odd numbers starting with 3 and determine whether any of such
numbers divides p. The process should terminate when the square root of p, ,
is reached, because if p is not a prime, the smallest of its nontrivial factors must be
less than or equal to . Owing to the time complexity that it requires, in practice
this procedure is stopped much earlier before reaching and is used as a first
step in a series of more complicated, but faster, primality test methods.

Security Considerations. Breaking the RSA algorithm is conjectured to be
equivalent to factoring the product of two large prime numbers. The reason is that
one has to extract the modulus n from the public-key value and proceed to factor it
as the product of the two primes p and q. Knowing p and q, it would be easy to
compute φ(n) = (p − 1)(q − 1), and the private key (d, n) could then be obtained by
solving the equation de = 1 (mod φ(n)) for the unknown d. With the complexity of
the fastest known factoring algorithm being in the order of |n|, where |n| is the total
number of the binary bits in the modulus n, this roughly means that, for example,
every additional 10 bits make the modulus ten times more difficult to factor. Given

p q×

p

p
p

Pistoia_ch10.fm Page 361 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY362

the state of factoring numbers, it is believed that keys with 2,048 bits are secure
into the future. The fastest known factoring algorithm to date is the number field
sieve.

10.3.1.2 Diffie-Hellman
The Diffie-Hellman (DH) key-agreement algorithm is an elegant procedure for
use by two entities establishing a secret cryptographic key over a public network
without the risk of exposing or physically exchanging it. Indeed, DH presents a
critical solution to the secret-key distribution problem. The security of the algo-
rithm relates to the one-way function found in the discrete logarithm problem.

Basic DH Concepts. Let q be a prime number. An integer α is called a primi-
tive root, or base generator of q, if the numbers α (mod q), α2 (mod q), ... , αq-1

(mod q) are distinct and consist of the integers from 1 to q – 1 in some permuta-
tions. For any integer y and a primitive root α of the prime number q, one can
find a unique integer exponent x such that y = αx (mod q). The exponent x is
referred to as the discrete logarithm of y for the base α modulo q. This is a one-
way function. In fact, computing y from x using this function is easy; for q about
1,000 bits long, this would take only a few thousand multiplications. However,
the inverse function, x = logα y (mod q), which yields x from y, is computation-
ally infeasible, as far as anyone knows; Diffie proved that with q still about 1,000
bits long and the best known algorithm, the discrete logarithm would take ap-
proximately 1030 operations.

How the DH Algorithm Works. The mathematics encompassed in the DH
key-agreement algorithm is fairly simple. Let q and α be as explained previously.
These two numbers are publicly available. Suppose that Alice and Bob want to
agree on a secret key. Alice generates as her private key a secret random number

 such that 1 ≤ < q and publishes the corresponding public key

 := (mod q)

Similarly, Bob generates as his private key a secret random number such that 1
≤ < q and publishes the corresponding public key

 := (mod q)

The secret key for Alice and Bob is

 := (mod q)

xA xA

yA αxA

xB
xB

yB αxB

KAB αxAxB

Pistoia_ch10.fm Page 362 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 363

Alice can obtain this key by getting from a public directory and then
computing

(mod q) = (mod q) = (mod q) =

Bob computes the same secret key in a similar way.
One problem in the algorithm that we have just described consists of finding

a primitive root α of a given prime number q. The definition of primitive root
does not help from a computational point of view, because it requires computing
q – 1 powers in the worst case for every attempt to find a primitive root. How-
ever, a known algebraic theorem proves that an integer α is a primitive root of 9
if αi ≠ 1 for any integer such that i is a divisor of q – 1. There-
fore, the problem is reduced to factoring q – 1 and testing that αi ≠ 1, where this
time i varies only in the set of the divisors of q – 1. Unfortunately, as we dis-
cussed in Section 10.3.1.1 on page 360, factoring a large number is computation-
ally infeasible too. In fact, this is exactly the one-way trapdoor function on which
the security of the RSA algorithm relies. However, a solution to this problem for
the DH algorithm consists of generating q – 1 before generating q itself. In other
words, it is possible to generate q – 1 as the product of known primes—in which
case, the factorization of q – 1 is known in advance—and subsequently test q for
primality. As discussed in Section 10.3.1.1 on page 360, primality testing is a
much easier task than factorization. An advantage of this algorithm is that its
security does not depend on the secrecy of q and α. Once a pair of integers (q, α)
has been found that satisfies the requirements described previously, the same pair
can be published—in cryptography books, for example—and reused by algo-
rithm implementors.

Security Considerations. With the algorithm described, Alice and Bob do not
have to physically exchange keys over unsecure networks, because they can com-
pute the same secret key independently of each other. An attacker would have to
compute KAB from the only public information available, yA and yB. No way to
do this is known other than computing the discrete logarithm of yA and yB to find
xA and xB, an operation that, as we said, is conjectured to be computationally
infeasible even with the fastest known algorithm.

In order for Bob and Alice to be able to compute the same secret key indepen-
dently of each other, they have to know each other’s public keys. A general secu-
rity problem that arises at this point is how to ascertain that the public key of an
entity belongs to that entity. The DH algorithm does not offer a direct solution to
this problem. However, we will see how to solve this problem in Section 10.3.4 on
page 372.

yB

yB

xA α
xBx

A α
xAx

B KAB

i 1 … q 1–, ,{ }∈

Pistoia_ch10.fm Page 363 Friday, January 16, 2004 1:34 PM

������� �	 ���
������
�
��������������� �

�������� �����	�
�����

���������	���
��
�	�����	���	�
�
��	�
����	����	����	�������	��	������	�����	��

�������	 ������	 �����
���	 ��	 ���	 �
��	 ��
��
��	 ����
�����	 ���������
�

��������

����	�
�����	����������	���� ��	��������
�����	
�	���	�����	��	�	
�	���	��
��

��	 ���	 �
�������	�O�	�
��	 ���	 ���	 ��	 ���	��
���	 ��	�!	 ��	 ���	 �����	 ���
���
��	 ��

�"���
��	��	���	���

����	��	��	��	��	���	�	��	���	�������	���	�	���	�	����	��	������	
�	���	���	����

����	#��	�������	O	
�	������	�����
��
���������	$�	��	�������	
�	
�	����
�
���	��

����
��	�"���
���	��	���	���

$
���	%&�%'	�����	���	���
��
�	����	�
��	�"���
��	 �

�	���	��	��������	���	��	���
���	���	���	���	��	��
���	��	��	���
��
�	����	��

����
��	����	
�	���	����	��
���	��	��	���
��
�	����	�
�	��	�	���
���	�
���	 ���

���	
�	O�	#��	�����
��	��	���
�
��	��	��	���
��
�	�����	
��
�����	�
��	���	������

(�	
�	����������	��	���	������
��	�����

%� #��	��
��	��	
��
�
���	O�	
�	���	��������
���������	#�
�	�����	����	O)	*O�	���

��	���	��
��	�	��	���	���
��
�	�����	�	(O)	O	(�)	��

+� �	���
���	�
��	�����	���	���
��
�	����	��	���	��
���	�
��	���	����	����
�

������	���	 	���	 �	#��	���
���	�
��	����	�����	���

����	 ��	
��	
��
�
��	 ��
���	O�	 #�
�	
���
��	 ����	 	 ((O)	O�	 ���

�	#�������	���	�����
��	��	�	��
��	
�	�	��
��	�
��	���	����	�

����
����	���	�����
��	�	����
�����	#�
�	��������
��	
�	
���������	
�	$
��

��	%&�%,�

-� .�	 	���	�	��	���	��
���	�
��	�
������	�	����
������	���	�	���
���	�
��

�������	����	���	�
��	���	��
�	��
��	��	
�������
��	 �	.�	
�	���
��	����

����	 	 ��
���	 ���	
�	 ��
"���	 ������	 ���	 �
��	
�	 �������	 ��	 ���	 ����	 ��

�
���	 	�	��	
�	��
��	����	��	 ����	 	�	 �	 ������
�����

/������	 �	 �	���	�	 �
�	��	 ���	����	���
���	 �
���	
�	����	��	 	(�	(

)	O�	��
��	
���
��	 	(�)	* �	#�
�	��������
��	
�	
���������	
�

$
���	%&�%,�

0� #�	������	�	��
��	 �	���	���	�������	�
��	
�	 	���	�
��	���	����	��
��	��

�������
��	!�	#���	 	()	+)	*!�	#�
�	��������
��	
�	
���������	
�

$
���	%&�%,�

�
+
��� ��((�

-
��

+
�� �((()

�
+

�
-
�� �(()

�
+

�
-
�*)

�% � �,()) �+ � �*,())

�% �+

�% �+*)

�%

�%

�%) �% �)

�%

�% �%

Pistoia_ch10.fm Page 364 Monday, January 19, 2004 3:27 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 365

Figure 10.17 shows how to perform the addition operation on the elliptic curve
. It can be shown that if , the operation of addition

constructed on rules 1–4 has the following properties.

• It is well defined. Given any two points P and Q on an elliptic curve,
their sum P + Q is still a point on the same elliptic curve.

• It is associative. Given any three points P, Q, and R on an elliptic curve,
(P + Q) + R = P + (Q + R).

• It is commutative. Given any two points P and Q on an elliptic curve,
P + Q = Q + P.

• It possesses a unity element. Rule 1 establishes that the unity element
for the operation of addtion is the point at infinity, O.

• Every point on the elliptic curve has an inverse. Given any point P on
an elliptic curve, rules 1 and 2 show how to construct its inverse, –P.

Figure 10.16. An Elliptic Curve

1 2 3 4−4 −3 −2 −1

1

2

3

4

−4

−3

−2

−1

x

y

y
2

x
3

x–= 4a
3 27b

2 0≠+

Pistoia_ch10.fm Page 365 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY366

These properties can be summarized by saying that the set of the points of an
elliptic curve, coupled with the operation of addition that we have just defined, is
an abelian group. Multiplication of a point P on an elliptic curve by a positive
integer k is defined as the sum of k copies of P. Thus 2P = P + P, 3P = P + P + P,
and so on.

An elliptic curve can be defined on a finite field as well. Let p > 3 be a prime
number. The elliptic curve y2 = x3 + ax + b over Zp is the set of solutions (x, y) ∈
Zp × Zp to the congruence y2 = x3 + ax + b (mod p), where a, b ∈ Zp are con-
stants such that 4a3 + 27b2 ≠ 0 (mod p), together with a special point O, called the
point at infinity. Addition of two points on an elliptic curve and multiplication of a
point for an integer are defined in a way that is similar to elliptic curves over real
numbers.

Note that the equation of an elliptic curve over the finite field Zp is defined as
for real numbers. The only difference is that an elliptic curve Zp is not continuous.
Rather, the points that belong in the curve are only the pairs of non-negative
integers in the quadrant from (0, 0) to (p, p) that satisfy the equation modulo p.

Given an integer k < p and the equation Q = kP, where P and Q are two points
on an elliptic curve E over the finite field Zp, the one-way function here consists

Figure 10.17. The Addition Operation on an Elliptic Curve

Q

R

–P1

P1

S

–S

Pistoia_ch10.fm Page 366 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 367

of the easy operation of computing Q given k and P. The inverse problem of find-
ing k given P and Q is similar to the discrete logarithm problem and is, in practice,
intractable.

The Elliptic-Curve Algorithm. One straightforward application of the one-
way function to DH is for two entities Alice and Bob to publicly agree on a point
P on an elliptic curve E over a finite field Zp, where p is a very large prime
number (). The criterion in selecting P is that the smallest integer value of
n for which np = O be a very large prime number. The point P is known as the gen-
erator point. The elliptic curve and the generator point are parameters of the cryp-
tosystem known to all the participants.

To generate the key, the initiating entity, Alice, picks a random large integer
a < n, computes aP over E, and sends it to the entity Bob. The integer a is
Alice’s private key, whereas the point aP is her public key. Bob performs a simi-
lar computation with a random large number b and sends entity Alice the result
of bP. The integer b is Bob’s private key, whereas the point bP is his public key.
Both entities then compute the secret key K = abP, which is still a point over E.

Security Considerations. Given an elliptic curve E on a finite field Zp, where p
is a very large prime number, the security of elliptic-curve cryptography depends
on how difficult it is to determine the integer k given a point P on the curve and
its multiple kP. The fastest known technique for taking the elliptic-curve loga-
rithm is known as the Pollard rho method. With this algorithm, a considerably
smaller key size can be used for elliptic-curve cryptography compared to RSA.
Furthermore, it has been shown that for equal key size, the computational effort
required for elliptic-curve cryptography and RSA is comparable. Therefore, there
is a computational advantage to using elliptic-curve cryptography with a shorter
key length than a comparably secure RSA.

10.3.2 Public-Key Security Attributes

This section examines the security implications of using public-key cryptography.
Generally speaking, the strength of each algorithm is directly related to the type of
the one-way function being used and the length of the cryptographic keys. Invert-
ing the one-way functions we have discussed, namely, factoring a very large num-
ber and computing the discrete logarithm, is known to be practically infeasible
within the computing means and the theoretic knowledge available today.

10.3.2.1 Confidentiality
The premise of the privacy service here is achieved by encrypting data, using the
recipient’s public key, and the fact that decryption can be done only by using the
recipient’s private key. For example, if Alice needs to send a confidential message

p 2
180≈

Pistoia_ch10.fm Page 367 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY368

to Bob, she can encrypt it with Bob’s public key, knowing that only Bob will be
able to decrypt the ciphertext with his private key (see Figure 10.18).

Thus, only the recipient with knowledge of the private key is able to decrypt
the enciphered data. It is worth noting that a privacy service strongly depends on
the assurance that a public key is valid and legitimately belongs to the recipient.

One confidentiality problem that needs to be addressed by public-key encryp-
tion is the fact that in some cases, the plaintext corresponding to a given ciphertext
can be easily understood. As an example, we consider the scenario in which Alice
is a stock client and Bob a stockbroker, as shown in Figure 10.19.

Typically, Alice’s messages are all likely to be of the type “Buy” or “Sell.”
Knowing this, an attacker could build a table mapping ciphertexts to plaintexts.

Figure 10.18. Public-Key Scenario

Figure 10.19. Scenario Requiring Message Randomization

Encryption Decryption

Bob’s
Public Key

Bob’s
Private Key

Alice Bob

Plaintext PlaintextCiphertext

Alice: Stock Client Bob: Stockbroker

Message m = “Buy”/“Sell”

Encrypt

@#$=-^~$#*&?|!+%

Decrypt

Message m = “Buy”/“Sell”@#$=-^~$#*&?|!+%

Pistoia_ch10.fm Page 368 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 369

This would break the confidentiality of the transmission. Even worse, the attacker
could impersonate Alice and replace the ciphertext corresponding to “Buy” with
the ciphertext corresponding to “Sell” and vice versa (see Figure 10.20).

This problem can be solved by randomizing the message. Before encrypting
the plaintext message “Buy” or “Sell,” the message-randomizing algorithm on
Alice’s side inserts a meaningless sequence of bits, which is randomly generated.
As the ciphertext depends on the entire plaintext message, the ciphertexts pro-
duced by Alice are no longer recognizable. In addition, message randomization
reduces the risks of message-prediction-and-replay-attacks (see footnote 6 on
page 150).

10.3.2.2 Data Integrity, Data-Origin Authentication, and Nonrepudiation
As we said in Section 10.3.2.1 on page 367, privacy is provided by encrypting
data, using a publicly available key, typically the recipient’s public key. However,
an eavesdropper may intercept the data, substitute new data, and encrypt it using
the same public key. Simply applying a public-key algorithm to achieve privacy
does not guarantee data integrity; nor does it guarantee data-origin authentication.
In practice, digital signatures are the preferred method of achieving data integrity
and data-origin authenticity. Another service that is inherently offered through
digital signatures is nonrepudiation.

Figure 10.20. Message Randomization

@#$=-^~$

“Buy”

Encrypt

@#$=-^~$

#*&?|!+%

#*&?|!+%

Decrypt

“Sell”

Alice: Stock Client Bob: Stockbroker

Adversary

Pistoia_ch10.fm Page 369 Wednesday, January 21, 2004 2:53 PM

������� �	 ���
������
�
��������������� �

������ ��	�
����	��
����

���� ���� ��� 	�
������� ��	�����	��� ��
����� ����� �������� ����� ��������

���
���� ���� �������� �������� ��� ���������� ����� 	������ ����������� ���
���� ����

��	������������������������	�����

������������������������	����������������	�
��������	�����������	�����������	���

�������������������������
�����������
������	�������������������������������

��	���������

���������������	����������������������� ��������� ��� ���	�������
����� ����

����������
��	����
���

	������������ �������
��� ������������� ��� ��� ����� ���� �� ����� ����	����� ���� ������

��������

������������������������� ����������������������������������!���������	������

���������������������������	�
�����������������������"�
�������
��������������

����������������
�����������	�����#�����
������	������������������"�
$��	���

����������%��	��������

��������������������
���������
�������������������"�
$��	�
��������������	�

���������������������	���������������������������
��!�����������������������
����

�����!���	�������������������������������

����� ��� �
�������
�� �		������ �������������� �������� ��� ���� 	������#����������

���������������������������	��������!���$��	�����������

!����������		������������	���������	��������������������������������������

���������������	��������������������"�
$��	�
�������
�������������
���
���������

!���$�� 	������� ���� ��� ��������� !���$�� �������� ����������� &��� ��� �������� ���

����	���������������������������������������"�
�����	��������	�����#����������

����	�����������������������������!���$��	�
�����������������!���$����������������

���"�
�������������������������������������
���

�����
��!����������������
������	�����������������������������"������!���$�

	������� ���� ����
���� ����� ��� ��	���� ���� �������� ����������� ����� ������� 	�����

���	���������'��������

����()�*(+�

��	���������� ,�������-���������-������

E-Mail
File Transfer

Floppy

Bob verifies
with

Alice’s
public key.

Alice signs
with her

own
private key.

Pistoia_ch10.fm Page 370 Monday, January 19, 2004 3:32 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 371

With the fundamental premise that the private key remains in the confines of
its owner, verifying a digital signature using the associated public key certainly
leaves no possibility for the originator to deny involvement. Denial, however, can
always take place on the basis that a private key has been compromised. A strong
nonrepudiation service never exposes the private keys it manages, even to the
owner. Tamper-proof hardware modules for private keys become necessary for a
legally binding nonrepudiation service.

If a confidentiality service is not needed, Alice can transmit the signed
document to Bob in its cleartext form. The signature is provided to Bob for data-
integrity verification, data-origin authentication, and nonrepudiation purposes.

The most well-known digital signature algorithms are RSA and Digital
Signature Algorithm (DSA). These algorithms are discussed in the next two
subsections.

10.3.3.1 RSA Signature
The RSA digital-signature algorithm proceeds along two main steps, as shown in
Figure 10.22.

1. Using one of the common hashing algorithms, such as MD5 or SHA-1, a
document is first digested into a much smaller representation: its hash
value.

2. The hash value of the document, rather than the entire document itself, is
then encrypted with the private key of the originator.

If confidentiality is needed, the document itself must be encrypted, as explained in
Section 10.3.2.2 on page 369.

Figure 10.22. The Process of Computing a Message’s RSA Digital Signature

Variable Length

Fixed Length
(128 or 160 bits)

Key Pair

Private Key

Public Key

Digital Signature

Data to Be Sent

Hashing Algorithm

Encrypt

Message Digest

Pistoia_ch10.fm Page 371 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY372

10.3.3.2 DSA Signature
Other types of digital signatures rely on algorithms designed solely for signing but
not encrypting. In other words, the digital signature is still obtained by encrypting
the hash value of a document with the originator’s private key, but the public and
private key pair here can be used only for digital signing, not for encrypting
arbitrary-size messages.

An example of this class of algorithms is the standard DSA, which computes a
signature over an arbitrary-size input, using SHA-1 as a message digest, five
public parameters, and a private key. DSA signatures have better performance
characteristics than RSA does.

10.3.4 Digital Certificates

As we mention in Section 10.3.5 on page 375, authenticating the identity of a
sending entity and protecting data to allow only authenticated and authorized
receivers to view that data is an extremely important security requirement, espe-
cially for the exchange of security-sensitive data or when the nature of the transac-
tion requires data-origin authentication and nonrepudiation. Encrypting a message
with the receiver’s public key guarantees confidentiality, whereas digitally signing
a message by encrypting its hash value with the originator’s public key guarantees
data-origin authentication and nonrepudiation.

These scenarios are very attractive, but for them to work, it is necessary to
have a means to bind a public- and private-key pair to its owner. To understand
why, let us consider the following scenario. Alice wants to send Bob a confidential
message in a secure manner over a public network. To do so, she needs to encrypt
the message with Bob’s public key. For sure, only Bob will be able to read the
message once it is transmitted, because the message’s ciphertext can be decrypted
only with Bob’s private key. However, how can Alice be sure that Bob is really
Bob? Owning a public- and private-key pair does not give any assurance about the
real identity of a person. Similarly, Bob may receive a signed message from Alice,
and he can verify the digital signature’s authenticity by decrypting it with Alice’s
public key, but how can he be sure that the entity that signed the message declar-
ing to be Alice is really Alice?

A solution to this problem is to use digital certificates, which can be used to
exchange public keys and to verify an entity’s identity. An entity’s digital certifi-
cate is a binary file that contains the entity’s public key and Distinguished Name
(DN), which uniquely identifies that entity, along with other pieces of informa-
tion, such as the start and expiration dates of the certificate and the certificate’s se-
rial number (see Figure 10.23).

The international standard for public-key certificates is called X.509 (see Ap-
pendix B on page 553). This standard has evolved over time, and the latest version
is V3. The most significant enhancement in X.509 V3 is the ability to add other,

Pistoia_ch10.fm Page 372 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 373

arbitrary data in addition to the basic name, address, and organization identity
fields of the DN. This is useful when constructing certificates for specific pur-
poses. For example, a certificate could include a bank account number or credit
card information.

Digital certificates are released by trusted third-party registry organizations
called Certificate Authorities. These CAs are public organizations that are trusted
by both the sender and the receiver participating in a secure communication. An
entity, Alice, can receive her own certificate by generating a public- and private-
key pair and by transmitting the public key along with a certificate request and
proof of ownership of the public key to a CA. For serious applications, Alice can
obtain a certificate only by applying in person and showing evidence of her iden-
tity. If Alice’s request for a certificate is accepted, the CA wraps Alice’s public
key in a certificate and signs it with its own private key.

Alice can now convey her public key information to other entities by transmit-
ting her certificate. A receiving entity, Bob, can verify the certificate’s authenticity
by verifying the CA’s digital signature. This can be done without even contacting
the CA, because CAs’ public keys are available in all the most common client and
server applications, such as Web browsers, Web servers, and other programs that
require security. If the signature is verified, Bob is assured that the certificate
really belongs to Alice. From this moment on, when he receives a message digi-
tally signed by Alice, he knows that it is really Alice who signed it and transmitted
it—data-origin authentication—and Alice will not be able to deny that the mes-
sage originated from her—nonrepudiation. Similarly, by accessing Bob’s certifi-
cate from a CA and by encrypting a message with Bob’s public key, Alice is
assured that only Bob, and no other person, will be able to decrypt the message—
confidentiality.

As Figure 10.23 shows, certificates contain start and end dates. The validity of
a certificate should not be too long, to minimize the risks associating with having
inadvertently exposed the associated private key and to make sure that the current

Figure 10.23. Information Contained in a Digital Certificate

Distinguished Name,
Start Date, End Date,
Certificate Authority
Name, Serial Number,
Extensions

Signature

Pistoia_ch10.fm Page 373 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY374

key strength still makes it computationally infeasible to compute the private key
from the public key. If the private key associated with the public key in a certifi-
cate gets inadvertently exposed, a certificate’s owner should make an immediate
request for suspending the certificate’s validity. In this case, the CA will add an
entry for that certificate in its certificate revocation list. A CRL also enumerates
those certificates that have been revoked because their owners failed to comply
with specific requirements. A CRL should always include data explaining why a
certificate was suspended or revoked.

In the scenario that we have described in this section, there is only one CA
that the sender and the receiver participating in a secure communication use to
verify each other’s public key’s authenticity. In real-life situations, there are chains
of CAs, whereby each successive CA verifies and vouches for the public key of
the next identity in the chain. In this case, a public-key certificate embodies a
chain of trust. Consider the situation shown in Figure 10.24.

A system has received a request containing a chain of certificates, each of
which is signed by the next higher CA in the chain. The system has also a collec-
tion of root certificates from trusted CAs. The system can then match the top of
the chain in the request with one of these root certificates, say, Ham’s. If the chain
of signatures is intact, the receiver can infer that Nimrod is trustworthy and has

Figure 10.24. Certificate Hierarchy

Trusted Root Certificates Received Certificate Chain

This is to certify
that you can trust

by Nimrod.
anything signed

Cush

Japhet’s
Certificate

This is to certify
that Japhet is a
trusted CA.

Japhet

Ham s
Certificate

’

Cush s
Certificate

’
This is to certify
that Cush is a
trusted CA.

Ham

Nimrod s
Certificate

’

Ham’s
Certificate

This is to certify
that Ham is a
trusted CA.

Ham

Shem’s
Certificate

This is to certify
that Shem is a
trusted CA.

Shem

This is to certify
that Ham is a
trusted CA.

Ham

Pistoia_ch10.fm Page 374 Wednesday, January 21, 2004 3:02 PM

���� ����	
����
����������� ���

���������� ���� ��	
���������

� �������������� ����� ���� �� ���� �����������
� �� �

������������������
���
�������������

������ ��	
�����������

��� �	��������� �������������� ��� �������
� �������� ���� ������ ��
� ��� ��� ����
���

������
����������
���������	����������
�������	������������������ ��
�����
���

��

�������������������������������������	����������������������	�����������������

����� ���������������	��������� �����
����	��� ����
������ ����� �����������������

�	��������� ������������� �
� ����� ��� �
� ����	����������� �����
����� !�����
����

��������������������������
����������"�������#$�%���������&'(�����
������������

�������� ����
����
������ ���)������
� ���� ��
����	���� ����	����� �����������

*+!,-�
��	��������������	�����
���������������
��������������������������
�����

���

���
���������
��������������

�	�
��	����������
�

!��������� �	��������� ����
���������� ������������� �����
� ���� ����������

���������
���
�������������������������������
��	����������������
����	�����

�������������������
�
��������.��	���#$�%/��0�������������������������
��	�����

��������
������������������������
�+��*
���"�������#$�&�#�%���������&(%-�������

�����
�����������
����������������������	�������
����
����������� ��������
������

������
������ !���������1	�����)�������"������)���!�����������

� Advantage: Performance
� Many Uses Today:

Kerberos
DCE

� Advantages: Key Distribution
and Scalability

� Many Uses Today:
Authentication
Establish Secret Keys

� SSL
� IPSec
� S/MIME

Combination

Secret Key Public Key

Pistoia_ch10.fm Page 375 Monday, January 19, 2004 3:33 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY376

entity uses its own private key and the other entity’s public key. With Diffie-
Helmann, the shared secret key is mathematically computed by the two parties,
and there is no need to physically exchange it over the network.

Another way to use public-key cryptography for secure secret-key establish-
ment over a public network is, essentially, to consider the secret key as the data
that needs to be distributed with a privacy requirement. Thus, the secret key is
encrypted using the public key of the target entity. The receiving entity uses its
private key to decrypt the enciphered secret key and hence has established a
common secret key with the sending entity. This is, for example, the approach
used by the SSL and TLS protocols (see Section 13.1 on page 449). Other proto-
cols that combine secret- and public-key cryptography are IPSec and S/MIME
(see Section 12.2 on page 439).

Note that authenticating the identity of the sending entity is a strong security
requirement. A breach in such a key-establishment mechanism risks exposing the
entire cryptographic channel that follows key establishment.

Pistoia_ch10.fm Page 376 Friday, January 16, 2004 1:34 PM

