
1

Chapter Fourteen: 
The Context-Free Frontier

Formal Language, chapter 14, slide 1

2

At this point we have two major language categories, the regular languages and the context-
free languages, and we have seen that the CFLs include the regular languages, like this:

regular
languages

CFLs

L(a*b*)

{anbn}

Are there languages outside of the CFLs? In this chapter we will see that the answer is yes,
and we will see some simple examples of languages that are not CFLs.

We have already seen that there are many closure properties for regular languages. Given any
two regular languages, there are many ways to combine them—intersections, unions, and so on

—that are guaranteed to produce another regular language. The context-free languages also
have some closure properties, though not as many as the regular languages. If regular

languages are a safe and settled territory, context-free languages are more like frontier towns.
Some operations like union get you safely to another context-free language; others like

complement and intersection just leave you in the wilderness.

Formal Language, chapter 14, slide 2

3

Outline

• 14.1 Pumping Parse Trees
• 14.2 The Language {anbncn}
• 14.3 Closure Properties For CFLs
• 14.4 Non-Closure Properties
• 14.5 A Pumping Lemma
• 14.6 Pumping-Lemma Proofs
• 14.7 The Languages {xx}

Formal Language, chapter 14, slide 3

4

Pumping Parse Trees

• A pumping parse tree for a CFG G = (V, Σ, S, P) is a parse tree
with two properties:

1. There is a node for some nonterminal symbol A, which has that
same nonterminal symbol A as one of its descendants

– The terminal string generated from the ancestor A is longer than
the terminal string generated from the descendant A

• Like every parse tree, a pumping parse tree shows that a
certain string is in the language

• Unlike other parse trees, it identifies an infinite set of other
strings that must also be in the language…

Formal Language, chapter 14, slide 4

5

Lemma 14.1.1

• As shown:
– uvwxy is the whole derived string
– A is the nonterminal that is its own descendant
– vwx is the string derived from the ancestor A
– w is the string derived from the descendant
– |vwx| > |w|, so v and x are not both ε

• There are two subtrees rooted at A
• We can make other legal parse trees by substitution…

S

u v w x y

A

A

If a grammar G generates a
pumping parse tree with yield
as shown, then L(G) includes
uviwxiy for all i.

Formal Language, chapter 14, slide 5

6

Cut And Paste, i = 0

• We can replace the vwx subtree with the w subtree
• That makes a parse tree for uwy
• That is, uviwxiy for i = 0

S

u v w x y

A

A

S

u

w

y

A

Formal Language, chapter 14, slide 6

7

Cut And Paste, i = 2

• We can replace the w subtree with the vwx subtree
• That makes a parse tree for uvvwxxy
• That is, uviwxiy for i = 2

S

u v w x y

A

A

S

u v x y

A

v w x

A

A

Formal Language, chapter 14, slide 7

8

Cut And Paste, i = 3

• We can replace the w subtree with the vwx, again
• That makes a parse tree for uvvvwxxxy
• That is, uviwxiy for i = 3

S

u v x y

A

v w x

A

A

S

u v x y

A

v x

A

A

v w x

A

Formal Language, chapter 14, slide 8

9

Lemma 14.1.1,
Continued

• We can substitute one A subtree for the other, any
number of times

• That generates a parse tree for uviwxiy for any i
• Therefore, for all i, uviwxiy ∈ L(G)

S

u v w x y

A

A

If a grammar G generates a
pumping parse tree with yield
as shown, then L(G) includes
uviwxiy for all i.

Formal Language, chapter 14, slide 9

10

Useful Trees

• If we can find a pumping parse tree, we can
conclude that for all i, uviwxiy ∈ L(G)

• And note that all these uviwxiy are distinct,
because v and x are not both ε

• The next lemma shows that pumping parse
trees are not at all hard to find

Formal Language, chapter 14, slide 10

11

S → S | S+S | S*S | a | b | c

S

b a

S + S

S

S + S

S * S

a b

c

S

a

Height Of A Parse Tree

• The height of a parse tree is the number of
edges in the longest path from the start
symbol to any leaf

• For example:
• These are parse trees of heights 1, 2, and 3:

Formal Language, chapter 14, slide 11

12

S → S | S+S | S*S | a | b | c

S

S + S

S * S

a b

S

c

S

S + S

b c

a

S * S

Minimum-Size Parse Trees

• A minimum-size parse tree for a string x in a grammar
G is a parse tree that generates x, and has no more
nodes than any other parse tree in G that generates x

• For example:
• Both these trees generate a*b+c, but the second one

is not minimum size:

Formal Language, chapter 14, slide 12

13

Lemma 14.1.2

• Proof: let G = (V, Σ, S, P) be any CFG, L(G) infinite
• G generates infinitely many minimum-size parse

trees, since each string in L(G) has at least one
• Only finitely many can have height |V| or less, so G

generates a minimum-size parse tree of height > |V|
• Such a tree must be a pumping parse tree:

– Property 1: it has a path with more than |V| edges; some
nonterminal A must occur at least twice on such a path

– Property 2: replacing the ancestor A with the descendant A
makes a tree with fewer nodes; this can't be a tree yielding
the same string, because our tree was minimum-size

Every CFG G = (V, Σ, S, P) that generates an
infinite language generates a pumping parse tree.

Formal Language, chapter 14, slide 13

14

Outline

• 14.1 Pumping Parse Trees
• 14.2 The Language {anbncn}
• 14.3 Closure Properties For CFLs
• 14.4 Non-Closure Properties
• 14.5 A Pumping Lemma
• 14.6 Pumping-Lemma Proofs
• 14.7 The Languages {xx}

Formal Language, chapter 14, slide 14

15

Theorem 14.2

• Proof: let G = (V, Σ, S, P) be any CFG, Σ = {a,b,c}
• Suppose by way of contradiction that L(G) = {anbncn}
• By Lemma 14.1.2, G generates a pumping parse tree
• By Lemma 14.1.1, for some k, akbkck = uvwxy, where

v and x are not both ε and uv2wx2y is in L(G)
• v and x must each contain only as, only bs, or only cs;

otherwise uv2wx2y is not even in L(a*b*c*)
• So uv2wx2y has more than k copies or one or two

symbols, but only k of the third
• uv2wx2y ∉ {anbncn}; by contradiction, L(G) ≠ {anbncn}

The language {anbncn} is not a CFL.

Formal Language, chapter 14, slide 15

16

The Insight

• There must be some string in L(G) with a
pumping parse tree: akbkck = uvwxy

• But no matter how you break up akbkck into
those substrings uvwxy (where v and x are not
both ε) you can show uv2wx2y ∉ {anbncn}

• Either:
– v or x has more than one kind of symbol
– v and x have at most one kind of symbol each

Formal Language, chapter 14, slide 16

17

• If v or x has more than one kind of symbol:
– uv2wx2y would have as after bs and/or bs after cs
– Not even in L(a*b*c*), so certainly not in {anbncn}
– Example:

• If v and x have at most one kind each:
– uv2wx2y has more of one or two, but not all three
– Not in {anbncn}
– Example:

a a a a a b b b b b c c c c c

u v w x y

a a a a a b b b b b c c c c c

u v w x y
 Formal Language, chapter 14, slide 17

18

Outline

• 14.1 Pumping Parse Trees
• 14.2 The Language {anbncn}
• 14.3 Closure Properties For CFLs
• 14.4 Non-Closure Properties
• 14.5 A Pumping Lemma
• 14.6 Pumping-Lemma Proofs
• 14.7 The Languages {xx}

Formal Language, chapter 14, slide 18

19

Closure Properties

• CFLs are closed for some of the same
common operations as regular languages:
– Union
– Concatenation
– Kleene star
– Intersection with a regular language

• For the first three, we can make simple proofs
using CFGs…

Formal Language, chapter 14, slide 19

20

Theorem 14.3.1

• Proof is by construction using CFGs
• Given G1 = (V1, Σ1, S1, P1) and G2 = (V2, Σ2, S2, P2), with

L(G1) = L1 and L(G2) = L2
• Assume V1 and V2 are disjoint (without loss of generality,

because symbols could be renamed)
• Construct G = (V, Σ, S, P), where

– V = V1∪V2∪{S}
– Σ = Σ1∪Σ2

– P = P1∪P2∪{(S→S1), (S→S2)}

• L(G) = L1 ∪ L2, so L1 ∪ L2 is a CFL

If L1 and L2 are any context-free languages,  
L1 ∪ L2 is also context free.

Formal Language, chapter 14, slide 20

21

Theorem 14.3.2

• Proof is by construction using CFGs
• Given G1 = (V1, Σ1, S1, P1) and G2 = (V2, Σ2, S2, P2), with

L(G1) = L1 and L(G2) = L2
• Assume V1 and V2 are disjoint (without loss of generality,

because symbols could be renamed)
• Construct G = (V, Σ, S, P), where

– V = V1∪V2∪{S}
– Σ = Σ1∪Σ2

– P = P1∪P2∪{(S→S1S2)}

• L(G) = L1L2, so L1L2 is a CFL

If L1 and L2 are any context-free languages,  
L1L2 is also context free.

almost the same proof!

Formal Language, chapter 14, slide 21

22

Kleene Closure

• The Kleene closure of any language L is  
L* = {x1x2 ... xn | n ≥ 0, with all xi ∈ L}

• This parallels our use of the Kleene star in
regular expressions

Formal Language, chapter 14, slide 22

23

Theorem 14.3.3

• Proof is by construction using CFGs
• Given G = (V, Σ, S, P) with L(G) = L
• Construct G' = (V', Σ, S', P'), where

– V' = V∪{S'}
– P' = P∪{(S'→SS'), (S'→ε)}

• L(G') = L*, so L* is a CFL

If L is any context-free language, L* is also context free.

Formal Language, chapter 14, slide 23

24

Theorem 14.3.4

• Proof sketch: by construction of a stack machine
• Given a stack machine M1 for L1 and an NFA M2 for L2
• Construct a new stack machine for L1 ∩ L2
• A bit like the product construction:

– If M1's stack alphabet is Γ, and M2's state set is Q, the new
stack machine uses Γ × Q as its stack alphabet

– It keeps track of both M1's current stack and M2's current state

If L1 is any context-free language and L2 is any
regular language, then L1 ∩ L2 is context free.

Formal Language, chapter 14, slide 24

25

Outline

• 14.1 Pumping Parse Trees
• 14.2 The Language {anbncn}
• 14.3 Closure Properties For CFLs
• 14.4 Non-Closure Properties
• 14.5 A Pumping Lemma
• 14.6 Pumping-Lemma Proofs
• 14.7 The Languages {xx}

Formal Language, chapter 14, slide 25

26

Non-Closure Properties

• As we just saw, CFLs have some of the same
closure properties as regular languages

• But not all
• Not closed for intersection or complement…

Formal Language, chapter 14, slide 26

27

Theorem 14.4.1

• Proof: by counterexample
• Consider these CFGs:

• Now L(G1) = {anbncm}, while L(G2) = {ambncn}
• The intersection is {anbncn}, which is not a CFL
• So the CFLs are not closed for intersection

The CFLs are not closed for intersection.

S1 → A1B1  
A1 → aA1b | ε 
B1 → cB1 | ε

S2 → A2B2  
A2 → aA2 | ε 
B2 → bB2c | ε

Formal Language, chapter 14, slide 27

28

Non-Closure

• This does not mean that every intersection of
CFLs fails to be a CFL

• Often, an intersection of CFLs is a CFL
• Just not always!
• Similarly, the complement of a CFL is

sometimes, but not always, another CFL…

Formal Language, chapter 14, slide 28

29

Theorem 14.4.2

• Proof 1: by contradiction
• By Theorem 14.3.1, CFLs are closed for union
• Suppose by way of contradiction that they are also

closed for complement
• By DeMorgan's laws we have
• This defines intersection in terms of union and

complement
• So CFLs are close for intersection
• But this contradicts Theorem 14.4.1
• By contradiction, the CFLs are not closed for

complement

The CFLs are not closed for complement.

€

L1∩L2 = L1∪L2

Formal Language, chapter 14, slide 29

30

Theorem 14.4.2

• Proof 2: by counterexample
• Let L be the non-CFL {xx | x ∈ {a,b}*}
• We will show that L = {x ∈ {a,b}* | x ∉ L} is a

CFL (next slide)
• Thus we have a language L that is a CFL, and

its complement L = L is not a CFL
• So the CFLs are not closed for complement

The CFLs are not closed for complement.

Formal Language, chapter 14, slide 30

31

{x ∈ {a,b}* | x ≠ ss for any s}
• The language includes:

– All odd-length strings
– And all even-length strings with a somewhere in

the first half, but a corresponding b in the second:

– And all even-length strings with b somewhere in
the first half, but a corresponding a in the second

center

i symbols j symbols i symbols j symbols

a b

Formal Language, chapter 14, slide 31

32

• waxybz, where |w| = |y| = i and |x| = |z| = j
• Since the x and y parts can be any strings, we

can swap them in the picture:

• This is {way | |w| = |y|}, concatenated with
{xbz | |x| = |z|}

center

i symbols j symbols i symbols j symbols

a b

i symbols j symbols i symbols j symbols

a b

Formal Language, chapter 14, slide 32

33

{x ∈ {a,b}* | x ≠ ss for any s}
• So this is a union of three sets:

– {x ∈ {a,b}* | |x| is odd}
– {way | |w| = |y|} concatenated with {xbz | |x| = |z|}
– {xbz | |x| = |z|} concatenated with {way | |w| = |y|}

• This CFG generates the language:

• It is a CFL

S → O | AB | BA 
A → XAX | a  
B → XBX | b  
O → XXO | X  
X → a | b

Formal Language, chapter 14, slide 33

34

Outline

• 14.1 Pumping Parse Trees
• 14.2 The Language {anbncn}
• 14.3 Closure Properties For CFLs
• 14.4 Non-Closure Properties
• 14.5 A Pumping Lemma
• 14.6 Pumping-Lemma Proofs
• 14.7 The Languages {xx}

Formal Language, chapter 14, slide 34

35

Pumping Parse
Trees, Review

• A pumping parse tree for  
a CFG G = (V, Σ, S, P)  
is a parse tree with two  
properties:
1. There is a node for some nonterminal symbol A, which has

that same nonterminal symbol A as one of its descendants
– The terminal string generated from the ancestor A is longer

than the terminal string generated from the descendant A
• We proved that every grammar for an infinite

language generates a pumping parse tree
• To make a general-purpose pumping lemma, we need

to be more specific about those As…

S

u v w x y

A

A

Formal Language, chapter 14, slide 35

36

Lemma 14.5.1
For every grammar G = (V, Σ, S, P) , every minimum-size
parse tree of height greater than |V| can be expressed as a
pumping parse tree with the properties shown:

S

u v w x y

A

A height ≤ |V|+1

height ≥ |V|+1

Formal Language, chapter 14, slide 36

37

S

u v w x y

A

A height ≤ |V|+1

height ≥ |V|+1

• Choose any path from root to leaf with > |V| edges
• Working from leaf back to root along that path, choose the first

two nodes that repeat some A
• As in Lemma 27.1.2, this is a pumping parse tree
• Some nonterminal must have repeated within the first |V|+1

edges from the leaf, the height of the subtree generating vwx is ≤
|V|+1

Formal Language, chapter 14, slide 37

38

Bounds

• Previous lemma says that a subtree where
some nonterminal A is its own descendant can
be found near the fringe

• In other words, we have bounds on the height
of that subtree

• That lets us bound the length of the string vwx
generated by that subtree…

Formal Language, chapter 14, slide 38

39

Lemma 14.5.2

• Proof 1:
– There are only finitely many trees of height |V|+1 or less
– Let k be the length of the longest string generated, plus one

• Proof 2:
– Let b be the length of the longest RHS of any production in P
– Then b is the maximum branching factor in any tree
– A tree of height |V|+1 can have at most b|V|+1 leaves
– Let k = b|V|+1+1

For every CFG G = (V, Σ, S, P) there exists some integer
k greater than the length of any string generated by any
parse tree or subtree of height |V|+1 or less.

Formal Language, chapter 14, slide 39

40

The Value Of k

• Our two proofs gave two different values for k
• That doesn't matter
• For any grammar G there is a bound k on the

yield of a tree or subtree of height ≤ |V|+1
• We'll use the fact that such a k exists in

proofs; we won't need an actual value
• Just like the k in the pumping lemma for

regular languages

Formal Language, chapter 14, slide 40

41

Lemma 14.5.3: The Pumping Lemma for
Context-Free Languages

• L is a CFL, so there is some CFG G with L(G) = L
• Let k be as given for G by Lemma 14.5.2
• We are then given some z ∈ L with |z| ≥ k
• Consider any minimum-size parse tree for z
• It has height > |V|+1, so Lemma 14.5.1 applies
• This is a parse tree for z (property 1), it is a pumping parse tree

(properties 2 and 4), and the subtree generating vwx has  
height ≤ |V|+1 (property 3)

For all context-free languages L there exists some k ∈ N such
that for all z ∈ L with |z| ≥ k, there exist uvwxy such that: 
 1. z = uvwxy, 
 2. v and x are not both ε, 
 3. |vwx| ≤ k, and  
 4. for all i, uviwxiy ∈ A.

Formal Language, chapter 14, slide 41

42

Pumping Lemma Structure

• As with the pumping lemma for regular languages, this has
alternating "for all" and "there exist" clauses:

1. ∀ L …
2. ∃ k …
3. ∀ z …
4. ∃ uvwxy …
5. ∀ i …

• Our proof showed how to construct the ∃ parts
• Now we'll forget about the construction, and only use the ∃

For all context-free languages L there exists some k ∈ N such
that for all z ∈ L with |z| ≥ k, there exist uvwxy such that: 
 1. z = uvwxy, 
 2. v and x are not both ε, 
 3. |vwx| ≤ k, and  
 4. for all i, uviwxiy ∈ A.

Formal Language, chapter 14, slide 42

43

Matching Pairs

• The pumping lemma shows again how matching pairs
are fundamental to CFLs

• Every sufficiently long string in a CFL contains a
matching pair of substrings (the v and x of the lemma)

• These can be pumped in tandem, always producing
another string uviwxiy in the language

• (One may be empty—then the other can be pumped
alone, as in the pumping lemma for regular
languages)

Formal Language, chapter 14, slide 43

44

Outline

• 14.1 Pumping Parse Trees
• 14.2 The Language {anbncn}
• 14.3 Closure Properties For CFLs
• 14.4 Non-Closure Properties
• 14.5 A Pumping Lemma
• 14.6 Pumping-Lemma Proofs
• 14.7 The Languages {xx}

Formal Language, chapter 14, slide 44

45

Pumping-Lemma Proofs

• The pumping lemma is very useful for proving
that languages are not context free

• For example, {anbncn}…

Formal Language, chapter 14, slide 45

46

{anbncn} Is Not Context Free
1. Proof is by contradiction using the pumping lemma for context-free

languages. Assume that L = {anbncn} is context free, so the pumping
lemma holds for L. Let k be as given by the pumping lemma.

2. Choose z = akbkck. Now z ∈ L and |z| ≥ k as required.
3. Let u, v, w, x, and y be as given by the pumping lemma, so that uvwxy

= akbkck, v and x are not both ε, |vwx| ≤ k, and for all i, uviwxiy ∈ L.
4. Now consider pumping with i = 2. The substrings v and x cannot

contain more than one kind of symbol each—otherwise the string
uv2wx2y would not even be in L(a*b*c*). So the substrings v and x
must fall within the string akbkck in one of these ways…

Formal Language, chapter 14, slide 46

47

{anbncn}, Continued

 But in all these cases, since v and x are not both ε, pumping
changes the number of one or two of the symbols, but not all
three. So uv2wx2y ∉ L.

• This contradicts the pumping lemma. By contradiction,  
L = {anbncn} is not context free.

 ak bk ck
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x

Formal Language, chapter 14, slide 47

48

The Game

• The alternating ∀ and ∃ clauses of the pumping lemma make these
proofs a kind of game

• The ∃ parts (k and uvwxy) are the pumping lemma's moves: these
values exist, but are not ours to choose

• The ∀ parts (L, z, and i) are our moves: the lemma holds for all proper
values, so we have free choice

• We make our moves strategically, to force a contradiction
• No matter what the pumping lemma does with its moves, we want to

end up with some uviwxiy ∉ L
• We have fewer choices than with the pumping lemma for regular

languages, and the opponent has more
• That makes these proofs a little harder

Formal Language, chapter 14, slide 48

49

 ak bk ck
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x

{anbncn}, Revisited

• Case 6 would be a contradiction for another
reason: |vwx| > k

• We can rule out such cases…

Formal Language, chapter 14, slide 49

50

• Proof: by contradiction using the pumping lemma
• Assume L = {anbmcn | m ≤ n} is a CFL
• Let k be as given by the pumping lemma
• Choose z = akbkck, so we have z ∈ L and |z| ≥ k
• Let u, v, w, x, and y be as given by the lemma
• Now uvwxy = akbkck, v and x are not both ε, 

|vwx| ≤ k , and for all i, uviwxiy ∈ L
• Now consider pumping with i = 2
• v and x cannot contain more than one kind of symbol

each; otherwise uv2wx2y ∉ L(a*b*c*)
• That leaves 6 cases…

Theorem 14.6
The language {anbmcn | m ≤ n} is not context free.

Formal Language, chapter 14, slide 50

51

 ak bk ck
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x

• But cases 1-5 have uv2wx2y ∉ L :

– Case 1 has more as than cs
– Case 2 has more as than cs, or more bs than cs, or both
– Case 3 has more bs than as and more bs than cs
– Case 4 has more bs than as, or more cs than as, or both
– Case 5 has more cs than as and more cs than bs

• And case 6 contradicts |vwx|≤k
• By contradiction, L = {anbmcn | m ≤ n} is not a CFL
Formal Language, chapter 14, slide 51

52

Outline

• 14.1 Pumping Parse Trees
• 14.2 The Language {anbncn}
• 14.3 Closure Properties For CFLs
• 14.4 Non-Closure Properties
• 14.5 A Pumping Lemma
• 14.6 Pumping-Lemma Proofs
• 14.7 The Languages {xx}

Formal Language, chapter 14, slide 52

53

The Languages {xx}

• {xx | x ∈ Σ*}: strings that consist of any string
over Σ followed by a copy of the same string

• For Σ = {a,b}, that includes strings ε, aa, bb,
abab, baba, aaaa, bbbb, and so on

• We saw that the languages {xxR} are context
free, though not regular for any alphabet with
at least two symbols

• Now, about {xx}…

Formal Language, chapter 14, slide 53

54

Theorem 14.7

• Proof: by contradiction using the pumping lemma
• Let Σ be any set of at least two symbols, a and b
• Assume L = {xx | x ∈ Σ*} is a CFL
• Let k be as given by the pumping lemma
• Choose z = akbkakbk, so we have z ∈ L and |z| ≥ k
• Let u, v, w, x, and y be as given by the lemma
• Now uvwxy = akbkakbk, v and x are not both ε, 

|vwx| ≤ k , and for all i, uviwxiy ∈ L
• Consider how the substrings v and x fall within z
• Since |vwx| ≤ k, v and x cannot be widely separated
• That leaves 13 cases…

{xx | x ∈ Σ*} is not a CFL when |Σ| ≥ 2.

Formal Language, chapter 14, slide 54

55

• For cases 1-5, choose i=0
– Then uv0wx0y is some sakbk where |s| < 2k
– The last symbol of the first half is an a, but the last symbol of

the second half is a b
– So uv0wx0y ∉ L

 ak bk ak bk
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x
7. v x
8. v x
9. v x

10. v x
11. v x
12. v x
13. v x

Formal Language, chapter 14, slide 55

56

• For cases 6-8, choose i=0
– Then uv0wx0y is some aksbk where |s| < 2k
– This can't be rr for any string r; because if r starts with k as

and ends with k bs, we must have |r|≥2k and so |rr|≥4k, while
our |aksbk |<4k

– So uv0wx0y ∉ L

 ak bk ak bk
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x
7. v x
8. v x
9. v x

10. v x
11. v x
12. v x
13. v x

Formal Language, chapter 14, slide 56

57

• For cases 9-13, choose i=0
– Then uv0wx0y is some akbks where |s| < 2k
– The first symbol of the first half is an a, but the first symbol of the

second half is a b
– So uv0wx0y ∉ L

• We have a contradiction in every case, so L is not a CFL

 ak bk ak bk
1. v x
2. v x
3. v x
4. v x
5. v x
6. v x
7. v x
8. v x
9. v x

10. v x
11. v x
12. v x
13. v x

Formal Language, chapter 14, slide 57

58

Choice Of i

• We ended up using the same value of i in each of the
13 cases above

• We could have selected a different value of i for each
case

• Sometimes, to get a contradiction, your choice of i
must depend on the uvwxy chosen by the lemma

• In the pumping-lemma proof game, your move (choice
of i) can depend on your opponent's previous move
(choice of uvwxy)

Formal Language, chapter 14, slide 58

59

int fred = 0;  
while (fred==0) {  
 ...  
}

{xx} In Programming Languages

• Many languages require variables to be declared before
they are used:

• The same name must occur in two places
• This is a non-context-free construct in the same way that

{xx | x ∈ Σ*} is a non-context-free language
• Can't be wired into a grammar for the language
• Enforced after parsing

Formal Language, chapter 14, slide 59

