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Chapter Fourteen: 
The Context-Free Frontier
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At this point we have two major language categories, the regular languages and the context-
free languages, and we have seen that the CFLs include the regular languages, like this:

 

regular 
languages 

CFLs 

L(a*b*) 

{anbn} 

Are there languages outside of the CFLs?  In this chapter we will see that the answer is yes, 
and we will see some simple examples of languages that are not CFLs. 

We have already seen that there are many closure properties for regular languages.  Given any 
two regular languages, there are many ways to combine them—intersections, unions, and so on

—that are guaranteed to produce another regular language.  The context-free languages also 
have some closure properties, though not as many as the regular languages.  If regular 

languages are a safe and settled territory, context-free languages are more like frontier towns.  
Some operations like union get you safely to another context-free language; others like 

complement and intersection just leave you in the wilderness.
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Outline

• 14.1 Pumping Parse Trees 
• 14.2 The Language {anbncn} 
• 14.3 Closure Properties For CFLs 
• 14.4 Non-Closure Properties 
• 14.5 A Pumping Lemma 
• 14.6 Pumping-Lemma Proofs 
• 14.7 The Languages {xx}
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Pumping Parse Trees

• A pumping parse tree for a CFG G = (V, Σ, S, P) is a parse tree 
with two properties: 

1. There is a node for some nonterminal symbol A, which has that 
same nonterminal symbol A as one of its descendants 

– The terminal string generated from the ancestor A is longer than 
the terminal string generated from the descendant A 

• Like every parse tree, a pumping parse tree shows that a 
certain string is in the language 

• Unlike other parse trees, it identifies an infinite set of other 
strings that must also be in the language…
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Lemma 14.1.1

• As shown: 
– uvwxy is the whole derived string 
– A is the nonterminal that is its own descendant 
– vwx is the string derived from the ancestor A 
– w is the string derived from the descendant 
– |vwx| > |w|, so v and x are not both ε 

• There are two subtrees rooted at A 
• We can make other legal parse trees by substitution…

S 

u v w x y 

A 

A 

If a grammar G generates a 
pumping parse tree with yield 
as shown, then L(G) includes 
uviwxiy for all i.
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Cut And Paste, i = 0

• We can replace the vwx subtree with the w subtree 
• That makes a parse tree for uwy 
• That is, uviwxiy for i = 0

S 

u v w x y 

A 

A 

S 

u 

w 

y 

A 
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Cut And Paste, i = 2

• We can replace the w subtree with the vwx subtree 
• That makes a parse tree for uvvwxxy 
• That is, uviwxiy for i = 2

S 

u v w x y 

A 

A 

S 

u v x y 

A 

v w x 

A 

A 
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Cut And Paste, i = 3

• We can replace the w subtree with the vwx, again 
• That makes a parse tree for uvvvwxxxy 
• That is, uviwxiy for i = 3

S 

u v x y 

A 

v w x 

A 

A 

S 

u v x y 

A 

v x 

A 

A 

v w x 

A 
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Lemma 14.1.1, 
Continued

• We can substitute one A subtree for the other, any 
number of times 

• That generates a parse tree for uviwxiy for any i 
• Therefore, for all i, uviwxiy ∈ L(G)

S 

u v w x y 

A 

A 

If a grammar G generates a 
pumping parse tree with yield 
as shown, then L(G) includes 
uviwxiy for all i.
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Useful Trees

• If we can find a pumping parse tree, we can 
conclude that for all i, uviwxiy ∈ L(G) 

• And note that all these uviwxiy are distinct, 
because v and x are not both ε

• The next lemma shows that pumping parse 
trees are not at all hard to find
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S → S | S+S | S*S | a | b | c

S 

b  a  

S          +           S 

S 

S           +          S 

S           *           S 

a  b  

c  

S 

a  

Height Of A Parse Tree

• The height of a parse tree is the number of 
edges in the longest path from the start 
symbol to any leaf 

• For example: 
• These are parse trees of heights 1, 2, and 3:
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S → S | S+S | S*S | a | b | c

S 

S           +          S 

S           *           S 

a  b  

S  

c  

S 

S           +          S 

b  c  

a  

S           *          S 

 

Minimum-Size Parse Trees

• A minimum-size parse tree for a string x in a grammar 
G is a parse tree that generates x, and has no more 
nodes than any other parse tree in G that generates x 

• For example: 
• Both these trees generate a*b+c, but the second one 

is not minimum size:
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Lemma 14.1.2

• Proof: let G = (V, Σ, S, P) be any CFG, L(G) infinite 
• G generates infinitely many minimum-size parse 

trees, since each string in L(G) has at least one 
• Only finitely many can have height |V| or less, so G 

generates a minimum-size parse tree of height > |V| 
• Such a tree must be a pumping parse tree: 

– Property 1: it has a path with more than |V| edges; some 
nonterminal A must occur at least twice on such a path 

– Property 2: replacing the ancestor A with the descendant A 
makes a tree with fewer nodes; this can't be a tree yielding 
the same string, because our tree was minimum-size

Every CFG G = (V, Σ, S, P) that generates an 
infinite language generates a pumping parse tree.
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Theorem 14.2

• Proof: let G = (V, Σ, S, P) be any CFG, Σ = {a,b,c} 
• Suppose by way of contradiction that L(G) = {anbncn} 
• By Lemma 14.1.2, G generates a pumping parse tree 
• By Lemma 14.1.1, for some k, akbkck = uvwxy, where 

v and x are not both ε and uv2wx2y  is in L(G) 
• v and x must each contain only as, only bs, or only cs; 

otherwise uv2wx2y is not even in L(a*b*c*) 
• So uv2wx2y has more than k copies or one or two 

symbols, but only k of the third 
• uv2wx2y ∉ {anbncn}; by contradiction, L(G) ≠ {anbncn}

The language {anbncn} is not a CFL.
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The Insight

• There must be some string in L(G) with a 
pumping parse tree: akbkck = uvwxy 

• But no matter how you break up akbkck into 
those substrings uvwxy (where v and x are not 
both ε) you can show uv2wx2y ∉ {anbncn} 

• Either: 
– v or x has more than one kind of symbol 
– v and x have at most one kind of symbol each

Formal Language, chapter 14, slide 16
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• If v or x has more than one kind of symbol: 
– uv2wx2y would have as after bs and/or bs after cs  
– Not even in L(a*b*c*), so certainly not in {anbncn} 
– Example: 

• If v and x have at most one kind each: 
– uv2wx2y has more of one or two, but not all three 
– Not in {anbncn} 
– Example:

a  a  a  a  a  b  b  b  b  b  c  c  c  c  c 

u v w x y 
 

a  a  a  a  a  b  b  b  b  b  c  c  c  c  c 

u v w x y 
 Formal Language, chapter 14, slide 17
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Closure Properties

• CFLs are closed for some of the same 
common operations as regular languages: 
– Union 
– Concatenation 
– Kleene star 
– Intersection with a regular language 

• For the first three, we can make simple proofs 
using CFGs…
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Theorem 14.3.1

• Proof is by construction using CFGs 
• Given G1 = (V1, Σ1, S1, P1) and G2 = (V2, Σ2, S2, P2), with 

L(G1) = L1 and L(G2) = L2 
• Assume V1 and V2 are disjoint (without loss of generality, 

because symbols could be renamed) 
• Construct G = (V, Σ, S, P), where 

– V = V1∪V2∪{S} 
– Σ = Σ1∪Σ2 

– P = P1∪P2∪{(S→S1), (S→S2)} 

• L(G) = L1 ∪ L2, so L1 ∪ L2 is a CFL

If L1 and L2 are any context-free languages,  
L1 ∪ L2 is also context free.
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Theorem 14.3.2

• Proof is by construction using CFGs 
• Given G1 = (V1, Σ1, S1, P1) and G2 = (V2, Σ2, S2, P2), with 

L(G1) = L1 and L(G2) = L2 
• Assume V1 and V2 are disjoint (without loss of generality, 

because symbols could be renamed) 
• Construct G = (V, Σ, S, P), where 

– V = V1∪V2∪{S} 
– Σ = Σ1∪Σ2 

– P = P1∪P2∪{(S→S1S2)} 

• L(G) = L1L2, so L1L2 is a CFL

If L1 and L2 are any context-free languages,  
L1L2 is also context free.

almost the same proof!
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Kleene Closure

• The Kleene closure of any language L is  
L* = {x1x2 ... xn |  n ≥ 0, with all xi ∈ L} 

• This parallels our use of the Kleene star in 
regular expressions
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Theorem 14.3.3

• Proof is by construction using CFGs 
• Given G = (V, Σ, S, P)  with L(G) = L 
• Construct G' = (V', Σ, S', P'), where 

– V' = V∪{S'} 
– P' = P∪{(S'→SS'), (S'→ε)} 

• L(G') = L*, so L* is a CFL

If L is any context-free language, L* is also context free.
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Theorem 14.3.4

• Proof sketch: by construction of a stack machine 
• Given a stack machine M1 for L1 and an NFA M2 for L2 
• Construct a new stack machine for L1 ∩ L2 
• A bit like the product construction: 

– If M1's stack alphabet is Γ, and M2's state set is Q, the new 
stack machine uses Γ × Q as its stack alphabet 

– It keeps track of both M1's current stack and M2's current state

If L1 is any context-free language and L2 is any 
regular language, then L1 ∩ L2 is context free.
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Non-Closure Properties

• As we just saw, CFLs have some of the same 
closure properties as regular languages 

• But not all 
• Not closed for intersection or complement…
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Theorem 14.4.1

• Proof: by counterexample 
• Consider these CFGs: 

• Now L(G1) = {anbncm}, while L(G2) = {ambncn} 
• The intersection is {anbncn}, which is not a CFL 
• So the CFLs are not closed for intersection

The CFLs are not closed for intersection.

S1 → A1B1  
A1 → aA1b | ε 
B1 → cB1 | ε

S2 → A2B2  
A2 → aA2 | ε 
B2 → bB2c | ε
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Non-Closure

• This does not mean that every intersection of 
CFLs fails to be a CFL 

• Often, an intersection of CFLs is a CFL 
• Just not always! 
• Similarly, the complement of a CFL is 

sometimes, but not always, another CFL…
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Theorem 14.4.2

• Proof 1: by contradiction 
• By Theorem 14.3.1, CFLs are closed for union 
• Suppose by way of contradiction that they are also 

closed for complement 
• By DeMorgan's laws we have 
• This defines intersection in terms of union and 

complement 
• So CFLs are close for intersection 
• But this contradicts Theorem 14.4.1 
• By contradiction, the CFLs are not closed for 

complement

The CFLs are not closed for complement.

    

€ 

L1∩L2 = L1∪L2
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Theorem 14.4.2

• Proof 2: by counterexample 
• Let L be the non-CFL {xx | x ∈ {a,b}*} 
• We will show that L = {x ∈ {a,b}* |  x ∉ L} is a 

CFL (next slide) 
• Thus we have a language L that is a CFL, and 

its complement L  = L is not a CFL 
• So the CFLs are not closed for complement

The CFLs are not closed for complement.
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{x ∈ {a,b}* |  x ≠ ss for any s}
• The language includes: 

– All odd-length strings 
– And all even-length strings with a somewhere in 

the first half, but a corresponding b in the second: 

– And all even-length strings with b somewhere in 
the first half, but a corresponding a in the second

center 

i symbols j symbols i symbols j symbols 

a b . . . . . . . . . . . . 
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• waxybz, where |w| = |y| = i and |x| = |z| = j 
• Since the x and y parts can be any strings, we 

can swap them in the picture: 

• This is {way |  |w| = |y|}, concatenated with 
{xbz |  |x| = |z|}

center 

i symbols j symbols i symbols j symbols 

a b . . . . . . . . . . . . 

 

i symbols j symbols i symbols j symbols 

a b . . . . . . . . . . . . 
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{x ∈ {a,b}* |  x ≠ ss for any s}
• So this is a union of three sets: 

– {x ∈ {a,b}* |  |x| is odd} 
– {way |  |w| = |y|} concatenated with {xbz |  |x| = |z|} 
– {xbz |  |x| = |z|} concatenated with {way |  |w| = |y|} 

• This CFG generates the language: 

• It is a CFL

S → O | AB | BA 
A → XAX | a  
B → XBX | b  
O → XXO | X  
X → a | b

Formal Language, chapter 14, slide 33
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Pumping Parse 
Trees, Review

• A pumping parse tree for  
a CFG G = (V, Σ, S, P)  
is a parse tree with two  
properties: 
1. There is a node for some nonterminal symbol A, which has 

that same nonterminal symbol A as one of its descendants 
– The terminal string generated from the ancestor A is longer 

than the terminal string generated from the descendant A 
• We proved that every grammar for an infinite 

language generates a pumping parse tree 
• To make a general-purpose pumping lemma, we need 

to be more specific about those As…

S 

u v w x y 

A 

A 
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Lemma 14.5.1
For every grammar G = (V, Σ, S, P) , every minimum-size 
parse tree of height greater than |V| can be expressed as a 
pumping parse tree with the properties shown:

S 

u v w x y 

A 

A height ≤  |V|+1 

height ≥  |V|+1 
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S 

u v w x y 

A 

A height ≤  |V|+1 

height ≥  |V|+1 

• Choose any path from root to leaf with > |V| edges 
• Working from leaf back to root along that path, choose the first 

two nodes that repeat some A 
• As in Lemma 27.1.2, this is a pumping parse tree 
• Some nonterminal must have repeated within the first |V|+1 

edges from the leaf, the height of the subtree generating vwx is ≤ 
|V|+1
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Bounds

• Previous lemma says that a subtree where 
some nonterminal A is its own descendant can 
be found near the fringe 

• In other words, we have bounds on the height 
of that subtree 

• That lets us bound the length of the string vwx 
generated by that subtree…
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Lemma 14.5.2

• Proof 1: 
– There are only finitely many trees of height |V|+1 or less 
– Let k be the length of the longest string generated, plus one 

• Proof 2: 
– Let b be the length of the longest RHS of any production in P 
– Then b is the maximum branching factor in any tree 
– A tree of height |V|+1 can have at most b|V|+1 leaves 
– Let k = b|V|+1+1

For every CFG G = (V, Σ, S, P) there exists some integer 
k greater than the length of any string generated by any 
parse tree or subtree of height |V|+1 or less.
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The Value Of k

• Our two proofs gave two different values for k 
• That doesn't matter 
• For any grammar G there is a bound k on the 

yield of a tree or subtree of height ≤ |V|+1 
• We'll use the fact that such a k exists in 

proofs; we won't need an actual value 
• Just like the k in the pumping lemma for 

regular languages
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Lemma 14.5.3: The Pumping Lemma for 
Context-Free Languages

• L is a CFL, so there is some CFG G with L(G) = L 
• Let k be as given for G by Lemma 14.5.2 
• We are then given some z ∈ L with |z| ≥ k 
• Consider any minimum-size parse tree for z 
• It has height > |V|+1, so Lemma 14.5.1 applies 
• This is a parse tree for z (property 1), it is a pumping parse tree 

(properties 2 and 4), and the subtree generating vwx has  
height ≤ |V|+1 (property 3)

For all context-free languages L there exists some k ∈ N such 
that for all z ∈ L with |z| ≥ k, there exist uvwxy such that: 
 1.  z = uvwxy, 
 2.  v and x are not both ε, 
 3.  |vwx| ≤ k, and  
 4.  for all i, uviwxiy ∈ A.
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Pumping Lemma Structure

• As with the pumping lemma for regular languages, this has 
alternating "for all" and "there exist" clauses: 

1. ∀ L … 
2. ∃ k … 
3. ∀ z … 
4. ∃ uvwxy … 
5. ∀ i … 

• Our proof showed how to construct the ∃ parts 
• Now we'll forget about the construction, and only use the ∃

For all context-free languages L there exists some k ∈ N such 
that for all z ∈ L with |z| ≥ k, there exist uvwxy such that: 
 1.  z = uvwxy, 
 2.  v and x are not both ε, 
 3.  |vwx| ≤ k, and  
 4.  for all i, uviwxiy ∈ A.
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Matching Pairs

• The pumping lemma shows again how matching pairs 
are fundamental to CFLs 

• Every sufficiently long string in a CFL contains a 
matching pair of substrings (the v and x of the lemma) 

• These can be pumped in tandem, always producing 
another string uviwxiy in the language 

• (One may be empty—then the other can be pumped 
alone, as in the pumping lemma for regular 
languages)
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Pumping-Lemma Proofs

• The pumping lemma is very useful for proving 
that languages are not context free 

• For example, {anbncn}…
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{anbncn} Is Not Context Free
1. Proof is by contradiction using the pumping lemma for context-free 

languages.  Assume that L = {anbncn} is context free, so the pumping 
lemma holds for L.  Let k be as given by the pumping lemma. 

2. Choose z = akbkck.  Now z ∈ L and |z| ≥ k as required. 
3. Let u, v, w, x, and y be as given by the pumping lemma, so that uvwxy 

= akbkck, v and x are not both ε, |vwx| ≤ k, and for all i, uviwxiy ∈ L. 
4. Now consider pumping with  i = 2.  The substrings v and x cannot 

contain more than one kind of symbol each—otherwise the string 
uv2wx2y would not even be in L(a*b*c*).  So the substrings v and x 
must fall within the string akbkck in one of these ways…

Formal Language, chapter 14, slide 46



47

{anbncn}, Continued

 But in all these cases, since v and x are not both ε, pumping 
changes the number of one or two of the symbols, but not all 
three.  So uv2wx2y ∉ L.  

• This contradicts the pumping lemma.  By contradiction,  
L = {anbncn} is not context free.

 ak bk ck 
1.     v      x   
2. v x  
3.      v      x  
4.  v x 
5.       v      x 
6. v  x 
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The Game

• The alternating ∀ and ∃ clauses of the pumping lemma make these 
proofs a kind of game 

• The ∃ parts (k and uvwxy) are the pumping lemma's moves: these 
values exist, but are not ours to choose 

• The ∀ parts (L, z, and i) are our moves: the lemma holds for all proper 
values, so we have free choice 

• We make our moves strategically, to force a contradiction 
• No matter what the pumping lemma does with its moves, we want to 

end up with some uviwxiy ∉ L  
• We have fewer choices than with the pumping lemma for regular 

languages, and the opponent has more 
• That makes these proofs a little harder
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 ak bk ck 
1.     v      x   
2. v x  
3.      v      x  
4.  v x 
5.       v      x 
6. v  x 

 

{anbncn}, Revisited

• Case 6 would be a contradiction for another 
reason: |vwx| > k 

• We can rule out such cases…
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• Proof: by contradiction using the pumping lemma 
• Assume L = {anbmcn | m ≤ n} is a CFL 
• Let k be as given by the pumping lemma 
• Choose z = akbkck, so we have z ∈ L and |z| ≥ k 
• Let u, v, w, x, and y be as given by the lemma 
• Now uvwxy = akbkck, v and x are not both ε, 

|vwx| ≤ k , and for all i, uviwxiy ∈ L 
• Now consider pumping with i = 2 
• v and x cannot contain more than one kind of symbol 

each; otherwise uv2wx2y ∉ L(a*b*c*) 
• That leaves 6 cases…

Theorem 14.6
The language {anbmcn | m ≤ n} is not context free.
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 ak bk ck 
1.     v      x   
2. v x  
3.      v      x  
4.  v x 
5.       v      x 
6. v  x 

 
• But cases 1-5 have uv2wx2y ∉ L : 

– Case 1 has more as than cs 
– Case 2 has more as than cs, or more bs than cs, or both 
– Case 3 has more bs than as and more bs than cs 
– Case 4 has more bs than as, or more cs than as, or both 
– Case 5 has more cs than as and more cs than bs 

• And case 6 contradicts |vwx|≤k 
• By contradiction, L = {anbmcn |  m ≤ n} is not a CFL
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The Languages {xx}

• {xx | x ∈ Σ*}: strings that consist of any string 
over Σ followed by a copy of the same string 

• For Σ = {a,b}, that includes strings ε, aa, bb, 
abab, baba, aaaa, bbbb, and so on 

• We saw that the languages {xxR} are context 
free, though not regular for any alphabet with 
at least two symbols 

• Now, about {xx}…
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Theorem 14.7

• Proof: by contradiction using the pumping lemma 
• Let Σ be any set of at least two symbols, a and b 
• Assume L = {xx | x ∈ Σ*}  is a CFL 
• Let k be as given by the pumping lemma 
• Choose z = akbkakbk, so we have z ∈ L and |z| ≥ k 
• Let u, v, w, x, and y be as given by the lemma 
• Now uvwxy = akbkakbk, v and x are not both ε, 

|vwx| ≤ k , and for all i, uviwxiy ∈ L 
• Consider how the substrings v and x fall within z 
• Since |vwx| ≤ k, v and x cannot be widely separated 
• That leaves 13 cases…

{xx | x ∈ Σ*} is not a CFL when |Σ| ≥ 2.
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• For cases 1-5, choose i=0 
– Then uv0wx0y is some sakbk where |s| < 2k 
– The last symbol of the first half is an a, but the last symbol of 

the second half is a b 
– So uv0wx0y ∉ L

 ak bk ak bk 
1.    v      x      
2.        v    x   
3.            v     x   
4.               v     x   
5.    v     x   
6.        v    x  
7.           v     x  
8.               v     x   
9.   v     x  

10.          v    x 
11.             v     x 
12.                v     x  
13.    v     x 
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• For cases 6-8, choose i=0 
– Then uv0wx0y is some aksbk where |s| < 2k 
– This can't be rr for any string r; because if r starts with k as 

and ends with k bs, we must have |r|≥2k and so |rr|≥4k, while 
our |aksbk |<4k 

– So uv0wx0y ∉ L

 ak bk ak bk 
1.    v      x      
2.        v    x   
3.            v     x   
4.               v     x   
5.    v     x   
6.        v    x  
7.           v     x  
8.               v     x   
9.   v     x  

10.          v    x 
11.             v     x 
12.                v     x  
13.    v     x 
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• For cases 9-13, choose i=0 
– Then uv0wx0y is some akbks where |s| < 2k 
– The first symbol of the first half is an a, but the first symbol of the 

second half is a b 
– So uv0wx0y ∉ L 

• We have a contradiction in every case, so L is not a CFL

 ak bk ak bk 
1.    v      x      
2.        v    x   
3.            v     x   
4.               v     x   
5.    v     x   
6.        v    x  
7.           v     x  
8.               v     x   
9.   v     x  

10.          v    x 
11.             v     x 
12.                v     x  
13.    v     x 
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Choice Of i

• We ended up using the same value of i in each of the 
13 cases above 

• We could have selected a different value of i for each 
case 

• Sometimes, to get a contradiction, your choice of i 
must depend on the uvwxy chosen by the lemma 

• In the pumping-lemma proof game, your move (choice 
of i) can depend on your opponent's previous move 
(choice of uvwxy)
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int fred = 0;  
while (fred==0) {  
   ...  
}

{xx} In Programming Languages

• Many languages require variables to be declared before 
they are used: 

• The same name must occur in two places 
• This is a non-context-free construct in the same way that 

{xx | x ∈ Σ*} is a non-context-free language 
• Can't be wired into a grammar for the language 
• Enforced after parsing
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