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2.1 INTRODUCTION

The most fundamental information currently known about the propagation of
shock waves through any material substance will be presented. It is shown that
the equation of state (EOS) has a decisive effect on the shock phenomena that
can exist in the material. Five laws or theorems will be presented.

The most important of them is the Rankine-Hugoniot (R-H) equations, which
are derived from the conservation laws of mass, momentum, and energy. These
equations include terms containing the velocities of the material on both sides
of the shock wave. If the equations are manipulated to eliminate these terms,
then a single equation containing only thermodynamic variables of state is
obtained. This is the Hugoniot equation, and it is the starting point for many
investigations. If two other equations, called the Raleigh equations, both of
which are also obtained by manipulation, are appended to the Hugoniot
equation, then they comprise an equivalent set to the R-H equations. The
theory is presented in Sections 2.4 and 2.5.

Next in importance is the Bethe-Weyl (B-W) theorem, which can be applied
to either a normal or an oblique shock wave. It is valid for all materials and
guarantees the existence of at least one solution to the Hugoniot equation.
However, the real power of the theorem is displayed when the material obeys a
convex equation of state (EOS), G > 0, (Sections 2.6 and 2.8) and also when
the EOS satis®es the weak constraint, G � 2g (Section 2.9). Nearly all materials
in a single phase satisfy these constraints for practically all-thermodynamic
states. In these circumstances the theorem shows that a solution exists and is
unique. It also shows that a compressive shock increases the entropy in the
material, and that the shock wave propagates at a supersonic velocity relative
to the material ahead of it and at a subsonic velocity relative to the material
behind it. Conversely, for the rather rare event when G < 0, then it is an
expansive shock that increases the entropy in the material. For these waves the
shock propagates at subsonic velocity relative to the material ahead of it and at
a supersonic velocity relative to the material behind it. Numerous experiments
have con®rmed the existence of these extraordinary waves. The theory is
presented in Section 2.10.

Following from the B-W theorem is the triple-shock-entropy theorem. It is
applicable to one- and two-dimensional shock wave interactions (1D and 2D).
Some general properties of interactions can be obtained from it when the
material EOS satis®es the previous constraints G > 0 and G � 2g. For example,
if two shock waves approach each other and are parallel (1-D interaction), then
after they collide, the outgoing waves must be shock waves. However, if two
such shock waves interact by one overtaking the other, then the outgoing
waves can be either a pair of shock waves or a shock wave and an expansion
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wave. The theorem and its consequences are presented in Sections 2.11 and
2.12.

Next is Crocco's theorem, which is important when velocity, entropy, and=or
total enthalpy gradients are present ahead of the shock wave. Furthermore, it is
often useful if the shock wave is curved, especially if there is an entropy
gradient along it. It shows how a shock wave can be a source of vorticity. This
theorem, which is applicable to any material, is presented in Section 2.13.

Finally, the refraction law is presented in Section 2.14. It is purely kinematic
and thus can be applied to any material. It is useful for both 2D and 3D
interactions when several waves emanate from a single point called a wave
node. It gives a powerful means for ®nding the condition where one wave
pattern changes into another under a continuous change in one or more of the
system parameters.

2.2 THE RIEMANN PROBLEM

``A Riemann problem is de®ned for a system of conservation laws such as mass,
momentum and energy, as an initial value problem such that the initial data
have no length or time scales, or in other words the data is constant along ray
paths'' (Courant and Friedrichs, 1948). The classic example is the shock tube
problem studied by Riemann (1860). Many shock problems have this scale
invariant character, but not all.

2.3 LENGTH AND TIME SCALES

One length scale that is always present is the thickness of the shock wave. The
simplest example is that of a monatomic gas. Its shock wave thickness is about
four mean free paths, that is, it takes about four molecular collisions to adjust
the equilibrium state upstream of the shock to downstream of it. The
molecular processes inside the shock wave are not in equilibrium. A shock
wave is thicker in polyatomic gases because molecular rotation and vibration
require more collisions for equilibrium to be attained. For weak shock waves in
the atmosphere the thickness may be of the order of one 1 km because of the
large number of collisions required to attain vibrational equilibrium in
nitrogen, especially when moisture is present ( Johannesen and Hodgson,
1979). The shock wave thickness is also increased by chemical reactions as
with detonations (Fickett and Davis, 1979), and by dissociation and ionization.
More generally, the velocity and the thermal gradients inside the shock wave
imply the importance of the material transport propertiesÐparticularly vis-
cosity and heat conductivity (Zeldovich and Raizer; 1966; Thompson, 1972,
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p. 363). If the shock wave thickness length scale is too small to be of signi-
®cance to the problem then it is suf®cient to consider only the equilibrium
states on both sides of the shock. One then has a shock Riemann problem.

Time scales are often important, but only two occurrences will be mentioned
here. First, a time scale is present if the shock wave becomes unstable and
splits into two waves moving in the same direction (Section 2.10). Suppose
that an intense shock wave propagates into a metal, which is initially at
atmospheric pressure and temperature, and suppose it also compresses the
metal beyond its yield point. It is known that eventually the shock wave will
split into two waves. The ®rst is a precursor shock wave that compresses the
metal to its yield point, and the second is a compressive plastic wave
(Zeldovich and Raizer, 1966). Second, a shock wave may induce a change in
phase of the material. A well-known example is the a! e (body-centered-
cubic to hexagonal-close-packed) phase transformation in iron that takes place
at 12.8 Gpa, which can also cause splitting (Duvall and Graham, 1977).
However, in many cases the time to attain equilibrium is orders of magnitude

FIGURE 2.1 Phase diagram for water substance.
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greater than the time for the shock wave to pass through the material. In this
case there will be no phase change, and any equilibrium can only be
metastable; there will then be no time scale. For example, if a shock wave
compressed water at atmospheric pressure to a pressure P > 104 atm
(1000 MPa), and if thermodynamic equilibrium were attained, then ice (VII)
would exist downstream of the shock wave (see Fig. 2.1). However, this does
not usually happen because of the long time required for attaining equilibrium
(Bethe, 1942). Instead, the water remains in the liquid phase but in metastable
equilibrium. The time scale for thermodynamic equilibrium reduces rapidly,
however, if the compressed state approaches a spinodal condition (Section 2.7).

2.4 THE CONSERVATION LAWS FOR A
SINGLE SHOCK

2.4.1 LABORATORY FRAME COORDINATES

Suppose the material is contained in a cylinder of cross-sectional area A. One
end of the cylinder is open, but the other is closed by a piston that is in contact
with the material. Initially, Fig. 2.2a shows that the system is at rest. Suppose
that at time t � 0, the piston impulsively acquires the ®nite velocity Up in the
x-direction. Then it instantly begins to drive the material to the right at the
same velocity Up . This is accomplished by a shock wave s that instantly
appears on the face of the piston and propagates into the material with the
®nite velocity Us > Up (see Fig. 2.2b). As Us is ®nite (it must be less than the
velocity of light!), the material to the left of the shock wave moves at the
velocity Up, but the material to the right of it remains at rest. The equations
from the conservation laws for mass, momentum, and energy can now be
derived. It is assumed for simplicity that the system has adiabatic walls, that
body forces such as gravity and electromagnetism are negligible and that there
is no heat transfer by radiation across the shock.

Conservation of Mass

After unit time the piston has moved a distance Up and the shock a distance Us.
During that time the shock compresses a mass of the material from its initial
volume AUs to A�Us ÿ Up�. The density therefore increases from r0 to r, so by
conservation of mass

r0Us � r�Us ÿ Up� � _m �2:1�
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where _m is the mass ¯ux of material passing through the shock wave. Notice
that it is strictly true that Us > Up, for if Us � Up then r � 1, which is
physically impossible with the current state of knowledge.

Conservation of Momentum

The piston applies a driving force �Pÿ P0�A to the material, causing it to
acquire a momentum per unit time of �r0UsA�Up � _mAUp. Then from
conservation of momentum

Pÿ P0 � r0UsUp �2:2�

Conservation of Energy

The compressive work that the piston does on the material in unit time is
PAUp. The energy gained by the material in unit time is the sum of the kinetic

FIGURE 2.2 Shock wave generated by the impulsive motion of a piston. a) Initial state at rest; b)

state in unit time after the piston had acquired velocity Up impulsively; and c) motion in shock

®xed coordinates (p is the piston and s is the shock wave).
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1
2
�r0UsA�U2

p and the internal energy �r0UsA��eÿ e0�. Thus by conservation of
energy

PUp � r0Us

1

2
U2

p � eÿ e0

� �
�2:3�

The preceding equations are the conservation laws for a single shock wave.
They are of fundamental importance.

2.4.2 SHOCK FIXED COORDINATES

It is often convenient to transform the conservation laws into a coordinate
system that is at rest with respect to the shock. This is easily accomplished by
subtracting the shock wave velocity Us from the (zero) particle velocity ahead
of the shock wave and also from the particle velocity Up behind it. Then

u0 � ÿUs �2:4:1�
and

u � Up ÿ Us �2:4:2�

where u0 and u are the particle (material) velocities ahead of and behind the
shock, respectively, and relative to it. The last of these equations can be written
as

Up � uÿ u0 �2:5�

Substituting Eq. (4) into Eqs. (2.1)±(2.3) we acquire, after some algebra, the
conservation laws in shock ®xed coordinates. They are also called the Rankine-
Hugoniot equations.

ru � r0u0 �2:6�
p� ru2 � p0 � r0u2

0 �2:7�
p

r
� e� 1

2
u2 � p0

r0

� e0 �
1

2
u2

0 �2:8�

Equation (2.8) can also be written in terms of the enthalpy, h p=p� e, as:

h� 1

2
u2 � h0 �

1

2
u2

0 � ht �2:9�

which is called Bernoulli's equation. Here, ht is the total enthalpy.
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2.5 THE HUGONIOT ADIABATIC

2.5.1 THE HUGONIOT EQUATION

If velocities Us and Up are eliminated from Eqs. (2.1)±(2.3) then the
conservation laws reduce to a single equation, which is a function only of
the variables of state. It is called the Hugoniot equation, and it is fundamental to
shock wave theory.

eÿ e0 �
1

2
�p� p0��v0 ÿ v� �2:10�

Notice that a neater form of it is obtained if the densities r0 and r are
replaced by the speci®c volumes v0 and v, respectively, where v � 1=r. In order
to plot the Hugoniot curve in the (v; p)-plane it is necessary to know the initial
state (v0; p0) of the material and its equation of state (EOS), or its equivalent
such as a table of state properties.

2.5.2 THE RALEIGH EQUATIONS

If u0 or u is eliminated from Eqs. (2.6) and (2.7), we obtain the Rayleigh
equations

r2
0U2

s � r2
0u2

0 � r2u2 � ÿDp

Dv
�2:11�

where Dp � pÿ p0 and Dv � vÿ v0. If the pressure jump across a shock
becomes vanishingly small, that is p! p0, then v! v0 and u! u0, and one
also ®nds that the speci®c entropy is s! s0 [Eq. (2.35) in Section 2.8.1]; then
the limit equation (2.11) becomes

r2
0a2

0 � ÿ
@p

@v

� �
S

�2:12:1�

a2
0 � ÿv2

0

@p

@v

� �
S

�2:12:2�

where a0 is the speed of sound in the undisturbed material. It follows that
ÿUs � u0 ! a0, so that in the limit the shock wave propagates at the speed
of sound, or in other words it is reduced to an acoustic wave. Note that
ÿv0�@p=@v�s, is the bulk modulus and that a0 is called the longitudinal sound
speed in solid mechanics and is appropriate for an unconstrained material. The
sound speed in a thin bar is somewhat smaller (Kolsky, 1953).
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Returning to Eqs. (2.1) and (2.2), and replacing r0 and r by v0 and v and
then eliminating Us the result, with the help of Eq. (2.5), is

1

2
U2

p � �uÿ u0�2 �
1

2
�pÿ p0��v� v0� �2:13�

which in laboratory frame coordinates is the gain in the kinetic energy per unit
mass of the material by the passage of the shock wave. In shock ®xed
coordinates there is a loss of kinetic energy across the shock wave, because
for a compression v < v0, and by Eq. (6) u < u0, and so 1

2
u2 < 1

2
u2

0. From Eqs.
(2.8) and (2.10) we get

1

2
�u2

0 ÿ u2� � �pÿ p0��v� v0� �2:14�

2.5.3 SOLUTION OF A SIMPLE SHOCK RIEMANN

PROBLEM

The problem is illustrated in Fig. 2.2. Suppose the initial state (v0; p0) upstream
of the shock is given, and also the downstream pressure p. It is required to ®nd
the compressed speci®c volume v and thus the downstream state (v; p). The
problem can be solved in the (v; p)-plane when the EOS of the material is
known p � p�e; v�. The Hugoniot curve can be plotted by using Eq. (2.10) and
the EOS, and v can then be found because p is given (see Fig. 2.3). The slope of

FIGURE 2.3 Hugoniot curve H and Raleigh line R in the (v; p)-plane.
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the Raleigh line Dp=Dv can now be calculated and it is a constant; this means
that the Raleigh line is straight in this plane. From Eq. (11), U2

s =v
2
0 � Dp=Dv,

from which we ®nd Us. By Eq. (2.10) the gain in the internal energy is
represented by the trapezium ABCDA, while by Eq. (2.13) the gain in the
kinetic energy per unit mass (laboratory frame) is represented by the triangle
BECB. By Eq. (2.3) the total gain in energy per unit mass is represented by the
rectangle AECDA.

2.6 THERMODYNAMIC PROPERTIES OF
MATERIALS

It is important to notice that the conservation laws, the Hugoniot, and the
Raleigh equations are independent of any equation of state. Consequently,
these laws and equations can be applied to any material. Nevertheless, the EOS
has a decisive effect on the nature of the shock phenomena that appears in it.
However, before these effects can be discussed it is necessary to de®ne the
thermodynamic properties that will be needed.

The fundamental equation

e � e�v; s� �2:15�
contains all the thermodynamic information about the system (Callen, 1985).
If by de®nition

T � @e

@s

� �
V

�2:16:1�

and

ÿp � @e

@v

� �
S

�2:16:2�

then by using Eqs. (2.16.1) and (2.16.2), in differential form, Eq. (2.15)
becomes

de � Tdsÿ pdv �2:17�
where T is the temperature. Equations (2.16.1) and (2.16.2) are the thermal
and mechanical EOS, respectively, and they can also be written

T � T�v; s� and p � p�v; s� �2:18:1�
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It is often useful to de®ne the EOS in terms of (v; e) rather than in (v; s). By
Eqs. (2.16.1) and (2.16.2) this is always possible because e is a monotonically
increasing function of s, as T > 0 and T � 0 is unattainable, and so,

T � T�v; e� and p � p�v; e� �2:18:2�
The speci®c heats

CV � T
@S

@T

� �
V

and CP � T
@s

@T

� �
P

�2:19�

The compressibilities

KS � ÿ
1

v

@v

@p

� �
S

and KT � ÿ
1

v

@v

@p

� �
T

�2:20�

The coef®cient of thermal expansion

b � 1

v

@v

@T

� �
P

�2:21�

Because of the thermodynamic relation

KS

KT

� 1ÿ b2vT

CPKT

� CV

CP

�2:22�

only three of these ®ve properties are independent. It is conventional to choose
these to be Cp, KT, and b, as tables of them exist for many materials.

In what follows, some of the properties obtained from the second and third
derivatives of the energy are of special importance.

The adiabatic exponent

g � v

p

@2e

@y2

� �
S

� 1

pKS

� a2

pv
� ÿ v

p

@p

@v

� �
S

�2:23�

where a is the speed of sound. For an ideal gas, g reduces to the ratio of the
speci®c heats, g � CP=CV. Notice that g can often be found from Eq. (2.23)
because g � a2=pv. Some values of a; p, and r � 1=v are given in Table 2.1.

The GruÈneisen coef®cient

G � ÿ v

T

@2e

@v@s
� ÿ v

T

@T

@v

� �
S

� v

CV

@p

@T

� �
V

�2:24�

This can be written to show that G determines the spacing of the isentropic
curves in both of the (ln v, ln p) and (v; p)-planes

G � v
@p

@v

� �
e

� v

T

@p

@s

� �
V

� pv

T

@ ln p

@s

� �
ln

v �2:25�
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It follows at once that the isentropics cannot cross each in these planes
when G > 0. By further manipulation and also by using Eq. (2.21) the
following, useful relation between G and b is obtained:

G � vb
CVKT

�2:26�

For a thermodynamically stable system CV > 0and KT > 0 (see Menikoff
and Plohr, 1989), and because v > 0, it follows that G and b always have the
same sign. When G is a constant then Eq. (2.26) becomes the famous
GruÈ neisen EOS.

For most materials, in most states, G and b are positive. For the alloy Invar,
they are almost zero at room temperature, but for water < 3:984 �C and at
1 atm, both G and b are negative. There are also many tetrahedrally bonded
materials for which these quantities are negative for some domains of state
(Table 2.2). For an ideal gas, G � gÿ 1 > 0. Some values of G are presented in
Table 2.1.

The reciprocal of the dimensionless speci®c heat

g � pv

T

@2e

@s2

� �
V

� pv

CVT
�2:27�

TABLE 2.1 Some Values of Shock and Thermodynamic Properties

r Cp a

Materiala �kg=m3� �kJ=kgK �km=s� G SS

Water 1000 4.19 1.51 0.1 1.92

NaCla 2160 0.87 3.53 1.6 1.34

KClb 1990 0.68 2.15 1.3 1.54

LiF 2640 1.50 5.15 2.0 1.35

Te¯on 2150 1.02 1.84 0.6 1.71

PMMA 1190 1.20 2.60 1.0 1.52

Polyethylene 920 2.30 2.90 1.6 1.48

Polystyrene 1040 1.20 2.75 1.2 1.32

Brass 8450 0.38 3.73 2.0 1.43

Al-2024 2790 0.89 5.33 2.0 1.34

Be 1850 0.18 8.00 1.2 1.12

Ca 1550 0.66 3.60 1.1 0.95

Cu 8930 0.40 3.94 2.0 1.49

Feb 7850 0.45 3.57 1.8 1.92

Pb 11350 0.13 2.05 2.8 1.46

U 18950 0.12 2.49 2.1 2.20

a Superscripts a and b refer to above and below phase transitions.

12 L. F. Henderson



This quantity is strictly positive g > 0 for a system, which is thermodynami-
cally stable (Section 2.7).

The fundamental derivative

G � 1

2
v

@2p

@v2

� �
S

@p

@v

� �
S

� pv

CVT
�2:28:1�

by Eq. (2.23), with G a third derivative of e. Here it is given in nondimensional
form f (Thompson, 1971); G > 0 iff

@2p

@v2

� �
S

> 0 �2:28:2�

Equation (2.28.1) measures geometrically the curvature of the isentropics in
the (v; p)-plane. If Equation (2.28.2) is strictly true then any particular
isentropic is convex, which means that it always lays above a tangent to any
point on it (see Fig. 2.4). An isentropic is straight for any domain of states for
which G � 0 and concave if G < 0. It will be shown in Figs. 2.8 and 2.10 that
the sign of G has profound physical consequences.

DEFINITION. An equation of state of a material is convex if its fundamental
derivative is strictly positive (Bethe 1942).

TABLE 2.2 Temperature domains of

some materials that have a negative b
and G at a pressure of 1 atma

Material Temperature domain

Water <3:384�C
Diamond <90K

Vitreous silica <289K

ZnSe <64K

CdTe <72K

Ice I <63K

GaAs <55K

Ge <48K

InSb <55K

a-Sn <45K

a After Collins and White, 1964.
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This de®nition is of great importance for investigating the existence of a
given shock wave phenomenon in large classes of materials.

By differentiating Eq. (2.23) with respect to v, a relation between g and G is
obtained:

G � 1

2
g� 1ÿ v

g
@g
@v

� �
S

� �
�2:29�

or in terms of the density

G � 1� r2

pg
@2p

@r2

� �
S

�2:30�

Values of G for some liquids are presented in Table 2.3.

FIGURE 2.4 Convex isentropic curves always lie above a tangent and have a negative slope.

@2p=@v2
� �

S
> 0 and @p=@v

� �
S
> 0.
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2.7 THERMODYNAMIC CONSTRAINTS ON
THE EOS

The material EOS must satisfy the following constraints if the equilibrium
states on both sides of the shock are to be thermodynamically stable (see
Callen, Menikoff and Plohr ????)

g � 0; g � 0; ggÿ G2 � 0 �2:31�
If any of the equalities in Eq. (2.31) apply, the equilibrium will be only

neutrally stable; instability can then be caused by vanishingly small ¯uctua-
tions. Constraints that are equivalent to Eq. (2.31) are

1

KS

� 1

KT

� 0; and
1

CV

� 1

CP

� 0 �2:32�

By Eqs. (2.19) and (2.20) these constraints imply that

@p

@y

� �
T

< 0 �2:33:1�

and

1

T

@T

@s

� �
V

> 0 �2:33:2�

that is, if a thermodynamically stable system is compressed isothermally then
its pressure will increase, which means that it is mechanically stable. If the
system is heated at constant volume, then its temperature will increase, which
means that it is thermally stable.

TABLE 2.3 Values of G for some

liquids at 1 atm and 30�Ca

Liquid Values of G

Water 3.60

Acetone 6.0

1-Propanol 6.2

Mercury 4.94

Methanol 5.81

n-Propanol 6.36

Glycerine 6.1

Ethanol 6.28

n-Butanol 6.36

a After Thompson, 1971.
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For a ¯uid near the vapor-liquid phase transition it is often possible to
produce metastable states, such that �@p=@v�T ! 0. For example a saturated
liquid may be carefully expanded isothermally to a lower pressure in such a
way that the constraint �@p=@v�T < 0 remains satis®ed as [@p=@v�T ! 0. The
limit is called the spinodal or Wilson line (see Fig. 2.5) and is de®ned by

@p

@v

� �
T

� 0 �2:34�

The super-expanded state is metastable, but if the limit is approached
closely, it becomes inevitable that a ¯uctuation of suf®cient magnitude will
occur and cause Eq. (2.33.1) to be violated, after which explosive boiling will
occur. This branch of the spinodal is the superheat limit. The other branch
occurs on the vapor pressure side, and is also de®ned by Eq. (2.34); in this case
it is associated with super-cooling (for more details, see Frost and Shepherd,
1986; Shepherd and Sturtevant, 1983).

FIGURE 2.5 The spinodal (Wilson line) for a van der Waal's equation of state in the (v; p)-plane.

Note the metastable regions SLP, saturated liquid line, SVP, saturated vapor line, CP, critical point.
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2.8 NONTHERMODYNAMIC CONSTRAINTS
ON THE EOS

2.8.1 CONVEXITY

Suppose that with Bethe, the Hugoniot equation (2.10) is expanded in a Taylor
series; for a weak shock wave this gives to leading order

Ds � sÿ s0 � ÿ
1

12T

@2p

@v2

� �
S

�vÿ v0��O�vÿ v0�4 �2:35�

Now for a compressive shock wave, Dv < 0, so if the entropy is to increase
across a weak shock Ds > 0, then the EOS must be convex [Eq. (2.28)]. If on
the other hand, the inequality equation (2.28) is reversed, so that the EOS is
concave, then it is weak expansion shocks that entropically increase for an
adiabatic system.

For waves of arbitrary strength, Bethe (1942) found that suf®cient condi-
tions for adiabatic compression shocks to be entropy increasing were that the
EOS obeyed the convexity constraint as well as a constraint on the GruÈ neisen
coef®cient

@2p

@v2

� �
S

> 0! G > 0 �2:36�
G > ÿ2 �2:37�

Bethe (1942) showed that all pure substances in a single-phase state obeyed
Eq. (2.36) for practically all thermodynamic states. The ®nal result of his
method is given in the Appendix at the end of this chapter. A summary of
convex materials is presented in Table 2.4. The constraint fails for ¯uids of
suf®ciently high molecular weight (i.e., containing at least seven atoms in their
molecule) with the ¯uid in the superheated vapor state and close to its phase
critical point (Thompson 1971).

TABLE 2.4 Materials that have a convex EOSa

� Dissociating or ionizing gases
� Single-phase vapors with <7 atoms in their molecules
� Single-phase solids at low and normal temperatures
� Ideal gases with either constant or variable speci®c heats
� Liquids at normal temperatures, including water �3:984 �C
� Liquid-vapor phase transition; the convexity may be discontinuous
� Some metal phase transitions; for example, a! e (BCC!HCP) in iron

a After Bethe (1942) and Thompson (1971).
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An example obtained from the van der Waal's EOS is presented in Fig. 2.6.
Notice that the isentropics are locally concave near the critical point but
convex elsewhere. Examples of other materials that may be locally concave are
given in Table 2.5.

As the inequality equation (2.36) is strict it implies that ÿ�@p=@v�s may not
be constant, and in particular it may not be zero. Thus by Eq. (2.23), g > 0
strictly, and this is also necessary for the thermodynamic stability equation
(2.31). As g � 0 is forbidden, there are no stationary values for the pressure
along an isentropic. Convexity also forbids the speed of sound being zero, such
as occurs at phase triple points, for example ice=water=steam, for then by Eqs.
(2.23) and (2.36), G � 0, and the material is neither convex nor concave.
However when G > 0, then by Eq. (2.23)

r2a2 � ÿ @p

@v

� �
S

> 0 �2:38�

thus an isentropic curve always has a negative slope in the (v; p)-plane when
the EOS is convex (compare Figs. 2.4 and 2.6).

The only material that Bethe found that did not satisfy Eq. (2.38) was
melting ice at ÿ20 �C, which occurs at about 2500 atm and then G � ÿ2:1.
However, other examples are now known, such as vitreous silica, which has
the remarkably low value of G � ÿ9 at about 25 K (Collins and White, 1964).

2.8.2 SHOCK WAVE STABILITY CONSTRAINTS

Bethe (1942) deduced constraints on the EOS that would be suf®cient to
prevent a shock wave from splitting into two waves that move in either the
same direction, or else in opposite directions. Von Neumann (1943) gave an
elegant discussion of the ®rst type of splitting. He supposed the shock being
divided into two parts. The ®rst part joins the initial pressure p0 to an
intermediate pressure p0, and the second joins p0 to the ®nal pressure p. The
velocity of each part is given by the Rayleigh equation (2.11). The shock wave

TABLE 2.5 Materials that have a nonconvex EOSa

Metals at their yield point; elastic-plastic transition

Transition between two condensed phases at one of the two boundaries between the pure and the

phase mixture

Single-phase vapors that have seven or more atoms in their molecules and in a state near their

phase critical point

a After Bethe (1942); Lambrekis and Thompson (1972); Thompson et al. (1986).
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cannot split into two waves moving in the same direction if the velocity U0S of
the following wave is �> velocity US of the leading wave U0S � US

�Pÿ P0�
�v0 ÿ v� �

�P0 ÿ P0�
�v0 ÿ v0� �2:39�

for all p0 in p � p0 � p0. In Section 2.10 it is shown that this kind of splitting is
impossible with a convex EOS.

In order to exclude a shock splitting into two waves moving in opposite
directions, Bethe (1942) deduced that suf®cient constraints on the EOS were
convexity G > 0, and

@p

@y

� �
e

� ÿ p

v
�gÿ G� < 0 �2:40:1�

or equivalently

G < g �2:40:2�

FIGURE 2.6 Nonconvex, G < 0, isentropics near the saturated vapor line in the (v; p;)-plane.
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The basis for Bethe's (1942) study of the materials that satis®ed Eqs. (2.40.1)
and (2.40.2) was the thermodynamic identity

@p

@v

� �
e

� @p

@v

� �
T

ÿ 1

CV

@p

@T

� �
V

@e

@v

� �
T

< 0

Bethe (1942) concluded that:

� Nearly all materials in a single phase obey this constraint, but that it
breaks down for a few phase transformations.

� This constraint seems to be more generally ful®lled than the convexity
constraint.

� If the constraint is to be ful®lled for phase transformations, it is required
that, DeDs > 0, that is, the energy and the entropy must change in the
same direction. This is ful®lled for practically all phase transformations,
but some exceptions are ice I or ice III to ice V (see Fig. 2.1).

The preceding discussion does not exhaust the possibilities for shock wave
instabilities because transverse (ripple) instabilities are also possible (Kontor-
ovich 1957; Grif®th et al. 1975; Fowles and Houwing, 1984). Menikoff and
Plohr (1989) proposed the EOS constraint, G < gÿ 1p, to exclude this kind of
instability. It is only suf®cient, and possibly therefore unnecessarily restrictive.

Remark. If the foregoing constraints are satis®ed by the EOS for a given
material in a given domain of states, then a stable compression shock can
propagate through the material. Furthermore, Bethe (1942) showed that Eqs.
(2.36) and (2.37) are suf®cient for a solution to the Hugoniot equation (2.10)
to exist and to be unique. This follows from the Bethe-Weyl theorem (see
Section 2.10).

2.9 OTHER NONTHERMODYNAMIC EOS
CONSTRAINTS

Many researchers have helped formulate the EOS constraints described in this
section. The key idea is that of the constraints needed to ensure the mono-
tonicity of particular thermodynamic properties, the wave velocity Us and the
particle velocities u0 and u, along a Hugoniot adiabatic or isentropic. Numer-
ous theorems can be proved once the monotonicities are established.

The strong constraint

G � pv

e
! 1� 1

2
G

vÿ v0

v

� �
> 0 �2:41�

When this constraint is satis®ed, v is a monotonic decreasing quantity along
a Hugoniot adiabatic. If also G > 0, then the curve is itself everywhere convex
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in both the (v; p)- and (u; p)-planes (see Fig. 2.7a). The ideal gas obeys Eq.
(2.41) everywhere because from its EOS it is easy to obtain G � gÿ 1,
G � 1

2
�g� 1� and pv=e � gÿ 1 � G, and so G > 0 and G � pv=e. All materials

in a single phase obey Eqs. (2.36) and (2.41) for a large domain of states. The
most notable exceptions are dissociating and ionizing gases, which violate Eq.

FIGURE 2.7 Hugoniot locus, with G > 0, in the (p; v)- and (p; u)-planes (after Menikoff and

Plohr, 1989).
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(2.41) but still satisfy Eq. (2.36). In such circumstances the Hugoniot curve
becomes locally concave in the (v; p)-plane, but still remains convex every-
where in the (u; p)-plane (see Fig. 2.7b).

The medium constraint

G � g� 1

2

pv

e
�2:42�

The solution to a Riemann problem for interacting shock waves is unique
when this important constraint is satis®ed. The constraint also guarantees that
e and u are monotonic increasing quantities along a Hugoniot adiabatic
(Menikoff and Plohr, 1989). It is evidently weaker than Eq. (2.40), so it
must be more generally satis®ed than is Eq. (2.40).

The weak constraint

G � 2g! gÿ 1

2
G

pÿ p0

p
> 0 �2:43�

This ensures that pressure p and enthalpy h are monotonic increasing along
a Hugoniot; all known materials obey it.

Menikoff and Plohr (1989) show that when G > 0, then

strong! medium! weak �2:44�

so by Eqs. (2.41) to (2.44), with g > 0

2g � g� 1

2

pv

e
� pv

e
� G �2:45�

Figure 2.7 illustrates the effect on the Hugoniot curve when the strong,
medium and weak constraints are successively violated while G > 0 remains
satis®ed.

Henderson and Menikoff (1997) used constraint equations (2.36) and
(2.43) to prove the following.

LEMMA. If G > 0 and G � 2g then the Hugoniot curve based on state �v0; p0�
contains a unique shock for any p � p0 . Moreover, pressure-increasing shock
waves are entropy increasing.

If the shock wave strength is de®ned by Dp � pÿ p0, then the lemma
applies to a shock of any strength.
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2.10 THE BETHE-WEYL (B-W) THEOREM

While the conservation laws are the most important information that we have
about shock waves, next in importance is the powerful Bethe-Weyl (B-W)
theorem. It can only be applied directly to a shock wave when its velocity
vectors are perpendicular to the shock front, that to a normal shock (see Fig.
2.8a). If a velocity vector vt � v t0

, which is parallel to the shock is added to u0

and u then a normal shock becomes oblique with respect to the upstream and
downstream ¯ows (see Fig. 2.8b)

ÿUS � U0 � u0 � v t0
and U � u� vt �2:46�

The theorem can then be extended to oblique shock waves by resolving the
vectors U0 and U to obtain the normal shock vectors u0 and u. Henderson and
Menikoff (1997) state the theorem as

THEOREM (BETHE-WEYL). If G > 0 and G � 2g then the Hugoniot curve based
on any state zero intersects every isentropic exactly once. Moreover for entropy
increasing shocks s > s0 , one has v < v0 and u < a, while for entropy decreasing
shocks s < s0, v > v0 and u > a.

The ®rst part of the theorem guarantees the existence of at least one
solution to the Hugoniot equation. Bethe's proof depends on the asymptotic
properties of the EOS and of the Hugoniot equation. An outline of a more
elegant proof based on the same approach is now presented (Menikoff and
Plohr, 1989). De®ne the Hugoniot function as

h�v; s� � e�v; s� ÿ e0 �
1

2
�p�v; s� � p0��vÿ v0� �2:47�

FIGURE 2.8 Flow vectors for normal (a) and oblique (b) shock waves.
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The function is now restricted to the isentropic s and designated hS�v�. Notice
how the Hugoniot equation is recovered when hS�v� � 0. Next, suppose that
the asymptotic properties of the EOS are such that p�v; s� ! 1 as v!1 and
that p�v� � 0. Furthermore, g > 0, implies that �@p=@v�S < 0, and from this and
the previous assumptions it can be proved that e=p! 0 as v!1. Now using
these results, it follows from Eq. (47) that hS�v� ! ÿ1 as v! 0. On the other
hand, because hS�v� > ÿe0 � 1

2
p0�vÿ v0�, then with V > V0, hS�v� ! �1 as

v!1. By continuity, therefore, hS�v� vanishes at least once, and at least one
solution exists to the Hugoniot equation.

In order to accommodate shocks of arbitrary strength, Bethe's proof of the
second part required that G > 0, plus the suf®cient (only) constraint G > ÿ2
(Eq. 2.37). The proof presented by Henderson and Menikoff (1998) used the
lemma in Section 2.9 and the alternative EOS constraints G > 0 with G � 2g,
where the weak constraint is again only suf®cient. However, because g > 0, the
two G constraints overlap and cover the entire real domain ÿ1 � G � 1 and
this con®rms the claim of Menikoff and Plohr (1989) that their proof is
independent of G. Note that Henderson and Menikoff (1998) corrected an
error in their proof.

The theorem ensures that with G > 0, a unique solution exists. It also
ensures that the entropy s is a monotonic increasing quantity along a
Hugoniot; so s can be used as a Hugoniot parameter. Other quantities that
can be shown to be monotonically increasing are the mass ¯ux m through the
shock wave, the shock velocity US, and the negative slope of the Raleigh line,
�Dp=Dv�. Using the implicit function theorem Henderson and Menikoff (1998)
obtained,

COROLLARY 2.1. If G > 0 and G � 2g the Hugoniot curve can be parameterized
by the entropy s and consists of a single curve connected to the base state.

The B-W theorem asserts that u < a for an entropy-increasing compression
shock and u > a for an entropy decreasing expansion shock. The inequalities
are strict so sonic ¯ow cannot occur downstream of either shock. The only
exception is for an acoustic degeneracy, where p � p0 and u � a � a0 � u0,
which is trivial. An important corollary can now be deduced. Notice that the
conservation laws remain the same if the initial (v0; p0; e0; u0� and the ®nal
(v; p; e; u) states are interchanged. Similarly the Hugoniot and the Raleigh
equations remain the same. The equations are also unaffected if the signs of the
velocity vectors are reversed. Consequently, an entropy-increasing compression
shock wave can be viewed mathematically as a reversed, entropy decreasing,
expansion shock wave, which has supersonic ¯ow on its lower density side.
Hence,
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COROLLARY 2.2. If G > 0 and G � 2g then for an entropy increasing shock the
upstream state is supersonic u0 > a0 and the downstream state is subsonic u < a.

Downstream Sonic Flow

The slope of the Hugoniot curve in the (p; s)-plane can be found by
differentiating Eq. (2.10) and using Eq. (2.17)

T
@s

@p

� �
h

� ÿDy

2

g� v

p

Dp

Dv

gÿ 1
2
G
Dp

p

�2:48�

Note that the denominator is always positive when the weak constraint is
satis®ed. By using Eqs. (2.11) and (2.23) the numerator can be rewritten as

ÿ v

p
Dv ÿ @p

@v

� �
S

�Dp

Dv

� �
� ÿ 1

p

Dv

v
�a2 ÿ u2� � 0 �2:49�

where the inequality is only valid when G > 0, that is, for a compression
shock. If G � 0, then by Eq. (2.48), �@s=@p�h � 0, and by Eq. (2.49),
Dp=Dv � �@p=@v�S and u � a, so the Raleigh line is tangent to the isentropic
in the (v; p)-plane, and the downstream ¯ow is sonic. The equality G � 0
occurs, for example, at the separating boundary between G < 0, and G > 0
(see Tables 2.4 and 2.5) or for phase triple points where the speed of sound is
zero. A Hugoniot curve has a cusp at the yield point of a metal and the Raleigh
line touches that point as in Fig. 2.9; here also u � a (Zeldovich and Raizer,
1966; McQueen, 1991). A similar effect exists for some phase transitions (e.g.,
the a! e phase transition in iron, see Meyers, 1993); formally G � ÿ1 at a
cusp (Thompson, 1986). By Eq. (2.48) the entropy is not monotonic along a
Hugoniot curve whenever a Raleigh line touches the Hugoniot curve because
the derivative in Eq. (2.48) vanishes. It is found that the von Neumann
constraint equation (2.39) is thereby violated and the shock wave splits into
two waves moving in the same direction.

2.11 SHOCK WAVE INTERACTIONS

2.11.1 DIMENSIONS OF THE INTERACTIONS

A normal shock wave is (1D) by de®nition. If two 1D shocks i1 and i2 are
parallel and approach each other from opposite directions they will collide.
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After collision there will be two re¯ected shock waves r1 and r2, and a contact
discontinuity cd, (see Fig. 2.10a). There will also be a collision if i1 and i2 move
in the same direction. This is an overtaking collision and there are two possible
outcomes. If i1 and i2 are weak shock waves, then after collision there will be a
transmitted shock wave t, a re¯ected shock wave r, and a contact discontinuity
cd. For stronger shock waves, an expansion wave e (see Fig. 2.10b) will replace
the re¯ected shock wave r. Such phenomena are de®ned to be 1D shock
interactions because all the waves and contact discontinuities are parallel to
each other.

2.11.2 TWO-DIMENSIONAL SHOCK WAVE

INTERACTIONS

These (2D) interactions occur between nonparallel, that is, oblique shocks. A
few examples are illustrated in Fig. 2.11, but there are many other possibilities.
By assigning a direction to every wave, and contact discontinuity in an
interaction (Landau and Lifshitz, 1959) classi®cation of it can be facilitated.
Taking shock-®xed coordinates and resolving and U0 and U into perpendicular
u0 and u, and parallel vt0

and vt vector components, as in Fig. 2.8, the direction
of the shock wave is de®ned to be the same as vt0

� vt. In a similar way, a
direction can be assigned to any wavelet in a Prandtl-Meyer expansion. For a

FIGURE 2.9 Shock splitting instability when G < 0 locally at �v1; p1�, which is a sonic point

u � a.
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2D contact discontinuity, the direction is the same as the particle path on either
side of it. As illustrated in Fig. 2.11, 2D waves and contact discontinuities may
either meet or emanate from a point in the ¯ow called a node (Glimm et al.,
1985). When the direction of a wave points towards a node, we say that the

FIGURE 2.10 The one-dimensional collision of two planar shock waves i1 and i2. a) Colliding

shocks. b) Overtaking shocks, r-re¯ected shock wave, t-transmitted shock wave, e-expansion wave,

and cd-contact discontinuity.
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wave arrives at the node or that it is an incoming wave. We say that it leaves the
node or that it is an outgoing wave when it points away from the node. In this
sense the wave direction is the same as that of the ¯ow of information from
¯ow disturbances. For example, an incident shock i always arrives at a regular
re¯ection (RR) node while the re¯ected r shock always leaves it (see Fig.
2.11a). For a Mach re¯ection (MR), the i shock is incoming, while the r shock
and Mach shock are outgoing, and so is the contact cd. It may be said that the i
shock splits into the r and n shocks and the contact discontinuity (see Fig.
2.11c). By contrast, the very similar interaction (see Fig. 2.11d) has two in-
coming i shocks, and one outgoing r shock and contact discontinuity. It can
only exist when there is an extra boundary in the ¯ow, which is needed to
generate i2, (Henderson and Menikoff, 1998).

FIGURE 2.11 Examples of two-dimensional shock wave interactions. a) Regular re¯ection node,

RR. b) Cross node, CR. c) Mach re¯ection node, MR. d) Degenerate cross node, DC. e) to g)

Various overtaking nodes, OR.
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2.11.3 THREE-DIMENSIONAL SHOCK WAVE

INTERACTIONS

Shock waves that have conical, cylindrical or spherical symmetry are simple
examples of (3D) shock waves. The study of the interactions of these shock
waves or those with more complicated shapes usually requires the help of
computer graphics software in order to achieve success. As an example of a
recent study, see Skews (1996).

2.12 THE TRIPLE-SHOCK-ENTROPY AND
RELATED THEOREMS

2.12.1 THE THEOREMS

The B-W theorem is directly applicable to either a 1D or a 2D shock wave, but
not to the interactions of two or more of these shock waves. The triple-shock-
entropy (TSE) theorem gives information about shock interactions in materials
whose EOSs satisfy G > 0 and G � 2g. Application to 3D interactions is
possible in regions where the radius of curvature of the shock waves is small
compared to their thicknesses, and where also transverse ¯ow gradients are
small.

THE TRIPLE-SHOCK-ENTROPY THEOREM. (Henderson and Menikoff, 1998)

Suppose that G > 0 and G � 2g are satis®ed everywhere. Consider only the
physically realistic, entropy increasing, shock waves. Then the entropy increase
across a sequence of two shock waves is smaller than that across a single shock
wave to the same ®nal pressure.

This is the key theorem; for its somewhat lengthy proof see the cited
reference. Extension of it to an n shock sequence follows easily by mathema-
tical induction; the result is,

COROLLARY 2.3. A sequence of n shock waves has less entropy increase than a
single shock wave to the same ®nal pressure.

Once the entropy inequality has been derived it easy to obtain inequalities
for other state variables. The results are,

COROLLARY 2.4. Consider the state downstream of a sequence of shock waves
with the same ®nal pressure as a single shock wave. The multiple shock waves
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have a smaller enthalpy and a smaller temperature increases than the single shock
wave. Moreover, if G � g then multiple shock waves have a smaller speci®c energy
increase, and if G > 0 then multiple shock waves have a smaller speci®c volume
increase.

A similar result can also be obtained for the particle velocity with G � g, as
follows.

THE TRIPLE-SHOCK-PARTICLE-BOUND THEOREM. (Henderson and Menikoff 1998)

Suppose that G > 0 and G � g are satis®ed everywhere. Consider a sequence of
two, entropy increasing, shock waves from state 0 to state 1, and from state 1 to
state 2, and a third shock from state 0 to state 20 with p20 � p2. Then

�u2 ÿ u1�2 � �u1 ÿ u0�2 < �u2 ÿ u0�2 �2:50�

2.12.2 APPLICATION TO SHOCK WAVE

INTERACTIONS

Consider the consequences of the inequality equation (2.50) to 1D shock
interactions. Suppose that before collision there is an incoming left-facing
shock wave (0-1, L) approaching an incoming right-facing shock wave (0-1,
R). The Hugoniot curves in the (u; P)-plane and the wave diagram in the (x; t)-
plane are sketched in Fig. 2.12. We shall now prove that the outgoing waves
produced after the collision can only be shock waves. We begin by assuming to
the contrary that one of the outgoing waves, say (1-2, R) is an expansion wave.
This means that the Hugoniot curve for (1-2, R) must cross the Hugoniot for
(0-1, L), which implies that u2 > u20 (see Fig. 2.13). To prove that this is
impossible, we must show that u2 < u20 . (Here we have dropped the L and R
subscripts for simplicity.) Now u2 < u20 can be expressed as

ju2 ÿ u1j ÿ ju1 ÿ u0j < ju20 ÿ u0j �2:51�
But also because ju2 ÿ u1j ÿ ju1 ÿ u0j < ju2 ÿ u1j, then Eq. (2.50) implies

that ju2 ÿ u1j < ju20 ÿ u0j, so Eq. (2.51) is satis®ed. Hence, outgoing expan-
sion waves are excluded and only outgoing shock waves are permitted.

The wave diagram is quite different for overtaking shock waves (Fig. 2.14).
In this case there may exist states where outgoing expansion waves are
possible, that is, where

ju2 ÿ u1j � ju1 � u0j > ju20 ÿ u0j �2:52�
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As indicated in Fig. 2.14, this is possible if the shock waves are suf®ciently
strong, even though Eq. (2.50) must remain satis®ed. The result is an outgoing
re¯ected expansion wave and a shock wave that move in opposite directions.
Alternatively, both outgoing waves are shock waves when the incoming shock
waves are suf®ciently weak.

Although the 2D interactions are more complex, the TSE theorem permits
the immediate conclusion that a contact discontinuity must occur in the wave
systems sketched in Figs. 2.11b, 2.11c, and 2.11d. By the extension to n shock

FIGURE 2.12 The collision of two shock waves of opposite family. a) Hugoniot loci in the (u; p)-

plane. The dashed lines are Hugoniot loci for the incoming shock waves and the solid lines are

Hugoniot loci for the outgoing shock waves. The outgoing shock waves of the shock waves

interaction correspond to the intersection point of the two solid curves. b) Wave diagram in the

(x; t)-plane. The initial state is (0), the incoming shock waves are (1) and the outgoing shock waves

are (2). The superscripts L and R denote left and right in the (x; t)-plane. The 20 denotes a single

shock wave from the initial state with the same ®nal pressure as the outgoing shock waves.

FIGURE 2.13 Excluded situation in which the collision of two shock waves of the opposite

family would result in a re¯ected rarefaction.
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waves the same conclusion follows for the systems sketched in Fig. 2.11e.
Furthermore, inequalities for the thermodynamic states across the contact
discontinuities are obtainable from Corollary 2.4, Section 2.12.1.

2.13 CROCCO'S THEOREM

This theorem is useful for application to curved shock waves of variable
strength, such as a bow shock wave standing off a blunt body (see Fig. 2.15). It
relates the ¯ow velocity U and the vorticity H� U vectors to the gradients of
the entropy Hs and total enthalpy Hht. It may be applied generally to shock
wave problems because it is independent of any EOS. Given the Euler equation

r
DU

Dt
� ÿHp ????

or after expanding the left-hand side

r
@U

@t
� r�U � H�U � ÿHp �2:53�

FIGURE 2.14 The overtaking of two shock waves of the same family. a) Hugoniot loci in the

(u; p)-plane. b) Wave diagram in the (x; t)-plane when the outgoing shock waves consist of a

re¯ected rarefaction wave and a transmitted shock wave. c) Wave diagram in the (x; t)-plane when

the outgoing shock waves consist of a re¯ected shock wave and a transmitted shock wave. The lines

with arrowheads represent particle paths.
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Now rewriting the fundamental equation (2.17) in terms of the enthalpy
Tds � dhÿ vdp, and because for 3D ¯ow the differentials can be replaced by
the gradient operator,

THs � Hhÿ vHP � Hhÿ 1

r
Hp �2:54�

Eliminating Hp from Eqs. (2.53) and (2.54)

THs � Hh� @U
@t
� �U � H�U �2:55�

But from Eq. (2.9),

h � ht ÿ
1

2
u2 ! Hh � Hht ÿ

1

2
HU2 �2:56�

Eliminating h between Eqs. (2.55) and (2.56)

THs � Hht ÿ
1

2
HU2 � @U

@t
� �U � H�U �2:57�

Finally, the vorticity vector can be introduced by means of the identity

H
1

2
U2 ÿ �U � H�U � Ux�HxU�

FIGURE 2.15 A curved shock wave S standing off a blunt body B.
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so that Eq. (2.57) becomes Crocco's theorem (Crocco, 1937):

THs � Hht ÿ Ux�H� U� � @U
@t

�2:58�

2.14 THE REFRACTION LAW

This is a kinematic equation and it is independent of any EOS. It is useful when
a 2 or a 3D wave interaction has at least one node (see Fig. 2.11). Consider a
reference frame that is at rest with respect to the undisturbed material. It is
clear that if a wave system is to be stable against breaking up into some other
system, then it is necessary that all the waves meeting at a node must propagate
at the same velocity along the node trajectory.

An example of the node that occurs in regular re¯ection (RR) is shown in
Fig. 2.16. This system may appear for example when an incident shock I
diffracts over a rigid ramp. If the wave vectors for the I and r shocks are,
respectively, Ui and U0r, and if the corresponding downstream particle (piston)

FIGURE 2.16 Wave and particle velocity vectors in laboratory frame coordinates for the regular

re¯ection RR of an incident shock wave i.
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velocity vectors are Upi and Upr, and if the angles of incidence and re¯ection
are ai and ar, then by geometry the refraction law is

U � Ui

sin ai

� U0r
sin�pÿ ar�

� U0r
sin ar

�2:59�

Because the incident shock wave compresses and accelerates the undis-
turbed material, the r shock wave propagates into a material that is both
moving and compressed. If Ur is the velocity of r relative to the moving
material that is upstream of it, then by geometry,

U0r � Ur � Upi cos�ai ÿ ar� �2:60�
If the ramp surface is impervious, then one has the boundary condition

Upi cos ai � Upr cos�pÿ ar� � ÿUpr cos ar �2:61�
When the ramp angle �1

2
pÿ ai� and the shock wave velocity Ui are given,

then the particle velocity Upi can be found from Eq. (2.3) and the EOS of the
material. This leaves four unknowns ar, U0r, Ur and Upr, and there are three
equations, (2.59)±(2.61). A fourth equation can be obtained from Eq. (2.3) and
the EOS to ®nd the relation between Ur and Upr. Thus the RR problem can be
solved when Ui, ai and the EOS are given.

The more complicated Mach re¯ection (MR) is presented as a second
example in Fig. 2.17. In order to accommodate the Mach shock n, the
refraction law is extended by adding another equation, which includes the
corresponding wave and particle velocities Un and Upn, respectively

U � Ui

sin ai

� U0r
sin ar

� Un

sin an

�2:62�

The law provides a powerful means for ®nding when one wave system
changes to another as a result of a continuous change in the system
parameters. For example, consider the MR sketched in Fig. 2.11c, in which
the Mach shock n, leaves the node. Suppose that ai decreases while the other
independent parameters such as Ui are held constant. This causes an to
increase, and a condition can be reached where an > p=2. Hence, n now
arrives at the node as in Fig. 2.11d, and an extra boundary c is needed to
support the appearance of n � i2. If it is not present then the three shock wave
system cannot appear, and an RR appears instead. The separating, or transition
condition occurs when an � p=2, and Eq. (2.62) gives

sin an �
Un

Ui

�2:63�

Equation (2.62) de®nes the mechanical equilibrium criterion for RR$ MR
transition, and is such that Mach shock n is a normal shock. Equations
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analogous to (2.60) and (2.61) require an extensive discussion and are omitted
here (for more details, see Henderson, 1989).

2.15 CONCLUDING REMARKS

This chapter has presented what are arguably the most fundamental results
available about normal and oblique shock waves and their 1D and 2D
interactions. In summary they are:

� The conservation laws (2.1) to (2.3) or (2.6) to (2.8), and the equivalent
Hugoniot (2.10) and Raleigh (2.11) equations. They can be applied to
either a normal or an oblique shock wave in any material.

� The Bethe-Weyl Theorem (Section 2.10). It can also be applied to either a
normal or to an oblique shock wave in any material, but it is most
powerful when the material EOS is convex G > 0 [Eq. (2.28)] and when
the EOS also obeys the weak constraint G � 2g [Eq. (2.43)]. All materials
in a single phase obey these EOS constraints for almost all
thermodynamic constraints. Exceptions for a ¯uid in a single phase occur
near a phase critical point, if the ¯uid has at least seven atoms in its

FIGURE 2.17 Wave and particle velocity vectors in laboratory frame coordinates for the Mach

re¯ection MR of an incident shock wave i.
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molecule. Other exceptions exist at the yield point of a metal, and for
some, but not all multiphase states.

� The triple-shock entropy Theorem (Section 2.12). This theorem gives
general properties for 1D and 2D shock wave interactions when the
material EOS obeys the G > 0 and G � 2g constraints.

� Crocco's theorem (Eq. 2.58 in Section 2.13). This theorem is useful when
there are entropy, total enthalpy, or velocity gradients upstream of the
shock or when the shock is curved and with nonuniform strength. It is
applicable to any material.

� The refraction law (Eqs. 2.59 and 2.62 in Section 2.14). This theorem is
useful when there are wave nodes present in 2D or 3D shock interactions.
It provides a means for ®nding where one wave system changes into
another under a continuous change of the system parameters. It can be
applied to any material.

APPENDIX: THE CONVEXITY OF AN
EQUATION OF STATE

Following Bethe (1942), the basis of his method for ®nding if �@2p=@v2�S > 0
for a given EOS is the equation

@2p

@v2

� �
S

� @2p

@v2

� �
T

ÿ 3T

CV

@p

@T

� �
V

@2p

@v@T

� �
� 3T

C2
V

@p

@T

� �
V

� �2
@CV

@v

� �
T

� T

C2
V

@p

@T

� �
V

� �2

1ÿ T

CV

@CV

@T

� �
V

� �
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