What You'll Learn

- Determine the measure of an acute angle in a right triangle using the lengths of two sides.
- Determine the length of a side in a right triangle using the length of another side and the measure of an acute angle.
- Solve problems that involve more than one right triangle.

Why It's Important

Trigonometric ratios are used by

- surveyors, to determine the distance across a river or a very busy street
- pilots, to determine flight paths and measure crosswinds
- forestry technicians, to calculate the heights of trees

Key Words

tangent ratio
angle of inclination indirect measurement sine ratio
cosine ratio
angle of elevation
angle of depression

2.1 Skill Builder

Similar Triangles

Similar triangles have:

- the measures of matching angles equal OR
- the ratios of matching sides equal

These triangles are similar because matching angles are equal.
$\angle A=\angle D=40^{\circ}$
$\angle B=\angle E=30^{\circ}$
$\angle C=\angle F=110^{\circ}$

These triangles are not similar because the ratios of matching sides are different.
$\frac{P Q}{S T}=\frac{12}{5}=2.4$
$\frac{\mathrm{QR}}{\mathrm{TU}}=\frac{6}{2}=3 \quad$ Compare the longest sides, compare the shortest sides, then compare the third $\frac{R P}{U S}-\frac{8}{4}=2$ pair of sides.

Check

1. Which triangles in each pair are similar?

Compare the ratios of matching sides.

$$
\begin{aligned}
& \frac{\mathrm{DB}}{\mathrm{MJ}}=\frac{5.0}{\frac{3.5}{2.0}}=1.4 \\
& \frac{\mathrm{CD}}{\mathrm{KM}}=\frac{2.0}{\frac{1.0}{\mathrm{BC}}}=\frac{\mathbf{4 . 0}}{\frac{3.0}{\text { JK }}}=1 . \overline{3}
\end{aligned}
$$

The triangles \qquad are not similar.
b)

Compare the ratios of matching sides.

$$
\begin{aligned}
& \frac{\mathrm{FG}}{\frac{\mathrm{XY}}{\mathrm{EF}}}=\frac{5}{\frac{10}{3}}=\frac{3.5}{\frac{6}{\mathrm{WX}}}=0.5 \\
& \frac{\mathrm{GE}}{\mathrm{YW}}=\frac{4}{8}=0.5
\end{aligned}
$$

The triangles \qquad are similar.

2.1 The Tangent Ratio

FOCUS Use the tangent ratio to find an angle measure.

The Tangent Ratio

If $\angle A$ is an acute angle in a right triangle, then $\tan A=\frac{\text { length of side opposite } \angle A}{\text { length of side adjacent to } \angle A}$

Example 1 Finding the Tangent Ratio

Find the tangent ratio for $\angle G$.

Solution

Draw an arc at $\angle G$.
The side opposite $\angle \mathrm{G}$ is EF .
The side adjacent to $\angle \mathrm{G}$ is GE .
$\tan G=\frac{\text { length of side opposite } \angle G}{\text { length of side adjacent to } \angle G}$

$\tan G=\frac{E F}{G E}$
$\tan G=\frac{18}{10}$
Substitute: $\mathrm{EF}=18$ and $\mathrm{GE}=10$

$\tan G=1.8$

Check

1. a) Find $\tan P$.

The side opposite $\angle P$ is \qquad QR The side adjacent to $\angle P$ is $\quad \mathbf{R P}$ $\tan P=\frac{\text { length of side } \underset{\text { opposite }}{\text { op }} \angle P}{\text { length of side } \underset{\text { adjacent to } ~}{\angle P}}$
$\tan \mathrm{P}=\frac{\mathbf{Q R}}{\mathbf{R P}}$
$\tan P=\frac{10}{8}$
$\tan \mathrm{P}=$ \qquad 1.25
b) Find $\tan \mathrm{Q}$.

The side opposite $\angle \mathrm{Q}$ is $\mathbf{R P}$ The side adjacent to $\angle \mathrm{Q}$ is $\mathbf{Q R}$. -.

$\tan \mathrm{Q}=$
$\frac{\text { length of side opposite } \angle \mathrm{Q}}{\text { ength of side adjacent to } \angle \mathrm{Q}}$
$\tan \mathrm{Q}=\frac{\mathbf{R P}}{\mathbf{Q} \mathbf{R}}$
$\tan \mathrm{Q}=\frac{\mathbf{8}}{10}$
$\tan \mathrm{Q}=$ \qquad

To find the measure of an angle, use the $\tan ^{-1}$ key on a scientific calculator.

Example 2 Using the Tangent Ratio to Find the Measure of an Angle

Find the measure of $\angle \mathrm{A}$ to the nearest degree.

Solution

The side opposite $\angle A$ is $B C$.
The side adjacent to $\angle A$ is $A B$.
$\tan A=\frac{\text { length of side opposite } \angle A}{\text { length of side adjacent to } \angle A}$
$\tan A=\frac{B C}{A B} \quad$ Substitute: $B C=16$ and $A B=7$
If you are using a different calculator, consult the user's
$\tan A=\frac{16}{7}$
To find $\angle \mathrm{A}$ using a TI-30XIIS calculator, enter:
2nd TAN 16 6 7 ENTER

$\tan ^{-1}(16<7)$
 65.37062227

Check

1. Find the measure of each indicated angle to the nearest degree.
a) $\angle F$

The side opposite $\angle \mathrm{F}$ is $\quad \mathbf{G H}$.
The side adjacent to $\angle F$ is \qquad FG
$\tan F=\frac{\text { length of side } \quad \text { opposite } \angle F}{\text { length of side } \ldots \text { adjacent to } \angle F}$
$\tan \mathrm{F}=$ \qquad
$\tan \mathrm{F}=\frac{13}{10}$
$\tan \mathrm{F}=1.3$

$$
\angle F=\tan ^{-1}
$$

$\angle F \doteq$

b) $\angle E$

The side opposite $\angle \mathrm{E}$ is \qquad
The side adjacent to $\angle \mathrm{E}$ is \qquad DE

$\tan \mathrm{E}=\frac{\mathrm{CD}}{\mathrm{DE}}$
$\tan \mathrm{E}=$ \qquad

$$
\begin{aligned}
& \angle \mathrm{E}=\tan ^{-1} \\
& \angle \mathrm{E}=\quad 29^{\circ}
\end{aligned}
$$

Example 3 Using the Tangent Ratio to Find an Angle of Inclination

A guy wire is fastened to a cell-phone tower 8.5 m above the ground. The wire is anchored to the ground 14.0 m from the base of the tower. What angle, to the nearest degree, does the wire make with the ground?

Solution

The angle between the ground and the wire is about 31°

1. A ladder leans against a house. The top of the ladder is 2.4 m above the gro
Its base is 0.9 m from the wall. What angle, to the nearest degree, does the

Draw a diagram.
The angle the wire makes with the ground is $\angle B$. To find $\angle B$, use the tangent ratio.

$\tan B=\frac{\text { length of side opposite } \angle B}{\text { length of side adjacent to } \angle B}$
$\tan B=\frac{C A}{B C}$
$\tan B=\frac{8.5}{14.0}$
$\angle B \doteq 31^{\circ}$

The side opposite $\angle B$ is CA. The side adjacent to $\angle B$ is $B C$.

Substitute: $C A=8.5$ and $B C=14.0$
Use a calculator!

Check

The angle between the ground and the wire is about 31°.

1. A ladder leans against a house. The top of the ladder is 2.4 m above the ground.
Its base is 0.9 m from the wall. What angle, to the nearest degree, does the
The angle between the ground and the wire is about 31°
A ladder leans against a house. The top of the ladder is 2.4 m above the gro
Its base is 0.9 m from the wall. What angle, to the nearest degree, does the ladder make with the ground? Label the given triangle FGH.
Label G where the ladder meets the ground.
Label F where it meets the wall.
We want to find the measure of $\angle \mathrm{G}$.

The side opposite $\angle \mathrm{G}$ is \qquad HF .

The side adjacent to $\angle \mathrm{G}$ is \qquad GH .

$$
\begin{aligned}
\tan G & =\frac{\frac{\mathrm{HF}}{\mathrm{GH}}}{\tan G}=\frac{\frac{2.4}{0.9}}{6 \mathrm{Ca}} \\
& =\frac{69^{\circ}}{}
\end{aligned}
$$

The angle between the ground and the ladder is about \qquad 69° .

Practice

1. Label the hypotenuse, opposite, and adjacent sides of each right triangle in relation to the given angle.
a) $\angle \mathrm{H}$

b) $\angle P$

2. Find the tangent ratio for each indicated angle. Leave the ratio in fraction form.
a)

The side opposite $\angle Y$ is The side adjacent to $\angle Y$ is $X Y$ $\tan Y=\frac{\text { length of side } \quad \text { opposite } \angle Y}{\text { length of side adjacent to } \angle Y}$ $\tan Y=$

$\tan Y=\frac{7}{3}$

$\tan W$	$=\frac{\frac{\mathbf{U V}}{\mathbf{V} \mathbf{W}}}{\tan W}=\frac{\frac{16}{15}}{2}$

The side opposite $\angle \mathrm{W}$ is \qquad UV The side adjacent to $\angle W$ is VW $\tan W=\xrightarrow{\frac{\text { length of side opposite } \angle \mathbf{W}}{\text { length of side adjacent to } \angle W}}$
3. Find the measure of $\angle A$ for each value of $\tan A$. Give your answer to the nearest degree.
a) $\tan \mathrm{A}=0.5$
$\angle A=\tan ^{-1}($ 0.5) Use a calculator.

$$
\angle A \doteq \quad 27^{\circ}
$$

b) $\tan A=\frac{5}{6}$

$$
\angle A=\quad \tan ^{-1}\left(\frac{5}{6}\right)
$$

$$
\angle A \doteq \quad 40^{\circ}
$$

$$
\begin{aligned}
& \tan \mathbf{W}=\frac{\mathbf{U V}}{\mathbf{V} \mathbf{W}} \\
& \tan W=\quad \frac{16}{15}
\end{aligned}
$$

4. Find the measure of $\angle B$ to the nearest degree.

The side opposite $\angle B$ is \qquad CD .
The side adjacent to $\angle B$ is \qquad .
$\tan B=\frac{\text { length of side } \quad \text { opposite } \angle B}{\text { length of side } \begin{array}{l}\text { adjacent to } \angle B\end{array}}$
$\tan B=\frac{\frac{C D}{B C}}{}$

$\tan B$	$=\frac{\frac{12}{13}}{43^{\circ}}$
$\angle B$	$\doteq \frac{4 C}{}$

5. A telephone pole is supported by a wire, as shown.

What angle, to the nearest degree, does the wire make with the ground?
We want to find the measure of $\angle N$.
Use the tangent ratio.

The angle between the ground and the wire is about \qquad .
6. Victor is building a wheelchair ramp to an entranceway that is 3 m above the sidewalk. The ramp will cover a horizontal distance of 50 m . What angle, to the nearest degree, will the ramp make with the ground?

We want to find the measure of $\angle \mathrm{Q}$.
Use the tangent ratio.
$\tan \mathrm{Q}=\frac{\text { length of side opposite } \angle \mathrm{Q}}{\text { length of side adjacent to } \angle \mathrm{Q}}$
$\tan \mathrm{Q}=\frac{\mathrm{RS}}{\mathrm{SQ}}$
$\tan \mathrm{Q}=\frac{3}{50}$

$$
\angle Q \doteq 3^{\circ}
$$

The angle between the ground and the ramp is about \qquad 3° .

TEACHER NOTE

Next Steps: Have students complete questions $6,8,10,14$, and 15 on pages 75 and 76 of the Student Text.
For students experiencing success, introduce Example 4, on page 74 of the Student Text, and assign Practice questions 13,19 , and 20 .

2.2 Skill Builder

Solving Equations

Inverse operations "undo" each other's results.
Multiplication and division are inverse operations.
We can use inverse operations to solve some equations.
To solve $\frac{a}{5}=4$:

$$
\begin{aligned}
\frac{a}{5} & =4 \\
5 \times \frac{a}{5} & =5 \times 4 \\
a & =20
\end{aligned}
$$

To solve $\frac{36}{b}=9$:

$$
b \times \frac{36}{b}=b \times 9
$$

Undo the division.
Multiply each side by 5 .

$$
\begin{aligned}
36 & =9 b \\
\frac{36}{9} & =\frac{9 b}{9} \\
4 & =b
\end{aligned}
$$

Undo the division.
Multiply each side by b.

Undo the multiplication. Divide each side by 9 .

Check

1. Solve each equation.
a) $\frac{a}{7}=5$

Multiply each side by \qquad
$7 \times \frac{a}{7}=$
 $\times 5$
b) $9=\frac{c}{8}$

Multiply each side by \qquad 8
$8 \times 9=8 \times \frac{c}{8}$ $72=c$
c) $13=\frac{156}{f}$

Multiply each side by \qquad f .

$$
\begin{aligned}
\boldsymbol{f} \times 13 & =\frac{f}{1} \times \frac{156}{f} \\
13 \boldsymbol{f} & =156
\end{aligned}
$$

Divide each side by 13 13 \qquad .
d) $\frac{15}{b}=6$
$b \times \frac{15}{b}=b \times 6$
$15=6 b$
$\frac{15}{6}=\frac{6 b}{6}$
$2.5=b$

$$
\frac{\frac{13 f}{13}}{f}=\frac{\frac{156}{13}}{12}
$$

2．2 Using the Tangent Ratio to Calculate Lengths

FOCUS Use the tangent ratio to calculate lengths．
When we know the measure of an acute angle and the length of a leg of a right triangle，we can use the tangent ratio to find the length of the other leg．

Example 1 Finding the Length of an Opposite Side

Find the length of $B C$ to the nearest tenth of a centimetre．

Solution

We know the measure of $\angle A$ ．
$B C$ is the side opposite $\angle A$ ．
$C A$ is the side adjacent to $\angle A$ ．
Use the tangent ratio to write an equation． $\tan A=\frac{\text { length of side opposite } \angle A}{\text { length of side adjacent to } \angle A}$

$\tan A=\frac{B C}{C A}$
$\tan 28^{\circ}=\frac{B C}{23}$
Solve the equation for $B C$
Multiply each side by 23.
$23 \times \tan 28^{\circ}=23 \times \frac{B C}{23}$
$23 \tan 28^{\circ}=\mathrm{BC}$ Use a calculator．Enter：2 3 区TAN 28 日 ENTER

$$
B C=12.2293 \ldots
$$

ころッtances］
12.22931693
$B C$ is about 12.2 cm long．
ubstitute：$\angle \mathrm{A}=28^{\circ}$ and $\mathrm{CA}=23$

Check

1. Find the length of each indicated side to the nearest tenth of a centimetre.
a) Side ED

The given angle is $\angle \mathrm{F}$.
\qquad is the side opposite $\angle \mathrm{F}$.
EF is the side adjacent to $\angle F$. $\tan F=\frac{\text { side } \quad \text { opposite } \angle F}{\text { side } \quad \text { adjacent to } \angle F}$ $\tan F=\underline{\frac{\mathrm{DE}}{\mathrm{EF}}}$
$\tan 59^{\circ}=\frac{\mathrm{DE}}{8}$
Solve the equation for $D E$.
Multiply each side by $\mathbf{8}$ \qquad .

DE is about 13.3 cm long.
The given angle is $\angle \mathbf{K}$ is the side opposite \qquad is the side adjacent to $\quad \angle \mathbf{K}$ \qquad

$\tan \quad \mathbf{K}=\frac{\mathbf{H J}}{\mathbf{J K}}$
$\tan 34^{\circ}=\frac{\mathrm{HJ}}{13}$
$13 \times \tan 34^{\circ}=13 \times \frac{\mathrm{HJ}}{13}$
$13 \tan 34^{\circ}=\mathrm{HJ}$
$\mathrm{HJ}=8.7686 \ldots$
HJ is about 8.8 cm long.

Example 2 Finding the Length of an Adjacent Side

Find the length of PQ to the nearest tenth of a centimetre.

Solution

Use the tangent ratio to write an equation.

$$
\begin{aligned}
\tan \mathrm{P} & =\frac{\text { side opposite } \angle \mathrm{P}}{\text { side adjacent to } \angle \mathrm{P}} \\
\tan \mathrm{P} & =\frac{\mathrm{QR}}{\mathrm{PQ}} \\
\tan 35^{\circ} & =\frac{5}{\mathrm{PQ}}
\end{aligned}
$$

Solve the equation for PQ .
Multiply each side by PQ.
$\begin{array}{rlrl}\mathrm{PQ} \times \tan 35^{\circ} & =\mathrm{PQ} \times \frac{5}{\mathrm{PQ}} \\ \mathrm{PQ} \tan 35^{\circ} & =5 \\ \frac{\mathrm{PQ} \tan 35^{\circ}}{\tan 35^{\circ}} & =\frac{5}{\tan 35^{\circ}} \\ \mathrm{PQ} & =\frac{5}{\tan 35^{\circ}} \\ \mathrm{PQ} & =7.1407 \ldots \\ \text { So, } \mathrm{PQ} \text { is about } 7.1 \mathrm{~cm} \text { long. }\end{array} \quad$ Divide each side by $\tan 35^{\circ} . \quad$ Use a calculator. $\quad 1$

Check

1. Find the length of $T U$ to the nearest tenth of a centimetre.

The given angle is $\angle T$.
US is the side opposite $\angle T$.
TU is the side adjacent to $\angle T$.

Example 3 Using the Tangent Ratio to Solve a Problem

A wire supports a flagpole. The angle between the wire and the level ground is 73°. The wire is anchored to the ground 10 m from the base of the pole. How high up the pole does the wire reach? Give the answer to the nearest tenth of a metre.

Solution

Sketch and label a diagram.
Assume the flagpole meets the ground at a right angle.

The given angle is $\angle A$. We want to find the length of $B C$.

The wire reaches the flagpole at a height of about 32.7 m .

Check

1. A ladder leans on a wall, as shown. How far up the wall does the ladder reach? Give your answer to the nearest tenth of a metre.

The given angle is $\angle F$.
We want to find the length of \qquad DE .

$$
\begin{aligned}
& \tan F=\frac{\text { side } \quad \text { opposite } \angle F}{\text { side } \quad \text { adjacent to } \angle F} \\
& \tan F=\frac{\mathbf{D E}}{\mathbf{E F}} \\
& \text { Substitute: } \\
& \angle F=67^{\circ} \\
& \text { and } \\
& E F=1.5 \\
& \tan \underline{67^{\circ}}=\underline{\frac{\mathrm{DE}}{1.5}} \\
& \text { Multiply each side by } \\
& 1.5 \\
& \text {. } \\
& \tan 67^{\circ}= \\
& D E=3.5337 \ldots
\end{aligned}
$$

The ladder reaches the wall at a height of about \qquad 3.5 m .

Practice

1. Find the length of the side opposite the given angle to the nearest tenth of a centimetre.

The given angle is $\angle F$.
The side opposite \angle
The side adjacent to $\angle \mathrm{F}$ is
\qquad .

$$
\tan F=\frac{\text { side } \quad \text { opposite } \angle F}{\text { side } \frac{\text { adjacent to } \angle F}{\text { ad }}}
$$

$$
\tan F=\frac{\mathbf{G H}}{\mathbf{H F}}
$$

$$
\begin{aligned}
\tan \frac{31^{\circ}}{} & =\frac{\frac{\mathrm{GH}}{6}}{6 \times \tan \frac{31^{\circ}}{6}}=\frac{6 \times \frac{\mathrm{GH}}{6}}{\frac{6}{6} \tan \frac{31^{\circ}}{\mathrm{GH}}}
\end{aligned}=\frac{\mathrm{GH}}{3.6051 \ldots}
$$

The given angle is $\angle \ldots \mathbf{X}$
The side opposite \angle \qquad X is HZ. The side adjacent to \angle \qquad X is $\mathbf{X Y}$

$$
\tan \underline{\mathbf{X}}=\frac{\text { side } \quad \text { opposite } \angle \mathbf{X}}{\text { side } \underset{\text { adjacent to } \angle \mathbf{X}}{ }}
$$

GH is about \qquad 3.6 cm long.

$$
\begin{aligned}
\tan X & =\frac{Y Z}{X Y} \\
\tan 57^{\circ} & =\frac{Y Z}{5} \\
5 \times \tan 57^{\circ} & =5 \times \frac{Y Z}{5} \\
5 \tan 57^{\circ} & =Y Z \\
Y Z & =7.6993 \ldots
\end{aligned}
$$

\qquad is about \qquad 7.7 cm long.
2. Find the length of $C D$ to the nearest tenth of a centimetre.

The given angle is $\angle C$.
The side opposite $\angle C$ is \qquad DE \qquad
The side adjacent to $\angle \mathrm{C}$ is \qquad .

$$
\tan C=\frac{\text { side } \quad \text { opposite } \angle C}{\text { side } \quad \text { adjacent to } \angle C}
$$

$$
\tan C=\frac{\mathbf{D E}}{\mathbf{C D}}
$$

$$
\tan 44^{\circ}=\frac{16}{\mathrm{CD}}
$$

Multiply each side by _CD .

$$
\begin{aligned}
C D \times \tan 44^{\circ} & =C D \times \frac{16}{C D} \\
C D \tan 44^{\circ} & =16
\end{aligned}
$$

Divide each side by $\boldsymbol{\operatorname { t a n }} 44^{\circ}$.

3. Find the length of the indicated side to the nearest tenth of a centimetre.
a) Side PQ

$$
\tan R=\frac{\text { opposite }}{\text { adjacent }}
$$

$$
\tan 36^{\circ}=\frac{\mathrm{PQ}}{18}
$$

$18 \times \tan 36^{\circ}=\frac{\mathrm{PQ}}{18} \times 18$
$18 \tan 36^{\circ}=P Q$

$$
P Q=13.0777 \ldots
$$

b) Side UV

$$
\tan \quad \mathbf{U}=\frac{\frac{\text { opposite }}{\text { adjacent }}}{}
$$

$$
\tan 60^{\circ}=\frac{32}{\mathbf{U V}}
$$

$$
U V \times \tan 60^{\circ}=U V \times \frac{32}{U V}
$$

$$
\text { UV } \tan 60^{\circ}=32
$$

$$
\begin{aligned}
\frac{U V \tan 60^{\circ}}{\tan 60^{\circ}} & =\frac{32}{\tan 60^{\circ}} \\
U V & =18.4752 \ldots
\end{aligned}
$$

UV is about $\mathbf{1 8 . 5 \mathrm { cm }}$ long.
4. This diagram shows an awning over the window of a house. Find the height of the awning, GH, to the nearest tenth of a metre.

$$
\tan \mathrm{H}=\frac{\text { opposite }}{\text { adjacent }}
$$

$$
\tan 32^{\circ}=\frac{1.6}{\mathrm{GH}}
$$

$\mathrm{GH} \times \tan 32^{\circ}=\mathrm{GH} \times \frac{1.6}{\mathrm{GH}}$
$\mathrm{GH} \tan 32^{\circ}=1.6$

$$
\begin{aligned}
\frac{\mathrm{GH} \tan 32^{\circ}}{\tan 32^{\circ}} & =\frac{1.6}{\tan 32^{\circ}} \\
\mathrm{GH} & =2.5605 \ldots
\end{aligned}
$$

The height of the awning is about \qquad 2.6 m .
5. A rope supports a tent. The angle between the rope and the level ground is 59°. The rope is attached to the ground 1.2 m from the base of the tent. At what height above the ground is the rope attached to the tent? Give your answer to the nearest tenth of a metre.

We want to find the length of $B C$.

$\tan A=\frac{B C}{A C}$
$\tan 59^{\circ}=\frac{B C}{1.2}$
$1.2 \times \tan 59^{\circ}=1.2 \times \frac{B C}{1.2}$
$1.2 \boldsymbol{\operatorname { t a n }} 59^{\circ}=\mathrm{BC}$

$$
B C=1.9971 \ldots
$$

The rope is attached to the tent at a height of about \qquad 2.0 m

TEACHER NOTE

Next Steps: Have students complete questions $6,8,10,11$, and 13 on pages 82 and 83 of the Student Text.

2.3 Math Lab: Measuring an Inaccessible Height

FOCUS Determine a height that cannot be measured directly.

When we find a length or an angle without using a measuring instrument, we are using indirect measurement.

Try This

Work with a partner.
Follow the instructions in Part A on Student Text page 85 to make a clinometer.
The materials you need are listed on Student Text page 84.
Record all your measurements on the diagram below.
Choose a tall object; for example, a tree or a flagpole.
Object: \qquad
Mark a point on the ground.
Measure the distance to the base of the object.
One person stands at the point. He holds the clinometer, then looks at the top of the object through the straw. The other person records the angle shown by the thread on the protractor. Then that person measures the height of the eyes above the ground of the person holding the clinometer.

Subtract the clinometer angle from 90°
This is the angle of inclination of the straw.

Angle of inclination:

Use the tangent ratio to calculate the length of $B C$:

$$
\tan A=\frac{B C}{A C}
$$

BC

tan \qquad $=$ \qquad

$$
\begin{aligned}
& \mathrm{BC}=_\times \tan \quad \\
& \mathrm{BC} \doteq
\end{aligned}
$$

Height of object $=$ length of $B C+$ height of eyes above the ground
Height of object $=$ \qquad $+$ \qquad
Height of object $=$ \qquad

Change places with your partner.
Repeat the activity.
Does the height of your eyes affect the measurements? Explain. Sample response:
Yes, the height of your eyes affects the angle of inclination of the object.
The taller you are, the less you have to look up to the object.

Does the height of your eyes affect the final result? Explain. Sample response:
No, a taller person will calculate a greater height above the horizontal but will have a
lesser eye height. But, when the two heights are added, both results should be the

same.

Practice

1. Which angle of inclination does each clinometer measure?
a)

b)

Angle of inclination
$=90^{\circ}-$ angle on clinometer
$=90^{\circ}-\quad 55^{\circ}$
$=35^{\circ}$
2. Use the information in the diagram to find the height of the flagpole to the nearest tenth of a metre.

Angle on clinometer: $6 \mathbf{0 0}^{\circ}$
Angle of inclination: $90^{\circ}-\underline{60^{\circ}}=\underline{30^{\circ}}$ So, $\angle \mathrm{E}=$ 30°

$$
\tan E=\frac{\text { opposite }}{\text { adjacent }}
$$

\tan

$$
30^{\circ}=\frac{\mathrm{FG}}{\mathrm{EG}}
$$

$\tan 30^{\circ}=\underline{\frac{\mathrm{FG}}{4}}$

$$
4 \tan 30^{\circ}=4\left(\frac{\mathrm{FG}}{4}\right)
$$

$$
4 \tan 30^{\circ}=\mathrm{FG}
$$

$$
F G=\underline{2.3094} \ldots
$$

So, height of flagpole $=$ \qquad FG + height of eyes above ground

$$
\begin{aligned}
& =2.3094 \ldots+1.3 \\
& =3.6094 \ldots
\end{aligned}
$$

The height of the flagpole is about $\mathbf{3 . 6} \mathbf{~ m}$
3. Use the information in the diagram to find the height of the tree to the nearest tenth of a metre.
$\angle \mathrm{P}$ is: $90^{\circ}-$

$$
\tan 15^{\circ}=\frac{\frac{\mathbf{Q R}}{\mathbf{P R}}}{}
$$

$$
\tan 15^{\circ}=\frac{\mathrm{QR}}{10}
$$

$10 \tan 15^{\circ}=\mathrm{QR}$

$$
Q R=2.6794 \ldots
$$

So, height of tree $=2.6794 \ldots+1.7$

$$
=4.3794 \ldots
$$

The height of the tree is about \qquad 4.4 m

This diagram is not drawn to scale.

TEACHER NOTE

Next Steps: Have students complete question 1 on page 86 of the Student Text.

Can you ...

- use the tangent ratio to find an angle measure?
- use the tangent ratio to calculate a length?
- use the tangent ratio to solve a problem?
2.1 1. Find the tangent ratio for each indicated angle. Leave the ratio in fraction form.
a) B

The side opposite $\angle \mathrm{A}$ is \qquad BC

The side adjacent to $\angle \mathrm{A}$ is $\mathbf{A B}$

$$
\tan A=\frac{\text { side } \quad \text { opposite } \angle \mathbf{A}}{\text { side } \quad \text { adjacent to } \angle \mathbf{A}}
$$.

$$
\tan \mathrm{A}=\underline{\frac{\mathbf{B C}}{\mathbf{A B}}}
$$

$$
\tan A=\frac{11}{7}
$$

b)

$$
\tan D=\frac{E F}{D E}
$$

$$
\tan D=\frac{15}{22}
$$

2. Find the measure of each indicated angle to the nearest degree.

The side opposite $\angle \mathrm{H}$ is \qquad FG

The side adjacent to $\angle \mathrm{H}$ is \qquad GH .

$$
\tan H=\frac{\text { side } \quad \text { opposite } \angle \mathbf{H}}{\text { side adjacent to } \angle \mathbf{H}}
$$

$$
\tan \mathrm{H}=\underline{\frac{\mathrm{FG}}{\mathbf{G H}}}
$$

$$
\tan \mathrm{H}=\frac{\mathbf{8}}{\mathbf{1 7}}
$$

$$
\angle H \doteq \quad \mathbf{2 5}{ }^{\circ}
$$

b)

$$
\begin{aligned}
\tan \underline{\mathbf{K}} & =\frac{\frac{\text { side opposite } \angle \mathbf{K}}{\text { side adjacent to } \angle \mathbf{K}}}{\tan \underline{\mathbf{K}}}=\frac{\frac{\mathbf{M J}}{\mathbf{J K}}}{\frac{\mathbf{2 2}}{\mathbf{7}}} \\
\tan \underline{\mathbf{K}} & =\frac{\mathbf{7 2}}{\circ}
\end{aligned}
$$

2.2 3. Find the length of each indicated side to the nearest tenth of a centimetre.
a) Side $S T$

b) Side PQ

$$
\tan \quad \mathbf{Q}=\frac{\text { side opposite } \angle \mathbf{Q}}{\text { side adjacent to } \angle \mathbf{Q}}
$$

$$
\begin{aligned}
\tan Q & =\frac{R P}{P Q} \\
\tan 68^{\circ} & =\frac{24}{P Q}
\end{aligned}
$$

$$
\begin{aligned}
\tan U & =\frac{\frac{\mathrm{ST}}{\mathrm{TU}}}{\mathrm{ST}} \\
\tan 38^{\circ} & =\frac{\frac{\mathrm{ST}}{21}}{}
\end{aligned}
$$

$$
P Q \times \tan 68^{\circ}=P Q \times \frac{24}{P Q}
$$

$$
21 \times \tan 38^{\circ}=21 \times \frac{\mathrm{ST}}{21}
$$

$$
P Q \tan 68^{\circ}=24
$$

$$
21 \tan 38^{\circ}=\mathrm{ST}
$$

$$
S T=\quad 16.4069 \ldots
$$

$$
\frac{P Q \tan 68^{\circ}}{\tan 68^{\circ}}=\frac{24}{\tan 68^{\circ}}
$$

$$
P Q=9.6966 \ldots
$$

PQ is about 9.7 cm long.
4. Margy is building a support brace to reach the top of a wall, as shown.

How far from the wall should the brace be anchored to the ground?
Give your answer to the nearest tenth of a metre.
We want to find the length of $A B$.
The side opposite $\angle A$ is $B C$.
The side adjacent to $\angle A$ is $A B$.

$$
\begin{aligned}
\tan A & =\frac{\text { side opposite } \angle A}{\text { side adjacent to } \angle A} \\
\tan A & =\frac{B C}{A B} \\
\tan 70^{\circ} & =\frac{3.5}{A B}
\end{aligned}
$$

$A B \times \tan 70^{\circ}=A B \times \frac{3.5}{A B}$
$A B \tan 70^{\circ}=3.5$

$$
\begin{aligned}
\frac{A B \tan 70^{\circ}}{\tan 70^{\circ}} & =\frac{3.5}{\tan 70^{\circ}} \\
A B & =\frac{3.5}{\tan 70^{\circ}} \\
A B & =1.2738 \ldots
\end{aligned}
$$

The brace should be anchored to the ground about 1.3 m from the wall.

TEACHER NOTE

Next Steps: Have students complete questions 3 and 5 on page 88 of the Student Text.

2.4 Skill Builder

Sum of the Angles in a Triangle

In any triangle, the sum of the angle measures is 180°.
So, to find an unknown angle measure:

- start with 180°
- subtract the known measures

$\angle C=180^{\circ}-71^{\circ}-64^{\circ}$
$\angle C=45^{\circ}$

In any right triangle, the sum of the measures of the acute angles is 90°.
So, to find the measure of an acute angle:

- start with 90°
- subtract the known acute angle

Check

1. Find the measure of the third angle.
a)

b)

$$
\angle M=180^{\circ}-76^{\circ}-59^{\circ}
$$

$$
\angle M=45^{\circ}
$$

2. Find the measure of the third angle.
a)

b)

$$
\begin{aligned}
& \angle P=90^{\circ}-49^{\circ} \\
& \angle P=41^{\circ}
\end{aligned}
$$

$\angle U=90^{\circ}-$
56°
$\angle U=$ \qquad 34°

2.4 The Sine and Cosine Ratios

FOCUS Use the sine and cosine ratios to determine angle measures.

The Sine and Cosine Ratios

In a right triangle, if $\angle \mathrm{A}$ is an acute angle, then
$\sin \mathrm{A}=\frac{\text { length of side opposite } \angle \mathrm{A}}{\text { length of hypotenuse }}$
$\cos \mathrm{A}=\frac{\text { length of side adjacent to } \angle \mathrm{A}}{\text { length of hypotenuse }}$

Example 1 Finding the Sine and Cosine of an Angle

Find $\sin B$ and $\cos B$ to the nearest hundredth.

Solution
$A C$ is the side opposite $\angle B$. $A B$ is the hypotenuse.
$\sin B=\frac{\text { length of side opposite } \angle B}{\text { length of hypotenuse }}$
$\sin B=\frac{A C}{A B}$
Substitute: $A C=24$ and $A B=26$

$\sin B=\frac{24}{26}$
$\sin B=0.9230 \ldots$
$\sin B \doteq 0.92$
$B C$ is the side adjacent to $\angle B$.
$A B$ is the hypotenuse.
$\cos B=\frac{\text { length of side adjacent to } \angle B}{\text { length of hypotenuse }}$
$\cos B=\frac{B C}{A B} \quad$ Substitute: $B C=10$ and $A B=26$
$\cos B=\frac{10}{26}$
$\cos B=0.3846 \ldots$
$\cos B \doteq 0.38$

Check

1. Find $\sin D$ and $\cos D$ to the nearest hundredth.
$\sin D=\frac{\text { side opposite } \angle D}{\text { hypotenuse }}$
\qquad
$\sin D=$
4.0
$\sin D=$ \qquad
$\sin D=0.4705 \ldots$
$\sin D \doteq$ \qquad
$\cos \mathrm{D}=\frac{\text { side adjacent to } \angle \mathrm{D}}{\text { hypotenuse }}$
$\cos D=$ \qquad
$\frac{7.5}{8.5}$
$\cos D=$ \qquad
$\cos D=0.8823 \ldots$
\qquad
$\cos D \doteq$ \qquad

To find the measure of an angle, use the $\sin ^{-1}$ or $\cos ^{-1}$ key on a scientific calculator.

Example 2 Using the Sine or Cosine Ratio to Find the Measure of an Angle

Find the measures of $\angle B$ and $\angle D$ to the nearest degree.

Solution

Find the measure of $\angle B$ first
$B C$ is adjacent to $\angle B$. $B D$ is the hypotenuse.
So, use the cosine ratio to write an equation.
$\cos B=\frac{\text { side adjacent to } \angle B}{\text { hypotenuse }}$

$\cos B=\frac{B C}{B D}$
Substitute: $B C=4.6$ and $B D=8.7$
$\cos B=\frac{4.6}{8.7}$
To find $\angle B$ using a TI-30XIIS calculator, enter:

$\angle B \doteq 58^{\circ}$
$\cos ^{-1}(4.6 \cdot 8.7]$
58.07993367

Since the sum of the acute angles in a right triangle is 90°,

$$
\text { So, } \begin{aligned}
\angle D & =90^{\circ}-\angle B \\
\angle D & \doteq 90^{\circ}-58^{\circ} \\
\angle D & \doteq 32^{\circ}
\end{aligned}
$$

Since the measure of $\angle B$ is an estimate, so is the measure of $\angle D$.

Check

1. Find the measure of each acute angle to the nearest degree.
a)

Find the measure of $\angle U$ first.
UV is the side adjacent to $\angle U$.
UW is th \square hypotenuse
So, use the cosine ratio to write an equation.

$$
\cos U=\frac{\frac{\text { side adjacent to } \angle \mathbf{U}}{\text { hypotenuse }}}{}
$$

$$
\cos U=\underline{\underline{\mathbf{U V}}}
$$

$$
\cos U=\frac{\mathbf{5}}{\mathbf{9}}
$$

$$
\angle U \doteq
$$

$$
56^{\circ}
$$

So, $\angle W=90^{\circ}-\angle$

$$
\angle W \doteq 90^{\circ}-56^{\circ}
$$

$$
\angle W \doteq
$$

:
Find the measure of $\angle U$ first.
ST is the side opposite $\angle U$
$S U$ is the hypotenuse

$\angle U \doteq$ 37° So, $\angle S=90^{\circ}-\angle \mathbf{U}$
$\angle S \doteq 90^{\circ}-\quad 37^{\circ}$
$\angle S \doteq 53^{\circ}$

Example 3 Using Sine or Cosine to Solve a Problem

A storm caused a 15.3-m hydro pole to lean over. The top of the pole is now 12.0 m above the ground. What angle does the pole make with the ground? Give the answer to the nearest degree.

Solution

Draw a diagram. AC represents the pole.
The pole meets the ground at A.
$B C$ is the side opposite $\angle A . A C$ is the hypotenuse.
So, use the sine ratio to find $\angle A$.
$\sin A=\frac{\text { side opposite } \angle A}{\text { hypotenuse }}$
$\sin A=\frac{B C}{A C} \quad$ Substitute: $B C=12.0$ and $A C=$

$\sin A=\frac{12.0}{15.3} \quad$ Use a calculator.
$\angle A \doteq 52^{\circ}$
So, the hydro pole makes an angle of about 52° with the ground.

Check

1. A ladder leans on a wall as shown.

What angle does the ladder make with the ground?
Give your answer to the nearest degree.
We want to find the measure of $\angle \mathrm{D}$.
DF is \qquad adjacent to $\angle \mathrm{D}$
$D E$ is \qquad the hypotenuse
So, use the \qquad ratio to find $\angle D$.

\qquad
COS
$\mathrm{D}=$ \qquad Substitute: \qquad and $D E=8$
\cos $D=$ \qquad

So, the ladder makes an angle of about \qquad 76° with the ground.
2. The string of a kite is 160 m long. The string is anchored to the ground. The kite is 148 m high. What angle does the string make with the ground? Give your answer to the nearest degree.

We want to find the measure of $\angle V$.
TU is the \qquad side opposite $\angle \mathrm{V}$.
UV is the \qquad hypotenuse .
So, use the \qquad sine ratio to write an equation.

$$
\begin{aligned}
\sin V & =\frac{\text { side opposite } \angle V}{\text { hypotenuse }} \\
\sin V & =\frac{T U}{U V} \\
\sin V & =\frac{148}{160} \\
\angle V & =68^{\circ}
\end{aligned}
$$

The angle the string makes with the ground is about \qquad 68°

Practice

1. Fill in the blanks.
a)

The side opposite $\angle B$ is \qquad CD .
The side adjacent to $\angle B$ is $\quad \mathbf{B C}$ The hypotenuse is \qquad BD
b)

The side opposite $\angle B$ is \qquad .

The side adjacent to $\angle B$ is \qquad BF The hypotenuse is \qquad GB .
2. For each triangle in question 1 , find $\sin B$ and $\cos B$ as decimals.
a) $\sin B=\frac{\text { side } \underset{\text { opposite } \angle B}{\text { hypotenuse }}}{\angle B}$

$$
\sin B=\frac{C D}{B D}
$$

$\cos B=\frac{B C}{B D}$
$\sin B=\frac{4}{5}$
$\cos B=\frac{\mathbf{3}}{\mathbf{5}}$
$\sin B=0.8$
$\cos B=\underline{0.6}$

$$
\longdiv { \square }
$$

b) $\sin B=\frac{\text { side opposite } \angle B}{\text { hypotenuse }}$

$$
\cos B=\frac{\frac{\text { side adjacent to } \angle \mathrm{B}}{\text { hypotenuse }}}{\underline{\text { hy }}}
$$

$$
\sin B=\frac{\mathrm{FG}}{\mathrm{~GB}}
$$

$\cos B=\frac{\text { side adjacent to } \angle B}{\text { hypotenuse }}$ hypotenuse
$\cos B=\frac{\frac{\text { hypotenuse }}{\text { hy }}}{}$

$$
\cos B=\frac{B F}{G B}
$$

$$
\sin B=\frac{4.8}{5.0}
$$

$$
\sin B=\quad 0.96
$$

4. A firefighter rests a $15.6-\mathrm{m}$ ladder against a building, as shown.

What angle does the ladder make with the ground?
Give your answer to the nearest degree.
We want to find the measure of $\angle \mathrm{H}$.
FH is the \qquad side adjacent to $\angle \mathrm{H}$.
GH is the \qquad hypotenuse .
So, use the \qquad ratio.

\qquad
$\cos H=\frac{\frac{\mathrm{FH}}{\mathrm{GH}}}{\cos H}=\frac{\frac{8.5}{15.6}}{}$

$$
\angle H \doteq \quad 57^{\circ}
$$

The angle the ladder makes with the ground is about 57°
5. A loading ramp is 4.5 m long. The top of the ramp has height 1.6 m .

What angle does the ramp make with the ground?
Give your answer to the nearest degree.

So, use the sine ratio.
$\sin M=\frac{\text { side opposite } \angle M}{\text { hypotenuse }}$
$\sin M=\frac{N P}{M N}$
$\sin M=\frac{1.6}{4.5}$

$$
\angle M \doteq 21^{\circ}
$$

The angle the ramp makes with the ground is about \qquad 21°

TEACHER NOTE

Next Steps: Have students complete questions $7,8,10,11$, 13 , and 14 on pages 95 and 96 of the Student Text.

2.5 Using the Sine and Cosine Ratios to Calculate Lengths

FOCUS Use the sine and cosine ratios to determine lengths.
To use the sine or cosine ratio to find the length of a leg, we need to know:

- the measure of an acute angle, and
- the length of the hypotenuse

Example 1 Using the Sine or Cosine Ratio to Find the Length of a Leg

Find the length of RS to the nearest tenth of a metre.

Solution

The measure of $\angle S$ is known.
RS is the side adjacent to $\angle S$ QS is the hypotenuse.
So, use the cosine ratio.

$\cos S=\frac{R S}{Q S}$
$\cos 28^{\circ}=\frac{\mathrm{RS}}{9.6}$
Substitute: $\angle S=28^{\circ}$ and $\mathrm{QS}=9.6$

Multiply both sides by 9.6.
The cosine ratio compares the adjacent side to the
$9.6 \times \cos 28^{\circ}=9.6 \times \frac{R S}{9.6}$
hypotenuse.

$$
\begin{array}{rlr}
9.6 \cos 28^{\circ} & =R S \quad \text { Use a calculator. } \\
R S & =8.4762 \ldots
\end{array}
$$

RS is about 8.5 m long.

Check

1. Find the length of each indicated side to the nearest tenth of a centimetre.
a) AC

The measure of $\angle \mathrm{B}$ is known.
$A C$ is the side opposite $\angle B$
$B C$ is the hypotenuse
So, use the \qquad sine ratio.

$$
\begin{aligned}
& \sin B=\frac{\text { side } \begin{array}{l}
\text { opposite } \angle B \\
\text { hypotenuse } \\
\sin B
\end{array}}{}=\frac{A C}{B C} \\
& \boldsymbol{\operatorname { s i n } 4 0 ^ { \circ }}=\frac{A C}{15.6}
\end{aligned}
$$

b) $D E$

The measure of $\angle \perp D$ is known.
$D E$ is the side adjacent to $\angle \mathrm{D}$.
DF is the hypotenuse
So, use the cosine ratio.
cos $\mathrm{D}=\frac{\text { side adjacent to } \angle \mathrm{D}}{\text { hypotenuse }}$
$\cos D=\frac{D E}{D F}$
$\cos 55^{\circ}=\frac{\mathrm{DE}}{19.5}$
$19.5 \cos 55^{\circ}=\mathrm{DE}$
$D E=11.1847 \ldots$
$D E$ is about $\mathbf{1 1 . 2} \mathbf{~ c m ~ l o n g . ~}$

To use the sine or cosine ratio to find the length of the hypotenuse, we need to know:

- the measure of an acute angle, and
- the length of one leg

Example 2 Using the Sine or Cosine Ratio to Find the Length of the Hypotenuse

Find the length of the hypotenuse to the nearest tenth of a centimetre.

Solution

The measure of $\angle \mathrm{M}$ is known.
$N P$ is the side opposite $\angle \mathrm{M}$.
MN is the hypotenuse.
So, use the sine ratio to write an equation.

$\sin 52^{\circ}=\frac{9.5}{M \mathrm{~N}}$
$\mathrm{MN} \sin 52^{\circ}=9.5$
$\frac{M N \sin 52^{\circ}}{\sin 52^{\circ}}=\frac{9.5}{\sin 52^{\circ}}$

$$
\begin{array}{ll}
\mathrm{MN}=\frac{9.5}{\sin 52^{\circ}} \quad \text { Use a calculator. } \\
M N=12.0556 \ldots
\end{array}
$$

Multiply both sides by MN.
Divide both sides by $\sin 52^{\circ}$.

The sine ratio compares the opposite side to the hypotenuse.

MN is about 12.1 cm long.

Check

1. Find the length of each hypotenuse to the nearest tenth of a centimetre.

The measure of $\angle \mathrm{J}$ is known.
The side opposite $\angle \mathrm{J}$ is: \qquad
The hypotenuse is: JK JK Use the sine ratio.

$$
\begin{aligned}
\sin J & =\frac{\frac{\text { side opposite } \angle \mathrm{J}}{\text { hypotenuse }}}{\sin J}=\frac{\frac{\mathrm{KM}}{\mathrm{JK}}}{\sin 39^{\circ}} \\
=\frac{\frac{17.4}{\mathrm{JK}}}{\mathrm{JK} \sin 39^{\circ}} & =17.4
\end{aligned}
$$

$$
\begin{aligned}
J K & =\frac{\frac{17.4}{\sin 39^{\circ}}}{27.6488 \ldots} \\
J K & =\frac{2}{27}
\end{aligned}
$$

$$
\text { JK is about } 27.6 \mathrm{~cm} \text { long. }
$$

$$
\cos S=\frac{\text { side adjacent to } \angle S}{\text { hypotenuse }}
$$

$$
\cos \mathrm{S}=\frac{\mathrm{QS}}{\mathrm{RS}}
$$

The measure of $\angle _\mathbf{S}$

$$
\cos 29^{\circ}=\frac{11.9}{\mathrm{RS}}
$$ QS is the side adjacent to $\angle S$

RS is the hypotenuse
So, use the cosine ratio.
$R S \cos 29^{\circ}=11.9$

$$
\mathrm{RS}=\frac{11.9}{\cos 29^{\circ}}
$$

b)

$$
R S=13.6059 \ldots
$$

RS is about \qquad 13.6 cm long.

Example 3 Using Sine or Cosine to Solve a Problem

A surveyor makes the measurements shown in the diagram to find the distance between two observation towers on opposite sides of a river. How far apart are the towers? Give the answer to the nearest metre.

Solution

The distance between the towers is the hypotenuse, AC.

The measure of $\angle C$ is known.
$B C$ is the side adjacent to $\angle C$.
$A C$ is the hypotenuse.
So, use the cosine ratio.

$\cos 73^{\circ}=\frac{63}{\mathrm{AC}} \quad$ Multiply both sides by AC.
$A C \times \cos 73^{\circ}=63 \quad$ Divide both sides by $\cos 73^{\circ}$.
$A C=\frac{63}{\cos 73^{\circ}} \quad$ Use a calculator.
$A C=215.4791 \ldots$
The distance between the towers is about 215 m .

Check

1. Sam and Sofia are building a wooden ramp for skateboarding. The height of the ramp is 0.75 m . The ramp makes an angle of 8° with the ground. What length of plywood do Sam and Sofia need for the top of the ramp? Give your answer to the nearest tenth of a metre.

We want to find the length of $D E$.
The measure of $\angle D$ is known.
The side opposite $\angle \mathrm{D}$ is: $\underline{\mathbf{E F}}$
The hypotenuse is: DE
So, use the sine ratio.

Sam and Sofia need about 5.4 m of plywood.

Practice

1. Which ratio would you use to find each length?
a) $X Y$

The measure of $\angle \ldots \mathbf{Y}$ is known.
$Y Z$ is the side adjacent to $\angle \mathbf{Y}$.
$X Y$ is the hypotenuse \qquad
So, use the cosine ratio.
b) ST

The measure of $\angle _\mathbf{U}$ is known.
ST is the side opposite $\angle \mathbf{U}$
SU is the hypotenuse
So, use the _sine_ratio.
2. Find the length of each indicated side to the nearest tenth of a centimetre.
a) VW

The measure of \angle \qquad is known.
The side opposite \angle \qquad is \qquad
The hypotenuse is UW
So, use the \qquad sine ratio.

$$
\sin \underline{\mathbf{U}}=\frac{\text { side opposite } \angle \mathbf{U}}{\text { hypotenuse }}
$$

$$
\sin \quad \mathbf{U}=\frac{\mathbf{V W}}{\mathbf{U W}}
$$

$$
\begin{aligned}
& \sin 48^{\circ}=\frac{\frac{V W}{15.0}}{V W} \\
& \frac{15.0 \sin \frac{48^{\circ}}{V W}}{}=\frac{11.1471 \ldots}{V W \text { is about } 11.1 \mathrm{~cm} \text { long. }}
\end{aligned}
$$

b) $Q R$
 is known.
QR is the side opposite $\angle S$.
$R S$ is the hypotenuse \qquad sine ratio.

$$
\sin S=\frac{\text { side opposite } \angle S}{\text { hypotenuse }}
$$

$$
\sin \mathrm{S}=\frac{\mathrm{QR}}{\mathrm{RS}}
$$

$$
\sin 36^{\circ}=\frac{\mathrm{QR}}{10.5}
$$

$$
10.5 \sin 36^{\circ}=Q R
$$

$$
\mathrm{QR}=6.1717 \ldots
$$

$Q R$ is about 6.2 cm long.
3. Find the length of side PM to the nearest tenth of a metre.

The measure of Z
PM is the side _adjacent to $\angle \mathrm{M}$.
MN is the hypotenuse.
So, use the cosine ratio.

$$
\begin{aligned}
\cos M & =\frac{P M}{M N} \\
\cos 19^{\circ} & =\frac{P M}{16.0} \\
16.0 \cos 19^{\circ} & =P M \\
P M & =15.1282 \ldots
\end{aligned}
$$

$P M$ is about 15.1 m long.
4. Find the length of each hypotenuse to the nearest tenth of a centimetre.

The measure of \angle
The side opposite \angle The hypotenuse is:
So, use the sine ratio
\qquad
 E is known. EP $\sin \underline{E}=\frac{\frac{F G}{E F}}{\frac{8.4}{E F}}$
$\sin \underline{29^{\circ}}=\underline{8.4}$

$$
29^{\circ}=
$$

\qquad
b)
\qquad is known.
WY is the side adjacent to $\angle \mathbf{W}$
WX is the hypotenuse.
So, use the cosine ratio.

$$
\begin{aligned}
\cos W & =\frac{W Y}{W X} \\
\cos 33^{\circ} & =\frac{21.6}{W X} \\
W X \cos 33^{\circ} & =21.6 \\
W X & =\frac{21.6}{\cos 33^{\circ}} \\
W X & =25.7550 \ldots
\end{aligned}
$$

WX is about \qquad 25.8 cm long.

$$
\begin{aligned}
& \mathrm{EF}=\frac{\frac{8.4}{\sin 29^{\circ}}}{17.3263 \ldots} \\
& \mathrm{EF}=\frac{1}{1}=
\end{aligned}
$$

$E F$ is about $\mathbf{1 7 . 3} \mathbf{~ c m}$ long.
5. A straight slide in a playground makes an angle of 28° with the ground. The slide covers a horizontal distance of 4.5 m . How long is the slide? Give your answer to the nearest tenth of a metre.

The measure of $\angle \mathrm{Q}$ is known.
The side adjacent to $\angle \mathrm{Q}$ is: \qquad QS
The hypotenuse is: \qquad
So, use the \qquad cosine ratio.

$$
\cos \mathrm{Q}=\frac{\mathrm{QS}}{\mathrm{QR}}
$$

$$
\cos 28^{\circ}=\frac{4.5}{\mathrm{QR}}
$$

$Q R \cos 28^{\circ}=4.5$

$$
\begin{aligned}
& \mathrm{QR}=\frac{4.5}{\cos 28^{\circ}} \\
& \mathrm{QR}=\quad 5.0965 \ldots
\end{aligned}
$$

The slide is about \qquad 5.1 m long.
6. A 15-m support cable joins the top of a telephone pole to a point on the ground. The cable makes an angle of 32° with the ground. Find the height of the pole to the nearest tenth of a metre.

Use the sine ratio.

$$
\begin{aligned}
\sin D & =\frac{C E}{C D} \\
\sin 32^{\circ} & =\frac{C E}{15.0}
\end{aligned}
$$

$15.0 \sin 32^{\circ}=C E$

$$
C E=7.9487 \ldots
$$

The height of the pole is about \qquad 7.9 m

TEACHER NOTE
Next Steps: Have students complete questions 6-11 on pages 101 and 102 of the Student Text.

Can you ...

- use the sine or cosine ratio to find an angle measure?
- use the sine or cosine ratio to calculate a length?
- use the sine or cosine ratio to solve a problem?
2.4 1. Find $\sin A$ and $\cos A$ to the nearest hundredth.

$$
\sin A=\frac{\frac{\text { side opposite } \angle \mathbf{A}}{\text { hypotenuse }}}{}
$$

$$
\sin A=\frac{\mathrm{BC}}{\mathrm{AC}}
$$

$\sin A=\frac{B C}{\mathbf{A C}}$

$$
\sin A=\frac{16.0}{20.6}
$$

$\sin A=0.7766 \ldots$
$\sin A \doteq \quad 0.78$

$$
\text { side adjacent to } \angle \mathrm{A}
$$

$$
\cos A=
$$

hypotenuse
2. Find the measure of each indicated angle to the nearest degree.
a)

FD is the side adjacent to $\angle \mathrm{D}$
$D E$ is the \qquad So, use the \qquad ratio.

$$
\cos D=\frac{\frac{\text { side adjacent to } \angle \mathrm{D}}{\text { hypotenuse }}}{}
$$

$$
\cos D=\frac{\frac{F D}{D E}}{}
$$

$$
\cos D=\frac{17}{23}
$$

$$
\angle D \doteq 42^{\circ}
$$

b)

GJ is the \qquad
GH is the \qquad hypotenuse \qquad .
So, use the \qquad ratio.

$$
\sin H=\frac{\frac{\text { side opposite } \angle H}{\text { hypotenuse }}}{}
$$

$$
\sin H=\frac{\mathbf{G J}}{\mathbf{G H}}
$$

$$
\sin H=\frac{5.9}{13.4}
$$

$$
\angle H \doteq
$$

\qquad
2.5 3. Find the length of each indicated side to the nearest tenth of a centimetre.
a) $P R$
b) $S T$

The measure of \angle \qquad is known.
The side opposite \angle \qquad is \qquad R.

The hypotenuse is \qquad PQ
So, use the \qquad sine ratio.

The measure of $\angle \underline{\mathbf{S}}$ is known. ST is the side _adjacent to $\angle \mathrm{S}$
$S U$ is the \qquad hypotenuse
So, use the \qquad cosine ratio.

$$
\cos S=\frac{\text { side adjacent to } \angle S}{\text { hypotenuse }}
$$

$$
\sin \mathrm{Q}=\frac{\text { side opposite } \angle \mathrm{Q}}{\text { hypotenuse }}
$$

$$
\cos S=\frac{S T}{S U}
$$

$$
\sin Q=\frac{P R}{P Q}
$$

$$
\sin 40^{\circ}=\frac{P R}{3.7}
$$

$3.7 \sin 40^{\circ}=P R$
PR = 2.3783...

PR is about 2.4 cm
4. Find the length of the hypotenuse to the nearest tenth of a centimetre. The measure of $\angle W$ is known
The side opposite $\angle W$ is: $\quad \mathbf{X Y}$
The hypotenuse is:

Use the sine ratio.

$\sin W$	$=\frac{\frac{X Y}{W Y}}{4.4}$
$\sin \frac{28^{\circ}}{\frac{\mathbf{W Y}}{W Y} \sin 28^{\circ}}$	$=\frac{4.4}{4.4} \quad$ Multiply both sides by \quad WY
$W \mathbf{W Y}$	$=\frac{\text { Divide both sides by } \underline{\sin 28^{\circ}}}{\sin 28^{\circ}}$
$\mathbf{W Y}$	$=9.3722 \ldots$

WY is about 9.4 cm long.

TEACHER NOTE
Next Steps: Have students complete questions 2 and 5 on page 104 of the Student Text.

2.6 Applying the Trigonometric Ratios

FOCUS Use trigonometric ratios to solve a right triangle.

When we solve a triangle, we find the measures of all the angles and the lengths of all the sides.

To do this we use any of the sine, cosine, and tangent ratios.

$\sin A=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos A=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan A=\frac{\text { opposite }}{\text { adjacent }}$

Example 1 Finding the Measures of All Angles

Find all unknown angle measures to the nearest degree.

Solution

Find the measure of
EF is the side opposite $\angle \mathrm{D}$.
$D E$ is the side adjacent to $\angle D$.

We could have used the tangent ratio to find $\angle F$.

So, use the tangent ratio.

$$
\begin{array}{rlr}
\tan D & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan D & =\frac{E F}{D E} & \text { Substitute: } E F=9 \text { and } D E=5 \\
\tan D & =\frac{9}{5} & \\
\angle D & \doteq 61^{\circ} &
\end{array}
$$

The acute angles in a right triangle have a sum of 90°.
So, $\angle F=90^{\circ}-\angle D$
$\angle F=90^{\circ}-61^{\circ}$
$\angle \mathrm{F} \doteq 29^{\circ}$

Check

1. Find all unknown angle measures to the nearest degree.

Find the measure of $\angle \mathrm{G}$.
HJ is the side \qquad opposite $\angle G$
GH is the side \qquad adjacent to $\angle G$ \qquad .
So, use the \qquad tangent ratio.

b)

Find the measure of $\angle K$
MN is the side opposite $\angle K$.
NK is the hypotenuse
So, use the \qquad sine

$$
\tan G=
$$

\qquad

$$
\angle G \doteq \quad 31^{\circ}
$$

The acute angles have a sum of 90°.

$$
\text { So, } \begin{aligned}
& \angle J=90^{\circ}-\quad \angle \mathbf{G} \\
& \angle J \doteq 90^{\circ}- 31^{\circ} \\
& \angle J \doteq 59^{\circ}
\end{aligned}
$$

$\angle K=$ \qquad
The acute angles have a sum of 90°.

$$
\text { So, } \begin{aligned}
\angle N & =90^{\circ}-\quad \angle K \\
\angle N & \doteq 90^{\circ}--67^{\circ} \\
\angle N & \doteq 23^{\circ}
\end{aligned}
$$

Example 2

Find all unknown side lengths to the nearest tenth of a metre.

Solution

Find the length of PR.
$P R$ is the side adjacent to $\angle R$.
QR is the hypotenuse.

So, use the cosine ratio.

$$
\begin{aligned}
& \cos R=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \cos R=\frac{P R}{Q R}
\end{aligned}
$$

$$
\cos 76^{\circ}=\frac{P R}{24.3} \quad \text { Multiply both sides by 24.3. }
$$

$24.3 \cos 76^{\circ}=P R$
$P R=5.8787 \ldots$
PR is about 5.9 m long.
Find the length of PQ .
$P Q$ is the side opposite $\angle R$.
QR is the hypotenuse.
So, use the sine ratio.

$$
\begin{array}{ll}
\sin R=\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin R=\frac{P Q}{Q R} & \text { Substitute: } \angle R=76^{\circ} \text { and } Q R=24.3
\end{array}
$$

$\sin 76^{\circ}=\frac{\mathrm{PQ}}{24.3} \quad$ Multiply both sides by 24.3.
$24.3 \sin 76^{\circ}=P Q$

$$
\text { PQ }=23.5781 \ldots
$$

PQ is about 23.6 m long.

TEACHER NOTE
If students need to review the Pythagorean Theorem, refer them to Chapter 1, Lesson 1.4 of this text.

Check

1. Find all unknown side lengths to the nearest tenth of a metre.

Find the length of ST
TU is the side opposite $\angle S$.
ST is the hypotenuse
So, use the \qquad sine ratio.

Find the length of SU .
TU is the side opposite $\angle S$.
SU is the side adjacent to $\angle S$.
So, use the tangent ratio.
$\sin S=\underline{\text { opposite }} \frac{\text { hypotenuse }}{}$
$\sin S=\frac{T U}{\mathbf{S T}}$

$$
\sin 43^{\circ}=\frac{18.4}{S T}
$$

ST $\sin 43^{\circ}=18.4$

$$
\mathrm{ST}=\frac{18.4}{\sin 43^{\circ}}
$$

ST $=$ 26.9795
ST is about 27.0 m long.

Example 3 Solving a Triangle

Solve this triangle.
Give angle measures to the nearest degree.
Give side lengths to the nearest tenth of a centimetre.

Solution

Find the measure of $\angle B$.
$A B$ is the side adjacent to $\angle B$.
$B C$ is the hypotenuse.
So, use the cosine ratio.

$$
\begin{aligned}
\cos B & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos B & =\frac{A B}{B C} \\
\cos B & =\frac{12.2}{19.2} \\
\angle B & =50.5491 \ldots \\
\angle B & =51^{\circ}
\end{aligned}
$$

The acute angles in a right triangle have a sum of 90°.
So, $\angle C=90^{\circ}-\angle B$
$\angle C \doteq 90^{\circ}-51^{\circ}$
$\angle C \doteq 39^{\circ}$
Find the length of A
Use the Pythagorean Theorem to find $A C$.
$A C^{2}=B C^{2}-A B^{2}$
$A C^{2}=19.2^{2}-12.2^{2}$
$A C^{2}=219.8$
$A C=\sqrt{219.8}$
$A C=14.8256 \ldots$
AC is about 14.8 cm long.

Check

1. Solve this triangle. Give side lengths to the nearest tenth of a centimetre.

The acute angles have a sum of $\quad 9 \mathbf{0}^{\circ}$
So, $\angle E=90^{\circ}-\angle F$
$\angle E=\underline{90^{\circ}}-\underline{62^{\circ}}$

$$
\angle E=28^{\circ}
$$

Find the length of DF.
$D F$ is the side adjacent to $\angle F$.
EF is the hypotenuse
So, use the cosine ratio.
Find the length of $D E$.
$D E$ is the side opposite $\angle F$.
$E F$ is the hypotenuse.
So, use the \qquad ratio.

$$
\cos \mathrm{F}=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

$\cos F=\underline{\frac{D F}{E F}}$
$\cos 62^{\circ}=\frac{\mathrm{DF}}{17.3}$
$17.3 \cos 62^{\circ}=D F$
$D F=8.1218 .$.
DF is about

Practice

1. Which ratio would you use to find the measure of each angle?
a) $\angle P$

$Q R$ is the side opposite $\angle P$
$P R$ is the side _adjacent to $\angle P$.
So, use the tangent ratio.
b) $\angle E$

$D E$ is the \qquad side adjacent to $\angle E$
CE is the hypotenuse.
So, use the cosine ratio.
2. Which ratio would you use to find the length of each indicated side?
a) GH

b) MN

HF is the side opposite $\angle \mathrm{G}$. .
$M N$ is the side opposite $\angle P$.
GH is the \qquad hypotenuse .
$N P$ is the side adjacent to $\angle P$. So, use the \qquad sine ratio.
So, use the tangent ratio.
3. Find all unknown angle measures to the nearest degree.
a)

Find the measure of $\angle U$.

$$
\sin U=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\sin U=\frac{V W}{U W}
$$

$$
\begin{aligned}
\sin U & =\frac{\frac{4.2}{5.5}}{} \\
\angle U & =50^{\circ}
\end{aligned}
$$

The acute angles have a sum of 90°.

$$
\text { So, } \begin{aligned}
\angle W & =90^{\circ}-\angle U \\
\angle W & =90^{\circ}-50^{\circ} \\
\angle W & \doteq 40^{\circ}
\end{aligned}
$$

b) ${ }^{\mathrm{Q}}$

Find the measure of $\angle Q$.

The acute angles have a sum of 90°.

$$
\text { So, } \begin{aligned}
\angle R & =90^{\circ}-\angle \mathbf{Q} \\
\angle R & \doteq 90^{\circ}-\mathbf{3 7 ^ { \circ }} \\
\angle R & =53^{\circ}
\end{aligned}
$$

4. Find all unknown side lengths to the nearest tenth of a centimetre.

Find the length of QS.
$\sin S=\underline{\text { opposite }}$ hypotenuse

$$
\sin S=\frac{\frac{\mathrm{QR}}{\mathrm{QS}}}{}
$$

$\sin 48^{\circ}=\frac{8.7}{\mathrm{QS}}$
QS $\sin 48^{\circ}=8.7$

$$
\begin{aligned}
\mathrm{QS} & =\frac{8.7}{\sin 48^{\circ}} \\
\mathrm{QS} & =11.7070 \ldots
\end{aligned}
$$

QS is about \qquad 11.7 cm long.

Find the length of RS.

$$
\tan S=\underline{\frac{\text { opposite }}{\text { adjacent }}}
$$

$\tan 48^{\circ}=\frac{8.7}{R S}$
$R S \tan 48^{\circ}=8.7$
$R S=\frac{8.7}{\tan 48^{\circ}}$
$R S=7.8335 \ldots$
RS is about 7.8 cm long.

Find the measure of $\angle E$.
adjacent
$\cos \mathrm{E}=$ hypotenuse
$\cos E=\frac{\frac{D E}{C E}}{13.8}$
$\cos E=\frac{\frac{13}{21.5}}{}$
$\angle E \doteq \quad 50^{\circ}$
\qquad

The acute angles have a sum of 90°.

$$
\text { So, } \begin{aligned}
\angle C & =90^{\circ}-\angle E \\
\angle C & \angle 90^{\circ}-50^{\circ} \\
\angle C & \doteq 40^{\circ}
\end{aligned}
$$

6. The base of a ladder is on level ground 1.9 m from a wall. The ladder leans against the wall.

The angle between the ladder and the ground is 65°.
a) How far up the wall does the ladder reach?
b) How long is the ladder?

Give your answers to the nearest tenth of a metre.

a) We want to find the length of FH. The measure of $\angle \mathrm{G}$ is known.
FH is the side opposite $\angle \mathrm{G}$.
GH is the side adjacent to $\angle \mathrm{G}$.
So, use the tangent ratio.

$$
\begin{aligned}
\tan G & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan G & =\frac{\mathrm{FH}}{\mathrm{GH}} \\
\tan 65^{\circ} & =\frac{\mathrm{FH}}{1.9}
\end{aligned}
$$

$1.9 \tan 65^{\circ}=\mathrm{FH}$

$$
\text { FH }=4.0745 \ldots
$$

The ladder reaches the wall at a height of about \qquad 4.1 m
b) We want to find the length of FG.

GH is the side adjacent to $\angle \mathrm{G}$.
FG is the hypotenuse.
So, use the cosine ratio.

$$
\begin{aligned}
\cos G & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos G & =\frac{\mathrm{GH}}{\mathrm{FG}} \\
\cos 65^{\circ} & =\frac{1.9}{\mathrm{FG}}
\end{aligned}
$$

FG $\cos 65^{\circ}=1.9$

$$
\begin{aligned}
& \mathrm{FG}=\frac{1.9}{\cos 65^{\circ}} \\
& \mathrm{FG}=4.4957 \ldots
\end{aligned}
$$

The ladder is about $\mathbf{4 . 5 \mathrm { m }}$ long.

TEACHER NOTE

Next Steps: Have students complete questions $6,7,8,12$, and 13 on pages 111 and 112 of the Student Text.

2.7 Solving Problems Involving

More than One Right Triangle

FOCUS Use trigonometric ratios to solve problems that involve more than one right triangle.

When a problem involves more than one right triangle, we can use information from one triangle to solve the other triangle.

Example 1 Solving a Problem with Two Triangles

Find the length of $B C$ to the nearest tenth of a centimetre.

First use $\triangle A B D$ to find the length of $B D$

$$
\begin{aligned}
\sin A & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin A & =\frac{B D}{A B}
\end{aligned}
$$

$$
\sin 26^{\circ}=\frac{B D}{22.9}
$$

$22.9 \sin 26^{\circ}=B D$

$$
B D=10.0386 \ldots \quad \text { Do not clear the calculator screen. }
$$

In $\triangle B C D$, find the length of $B C$.

$$
\begin{aligned}
\sin C & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin C & =\frac{B D}{B C} \\
\sin 49^{\circ} & =\frac{10.0386 \ldots}{B C} \\
B C \sin 49^{\circ} & =10.0386 \ldots \\
B C & =\frac{10.0386 \ldots}{\sin 49^{\circ}} \\
B C & =13.3014 \ldots
\end{aligned}
$$

$B C$ is about 13.3 cm long.

Check

1. Find the measure of $\angle F$ to the nearest degree.

Use $\triangle D E G$ to find the length of $E G$. Use the sine ratio.

$$
\sin D=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\sin 34^{\circ}=\frac{\mathrm{EG}}{14.4}
$$

$14.4 \sin 34^{\circ}=E G$

$$
\mathrm{EG}=8.0523 \ldots
$$

$$
\sin D=\underline{\frac{E G}{D G}}
$$

In $\triangle E F G$, use the \qquad ratio to find

$$
\begin{aligned}
& \tan F=\frac{\text { opposite }}{\text { adjacent }} \\
& \tan F=\frac{\mathrm{EG}}{\mathrm{FG}}
\end{aligned}
$$

$$
\tan F=\frac{8.0523 \ldots}{9.6}
$$

$$
\angle F=39.9895 .
$$

The measure of $\angle \mathrm{F}$ is about

TEACHER NOTE
Show students how to use the ANS key to find $\angle \mathrm{F}$ directly. 8.0523... is already on the calculator screen. Input:
$\div 966$ ENTER 2nd TAN 2nd (-1 ENTER to display 39.98956614 .

The angle of elevation is the angle between the horizontal and a person's line of sight to an object above.

Example 2

Jason is lying on the ground midway between two trees, 100 m apart.
The angles of elevation of the tops of the trees are 13° and 18°. How much taller is one tree than the other? Give the answer to the nearest tenth of a metre.

Solution

Jason is midway between the trees.
So, the distance from Jason to the base of each tree is: $\frac{100 \mathrm{~m}}{2}=50 \mathrm{~m}$
Use $\triangle \mathrm{JKM}$ to find the length of JK.

$\tan \mathrm{M}=\frac{\mathrm{JK}}{\mathrm{JM}}$
$\tan 13^{\circ}=\frac{\mathrm{JK}}{50}$
$50 \tan 13^{\circ}=\mathrm{JK}$
$\mathrm{JK}=11.5434 \ldots$

Use $\triangle M N P$ to find the length of $N P$.

$\tan \mathrm{M}=\frac{\mathrm{NP}}{\mathrm{MP}}$
Substitute: $\angle M=18^{\circ}$ and $M P=50$

$$
\tan 18^{\circ}=\frac{N P}{50}
$$

$50 \tan 18^{\circ}=N P$

$$
N P=16.2459 \ldots
$$

To find how much taller one tree is than the other, subtract:
$16.2459 \mathrm{~m}-11.5434 \mathrm{~m}=4.7025 \mathrm{~m}$
One tree is about 4.7 m taller than the other.

Check

1. The angle of elevation of the top of a tree, T , is 27°. From the same point on the ground, the angle of elevation of a hawk, H , flying directly above the tree is 43°. The tree is 12.7 m tall. How high is the hawk above the ground? Give your answer to the nearest tenth of a metre.

We want to find the length of HG. Use \triangle QTG to find the length of QG. Use the tangent ratio.

QG $\tan 27^{\circ}=12.7$

$$
\mathrm{QG}=\frac{12.7}{\tan 27^{\circ}}
$$

$$
\text { QG }=24.9251 \ldots
$$

In $\triangle \mathrm{QHG}$, use the tangent ratio to find HG .

24.9251... $\times \tan 43^{\circ}=$ HG

$$
H G=23.2430 \ldots
$$

The hawk is about $\mathbf{2 3 . 2} \mathbf{~ m}$ above the ground.

The angle of depression is the angle between the horizontal and a person's line of sight to an object below.

Example 3 Solving a Problem Involving Angle of Depression

From a small plane, V , the angle of depression of a sailboat is 21°.
The angle of depression of a ferry on the other side of the plane is 52°.
The plane is flying at an altitude of 1650 m .
How far apart are the boats, to the nearest metre?

Solution

We want to find the length of UW.
The angle of depression of the sailboat is 21°.
So, in $\triangle U V X, \angle V=90^{\circ}-21^{\circ}$, or 69°.
Use $\triangle U V X$ to find the length of $U X$.

$$
\tan \mathrm{V}=\frac{\text { opposite }}{\text { adjacent }}
$$

We know $\angle V=69^{\circ}$. $U X$ is opposite $\angle V$. $V X$ is adjacent to $\angle V$. So, use the tangent ratio.

$$
\tan \mathrm{V}=\frac{\mathrm{UX}}{\mathrm{VX}}
$$ $\tan 69^{\circ}=\frac{U X}{1650}$

$1650 \tan 69^{\circ}=U X$

$$
U X=4298.3969
$$

The angle of depression of the ferry is 52°.
So, $\angle V$ in $\triangle V W X$ is: $90^{\circ}-52^{\circ}$, or 38°.
Use $\triangle V W X$ to find the length of $W X$.

$$
\tan V=\frac{\text { opposite }}{\text { adjacent }}
$$

$$
\tan V=\frac{W X}{V X}
$$

$\tan 38^{\circ}=\frac{W X}{1650}$
$1650 \tan 38^{\circ}=W X$

$$
W X=1289.1212 \ldots
$$

To find the distance between the boats, add:
$4298.3969 \mathrm{~m}+1289.1212 \mathrm{~m}=5587.5181 \mathrm{~m}$
The boats are about 5588 m apart.

Check

1. This diagram shows a falcon, F, on a tree, with a squirrel, S, and a chipmunk, C, on the ground. From the falcon, the angles of depression of the animals are 36° and 47°. How far apart are the animals on the ground to the nearest tenth of a metre?

We want to find the length of CS.
CS = GS - GC
The angle of depression of the squirrel is 36°. So, $\angle \mathrm{F}$ in $\triangle \mathrm{FSG}$ is: $90^{\circ}-\quad \mathbf{3 6 ^ { \circ }}$, or 54°.

Use $\triangle F S G$ to find the length of $G S$.
$\tan \underline{F}=\underline{\frac{\text { opposite }}{\text { adjacent }}}$
$\tan \underline{\mathbf{F}}=\frac{\mathbf{G S}}{\mathbf{F G}}$
$\tan \underline{54^{\circ}}=\underline{\frac{\text { GS }}{15}}$
$15 \tan 54^{\circ}=\mathrm{GS}$

$$
G S=20.6457 \ldots
$$

The angle of depression of the chipmunk is $\mathbf{4 7 ^ { \circ }}$
So, $\angle F$ in $\triangle F C G$ is: $90^{\circ}-47^{\circ}$, or 43°.
Use $\triangle F C G$ to find the length of $G C$.

$$
\tan F=\frac{\text { opposite }}{\text { adjacent }}
$$

$\tan \mathrm{F}=\frac{\mathrm{GC}}{\mathrm{FG}}$
$\tan 43^{\circ}=\frac{\mathrm{GC}}{15}$
$15 \tan 43^{\circ}=\mathrm{GC}$

$$
G C=13.9877 \ldots
$$

To find the distance between the animals, subtract:
20.6457 m - $13.9877 \mathrm{~m}=6.6580 \mathrm{~m}$

The animals on the ground are about $\quad 6.7 \mathrm{~m}$ apart.

Practice

1. Find the measure of $\angle C$ to the nearest degree. Use $\triangle A B D$ to find the length of $B D$.

Use the tangent ratio.

$$
\begin{aligned}
& \tan \mathrm{A}=\frac{\frac{\text { opposite }}{\text { adjacent }}}{\tan \mathrm{A}}= \\
&=\frac{\frac{\mathrm{BD}}{\mathrm{AD}}}{\mathrm{BD}} \\
& \tan 37^{\circ}=\frac{\frac{\mathrm{BD}}{12.6}}{12.6 \tan 37^{\circ}} \\
& \mathrm{BD}=9.4947 \ldots
\end{aligned}
$$

In $\triangle B C D$, use the \qquad sine ratio to find

$$
\angle C=24.9603 \ldots{ }^{\circ}
$$

The measure of $\angle C$ is about \qquad 25°

TEACHER NOTE

To find $\angle \mathrm{C}$ directly, with $9.4947 \ldots$ already on the calculator screen, input: -2 20 5 ENTER 2nd SIN 2nd (-) ENTER to display 24.96030534 .
2. Two guy wires support a flagpole, FH. The first wire is 11.2 m long and has an angle of inclination of 39°. The second wire has an angle of inclination of 47°. How tall is the flagpole to the nearest tenth of a metre?

We want to find the length of FH .
Use $\triangle \mathrm{EGH}$ to find the length of EH .
Use the cosine ratio.

$$
\begin{aligned}
\cos E & =\frac{\frac{\text { adjacent }}{\text { hypotenuse }}}{\cos E}=\frac{\frac{\mathrm{EH}}{\mathrm{EG}}}{\mathrm{EH}} \\
\cos 39^{\circ} & =\underline{11.2}
\end{aligned}
$$

$11.2 \cos 39^{\circ}=\mathrm{EH}$
$\mathrm{EH}=8.7040 \ldots$
In $\triangle E F H$, use the tangent

8.7040... $\times \tan 47^{\circ}=\mathrm{FH}$

$$
\mathrm{FH}=9.3339 \ldots
$$

The flagpole is about 9.3 m tall.
3. A mountain climber is on top of a mountain that is 680 m high. The angles of depression of two points on opposite sides of the mountain are 48° and 32°. How long would a tunnel be that runs between the two points? Give your answer to the nearest metre.

We want to find the length of QN.
The angle of depression of point Q is $\underline{\mathbf{4 8}}{ }^{\circ}$.
So, $\angle \mathrm{M}$ in $\triangle \mathrm{PQM}$ is: $90^{\circ}-\underline{48^{\circ}}$, or $\underline{42^{\circ}}$.
Use $\triangle P Q M$ to find the length of $P Q$.
Use the tangent ratio.

$$
\begin{aligned}
\tan M & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan M & =\frac{\mathrm{PQ}}{\mathrm{MP}} \\
\tan 42^{\circ} & =\frac{\mathrm{PQ}}{680} \\
680 \tan 42^{\circ} & =\mathrm{PQ} \\
\mathrm{PQ} & =612.2747 \ldots
\end{aligned}
$$

The angle of depression of point N is 32°.
So, $\angle \mathrm{M}$ in $\triangle P M N$ is: $90^{\circ}-32^{\circ}$, or 58°
Use $\triangle P M N$ to find the length of $P N$.
Use the tangent ratio.

$$
\begin{aligned}
\tan M & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan M & =\frac{N P}{M P} \\
\tan 58^{\circ} & =\frac{N P}{680} \\
680 \tan 58^{\circ} & =N P \\
N P & =1 \quad 1088.2274 \ldots
\end{aligned}
$$

The length of the tunnel is \qquad QN $=$ \qquad QP $+$ \qquad PN
$\mathrm{QN}=612.2747 \mathrm{~m}+1088.2274 \mathrm{~m}$
QN = \qquad
The tunnel would be about 1701 m long.

TEACHER NOTE
Next Steps: Have students complete questions $3,4,5,6,8$, 9 , and 11 on pages 118 and 119 of the Student Text.

Chapter 2 Puzzle

Angle Mania!

A. Find the angles of inclination of the diagonals shown.

Assume the squares have side length 1 unit.

Sample Solution:

Diagonal PA: $\tan P=\frac{1}{1} ; \angle P=45^{\circ}$
Diagonal PB: $\tan P=\frac{2}{1} ; \angle P \doteq 63^{\circ}$
Diagonal PC: $\tan \mathrm{P}=3 ; \angle \mathrm{P} \doteq 72^{\circ}$
Diagonal PD: $\tan P=4 ; \angle P \doteq 76^{\circ}$
Diagonal PE: $\tan P=5 ; \angle P \doteq 79^{\circ}$
Diagonal PF: $\tan P=\frac{1}{2} ; \angle P \doteq 27^{\circ}$

Diagonal PG: $\tan P=\frac{1}{3} ; \angle P \doteq 18^{\circ}$

Diagonal PH: $\tan P=\frac{1}{4} ; \angle P \doteq 14^{\circ}$
Diagonal PJ: $\tan \mathrm{P}=\frac{1}{5} ; \angle \mathrm{P} \doteq 11^{\circ}$
B. How many squares would be needed on the vertical rectangle for a diagonal to have an angle of inclination greater than:

- 80° ? $\tan 80^{\circ}=5.6712 \ldots \quad 6$ squares $\quad 88^{\circ}$? $\tan 88^{\circ}=28.6362 \ldots \quad 29$ squares
- 85° ? $\tan 85^{\circ}=11.4300 \ldots \quad 12$ squares
- 89° ? $\quad \tan 89^{\circ}=57.2899 \ldots \quad 58$ squares
C. How many squares would be needed on the horizontal rectangle for a diagonal to have an angle of inclination less than:
- 10° ? $\tan 10^{\circ}=0.1763 \ldots \quad \frac{1}{\text { adjacent }}=0.1763 \ldots$

$$
\begin{aligned}
& \text { adjacent }=\frac{1}{0.1763 \ldots} \\
& \text { adjacent }=5.6712 \ldots \quad 6 \text { squares }
\end{aligned}
$$

- $5^{\circ} ? \tan 5^{\circ}=0.0874 \ldots \quad \frac{1}{0.0874 \ldots}=11.4300 \ldots \quad 12$ squares
- $2^{\circ} ? \quad \tan 2^{\circ}=0.0349 \ldots \quad \frac{1}{0.0349 \ldots}=28.6362 \ldots \quad 29$ squares
$\bullet 1^{\circ} ? \quad \tan 1^{\circ}=0.0174 \ldots \quad \frac{1}{0.0174 \ldots}=57.2899 \ldots \quad 58$ squares

TEACHER NOTE

Strategies may vary. Some students may use guess and test.

Chapter 2 Study Guide

Skill	Description	Example
Find a trigonometric ratio.	In $\triangle A B C$, $\begin{aligned} & \sin A=\frac{\text { opposite }}{\text { hypotenuse }} \\ & \cos A=\frac{\text { adjacent }}{\text { hypotenuse }} \\ & \tan A=\frac{\text { opposite }}{\text { adjacent }} \end{aligned}$	$\begin{aligned} & \sin A=\frac{\text { opposite }}{\text { hypotenuse }} \\ & \sin A=\frac{B C}{A B} \\ & \sin A=\frac{6}{10}, \text { or } 0.6 \end{aligned}$
Find the measure of an angle.	To find the measure of an acute angle in a right triangle: 1. Use the given lengths to write trigonometric ratio. 2. Use the inverse function on a scientific calculator to find the measure of the angle.	To find the measure of $\angle B$ in $\triangle A B C$ above: $\begin{aligned} \tan B & =\frac{\text { opposite }}{\text { adjacent }} \\ \tan B & =\frac{A C}{B C} \\ \tan B & =\frac{8}{6} \\ \angle B & =\tan ^{-1}\left(\frac{8}{6}\right) \\ \angle B & =53^{\circ} \end{aligned}$
Find the length of a side.	To find the length of a side in a right triangle 1. Use the measure of an angle and the length of a related side to write an equation using a trigonometric ratio. 2. Solve the equation.	To find the length of EF in $\triangle D E F$: $\begin{aligned} & \cos \mathrm{E}=\frac{\text { adjacent }}{\text { hypotenuse }} \\ & \cos \mathrm{E}=\frac{\mathrm{DE}}{\mathrm{EF}} \\ & \cos 64^{\circ}=\frac{3.0}{\mathrm{EF}} \\ & \mathrm{EF} \cos 64^{\circ}=3.0 \\ & \mathrm{EF}=\frac{3.0}{\cos 64^{\circ}} \\ & \mathrm{EF}=6.8435 \ldots \\ & \mathrm{EF}=6.8 \mathrm{~cm} \end{aligned}$

Chapter 2 Review

2.1 1. Find the measure of $\angle P$ to the nearest degree.

$$
\begin{aligned}
& \tan P=\frac{\frac{\text { opposite }}{\text { adjacent }}}{\frac{\text { QR }}{\mathbf{P R}}} \\
& \tan P=\frac{\frac{\mathbf{1 4}}{\mathbf{1 0}}}{\tan P=}
\end{aligned}
$$

$$
\angle P \doteq \quad 54^{\circ}
$$

2.2 2. Find the length of $T U$ to the nearest tenth of a centimetre.

TU is about 11.5 cm long.
3. A flagpole casts a shadow that is 25 m long when the angle between the sun's rays and the ground is 40°.
What is the height of the flagpole to the nearest metre?
\qquad is the side opposite $\angle Y$.
$\mathbf{X Y}$ is the side adjacent to $\angle Y$.

$$
\begin{aligned}
\tan Y & =\frac{\frac{\text { opposite }}{\text { adjacent }}}{\mathbf{Z X}} \\
\tan Y & =\frac{\frac{\mathbf{X Y}}{}}{}
\end{aligned}
$$

$$
\tan 40^{\circ}=\frac{Z X}{25}
$$

$$
25 \tan 40^{\circ}=\mathrm{ZX}
$$

$$
Z X=\underline{20.9774 \ldots}
$$

The flagpole is about $\mathbf{2 1 ~ m}$ high.
2.3 4. Use the information in the diagram to find the height of the tower of a wind turbine observed with a drinking-straw clinometer. Give the answer to the nearest tenth of a metre.
$\angle A=90^{\circ}-$ \qquad 17° or \qquad
Side opposite $\angle A$: BC
Side adjacent to $\angle A$: $\underline{\text { AC }}$

$$
\tan A=\frac{\text { opposite }}{\text { adjacent }}
$$

\tan

$$
73^{\circ}=
$$

$\tan 73^{\circ}=\frac{\mathrm{BC}}{15}$
$15 \boldsymbol{\operatorname { t a n }} 73^{\circ}=\mathrm{BC}$

$$
B C=49.0627 \ldots
$$

So, height of tower $=49.0627 \mathrm{~m}$

$$
=50.5627 \mathrm{~m}
$$

The height of the tower is about $\mathbf{5 0 . 6} \mathbf{~ m}$
2.4 5. Find the measure of each indicated angle to the nearest degree.
a)

$C D$ is the side opposite $\angle E$.
$D E$ is the \qquad hypotenuse .
So, use the \qquad ratio.

$$
\sin E=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\sin E=\frac{C D}{D E}
$$

$$
\sin E=\frac{8.5}{13.6}
$$

$$
\angle E \doteq \quad 39^{\circ}
$$

b)

$H F$ is the side adjacent to $\angle \mathrm{H}$.
GH is the \qquad hypotenuse \qquad -.
So, use the cosine ratio.

$$
\begin{aligned}
\cos \mathrm{H} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{H} & =\frac{\mathrm{HF}}{\mathrm{GH}} \\
\cos \mathrm{H} & =\frac{6.7}{13.9} \\
\angle \mathrm{H} & \doteq=61^{\circ}
\end{aligned}
$$

6. A 2.8-m ladder is leaning against a barn, as shown. What angle does the ladder make with the barn? Give your answer to the nearest degree.
We want to find the measure of $\angle \ldots$ J.
KM is the side opposite $\angle \mathrm{J}$.
JK is the \qquad
So, use the \qquad ratio.
$\sin \mathrm{J}=\frac{\text { opposite }}{\text { hypotenuse }}$

$\sin \mathrm{J}=\frac{\mathrm{KM}}{\mathrm{JK}}$
$\sin J=\frac{1.3}{2.8}$
$\angle \mathrm{J} \doteq \mathbf{2 8}{ }^{\circ}$
The angle the ladder makes with the barn is about \qquad 28°
2.5 7. Find the length of each indicated side to the nearest tenth of a centimetre.
a) $R S$

b) NQ

The measure of $\angle N$ is known.
Use the \qquad ratio.

The measure of $\angle T$ is known.
Use the sine ratio.

$$
\sin T=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\sin T=\frac{R S}{T R}
$$

$$
\sin 57^{\circ}=\frac{\mathrm{RS}}{17.2}
$$

$17.2 \sin 57^{\circ}=\mathrm{RS}$

$$
\text { RS }=14.4251 \ldots
$$

RS is about $\mathbf{1 4 . 4} \mathbf{~ c m}$ long.

$$
\begin{aligned}
\cos N & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos N & =\frac{N P}{N Q} \\
\cos 24^{\circ} & =\frac{8.8}{N Q}
\end{aligned}
$$

$N Q \cos 24^{\circ}=8.8$

$$
\mathrm{NQ}=\frac{8.8}{\cos 24^{\circ}}
$$

$$
N Q=9.6327 \ldots
$$

NQ is about \qquad long.
8. An escalator is 14.5 m long. The escalator makes an angle of 27° with the ground.

What is the height of the escalator? Give your answer to the nearest tenth of a metre.

To find the length of $B C$, use the \qquad sine ratio.

$$
\begin{aligned}
\sin A & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin A & =\frac{B C}{A B} \\
\sin 27^{\circ} & =\frac{B C}{14.5}
\end{aligned}
$$

$14.5 \sin 27^{\circ}=B C$

$$
B C=6.5828 \ldots
$$

The escalator is about $\quad \mathbf{6 . 6} \mathrm{m}$ high.
2.6 9. Solve this triangle. Give side lengths to the nearest tenth of a centimetre.

Find the length of FG
Use the tangent ratio. $\tan E=\frac{\text { opposite }}{\text { adjacent }}$
$\tan \mathrm{E}=\frac{\mathrm{FG}}{\mathrm{EF}}$
$\tan 51^{\circ}=\frac{\mathrm{FG}}{8.5}$
$8.5 \tan 51^{\circ}=\mathrm{FG}$

$$
\text { FG }=10.4966 \ldots
$$

FG is about 10.5 cm long.
The acute angles have a sum of 90°.

Find the length of EG.
Use the \qquad cosine ratio.

$$
\begin{aligned}
\cos \mathrm{E} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{E} & =\frac{\mathrm{EF}}{\mathrm{EG}} \\
\cos 51^{\circ} & =\frac{8.5}{\mathrm{EG}}
\end{aligned}
$$

$E G \cos 51^{\circ}=8.5$
$E G=\frac{8.5}{\cos 51^{\circ}}$
EG $=13.5066 \ldots$
EG is about 13.5 cm long.

So, $\angle \mathrm{G}=90^{\circ}-\angle \mathrm{E}$
$\angle \mathrm{G}=90^{\circ}-\underline{51^{\circ}}$ $\angle G=39^{\circ}$
2.7 10. Two buildings are 25 m apart. From the top of the shorter building, the angles of elevation and depression of the top and bottom of the taller building are 31° and 48° respectively. What is the height of the taller building? Give your answer to the nearest metre.

We want to find the length of GJ.
GJ = \qquad $+$ \qquad
The angle of depression of point J is \qquad 48° Use $\triangle F H J$ to find the length of $H J$.
Use the tangent ratio.

$$
\tan F=\frac{\text { opposite }}{\text { adjacent }}
$$

$\tan F=\frac{\mathrm{HJ}}{\mathrm{FH}}$
$\tan 48^{\circ}=\frac{\mathrm{HJ}}{25}$
$25 \tan 48^{\circ}=\mathrm{HJ}$

$$
H J=27.7653 \ldots
$$

The angle of elevation of point G is 31°. Use $\triangle F G H$ to find the length of $G H$. Use the tangent ratio.

$$
\tan F=\frac{\text { opposite }}{\text { adjacent }}
$$

$$
\tan 31^{\circ}=\frac{\mathrm{GH}}{25}
$$

$25 \tan 31^{\circ}=\mathrm{GH}$

$$
G H=15.0215 \ldots
$$

To find the height of the taller building, add:

$$
27.7653 \mathrm{~m}+15.0215 \mathrm{~m}=42.7868 \mathrm{~m}
$$

[^0]TEACHER NOTE
Next Steps: Direct students to questions $1,6,8,13,15,17,19$, 22 , and 23 on pages 124-126 of the Student Text.

[^0]: The taller building is about 43 m tall.

