
chapter one

Introduction

We are no other than a moving row
Of Magic Shadow-shapes that come and go

Round with the Sun-illumined Lantern held
In Midnight by the Master of the Show;

But helpless Pieces of the Game He plays
Upon this Chequer-board of Nights and Days;

Hither and thither moves, and checks, and slays,
And one by one back in the Closet lays.

Omar Khayyám, The Rubáiyát

This book is about the chessboard. No, not about chess, but
about the board itself. The chessboard provides the field of play
for any number of games, both ancient and modern: chess and
its many variants around the world, checkers or draughts, Go,
Snakes and Ladders, and even the word game Scrabble. Boards
for these games come in many sizes: 8 × 8 boards for chess;
8×8 and 10×10 boards for checkers, depending on what part
of the world you are in; 10×10 boards for Snakes and Ladders;
15 × 15 boards for Scrabble; 18 × 18 boards for Go; and even
non-square sizes such as 4 × 8 and 2 × 6 boards for Bau and
Owari, two games that are widely played in various forms and
under several different names in Africa.

In some board games there are no special colors given to indi-
vidual squares of the board, all squares are the same, but in
other games the color of individual squares can be very impor-
tant. The familiar checkered black and white or black and red
alternating coloring of the squares in chess or checkers are
the best examples of this. Alfred Butts spent years during the
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1930s and 1940s tinkering with the coloring of the board for the
game that eventually became Scrabble, deliberating on exactly
where the double and triple valued squares should go, what
their colors should be, and how many of each type he wanted.
We, too, will discover that ingenious colorings of the squares
on an otherwise ordinary chessboard can pay surprising divi-
dends.

Board games, like other of our games, are usually in some
form a metaphor for life itself. Chess, of course, is about war,
conquering your enemy and protecting your king; Go is about
the territorial imperative; Snakes and Ladders a morality play
for children about how to achieve Nirvana. Omar Khayyám, in
the two quatrains I quoted for you from The Rubáiyát, saw in
such games a reflection of our lives as mere ‘pawns’ in a game
run by the ‘Master of the Show’, a theme picked up by Shake-
speare 300 years later in As You Like It, the play with which he
possibly opened the Globe Theatre in 1599:

All the world’s a stage,
And all the men and women merely players;
They have their exits and their entrances,
And one man in his time plays many parts,
His acts being seven ages.

Even now, in an age, and especially in a society, such as ours,
in which the problematic notion of free will is simply taken for
granted, this is still an idea that carries a chilling weight.

However, this is not a book about such games, and still less is
this book concerned with the cultural significance of the games
we humans play. Instead, this book is about the game board
itself, the simple grid of squares that forms such a common
feature of games played around the world, and, more impor-
tantly, about the mathematics that arises from such an appar-
ently simple structure. Let us begin with a puzzle.

Guarini’s Problem

The earliest chessboard puzzle that I know of dates from 1512,
almost 500 years ago. This puzzle is known as Guarini’s Prob-
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Figure 1.1 Guarini’s Problem: switch the knights.

lem and involves four knights, two white and two black, at the
four corners of a small 3 × 3 chessboard. The white knights
and the black knights wish to exchange places. Their situation
is shown in Figure 1.1. A knight can move on a chessboard by
going two squares in any horizontal or vertical direction, and
then turning either left or right one more square. Since, in this
problem, each knight will have only two moves available from
any position, this is a very simple puzzle to solve, even by trial
and error. Still, it is somewhat harder than it might look at first
glance, so I urge you to try to do it for yourself before reading
on.

If you solved this problem you undoubtedly observed its
underlying basic structure. Note that this rather simple struc-
ture comes from two things: the geometry of the board itself
along with the particular way in which knights are allowed to
move. In Figure 1.2, the structure of the possible knight moves
is first exhibited explicitly, on the left, by lines that are drawn to
connect any two squares of the board between which a knight
can move. This diagram, or graph, can then be ‘unfolded’, as
shown on the right in Figure 1.2, and the underlying structure of
the graph immediately emerges. The graph, which looked some-
what complicated to us on the left, turns out to consist of only a
single cycle, and so the solution to our puzzle is now completely
clear. In order to exchange places, the knights have no choice
at all. They must march around this cycle, all in the same direc-
tion, either clockwise or counterclockwise, until their positions
are exactly reversed. This graphical solution, of course, still has
to be translated back to the original 3× 3 chessboard, but this
final step is quite straightforward.
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Figure 1.2 Ignoring the chessboard and unfolding the graph.

I like Guarini’s Problem in part because it is so very old, but
also because it is such a nice illustration of the way in which
mathematical abstraction can clear away the messy details of
a problem and lead us gently toward a solution. In the case of
Guarini’s Problem, the first level of abstraction avoids for us
the need to keep worrying about the awkward business of how
a knight moves on a chessboard by the simple device of drawing
lines on the board to represent these moves. This allowed us to
forget about chess completely. The next level of abstraction is
to forget also about the actual board and focus instead entirely
on the diagram. Then, the final level of abstraction is to elimi-
nate the clutter inherent in the diagram simply by unfolding it.
This general process of turning a problem into a diagram is so
useful and so natural that an entire area of mathematics, now
called graph theory, has evolved that is dedicated to studying
the properties and uses of such diagrams, called graphs. This
book, then, is really a book about graphs in disguise. Usually,
explicit graphs such as the one drawn in Figure 1.2 will be kept
offstage during our drama, but rest assured, they are always
there and ready to appear at a moment’s notice should we ever
have need of them.

Problem 1.1 In Figure 1.3 we now have six knights, three white
and three black, on opposite sides of a 4× 3 chessboard. Find
the minimum number of moves required for these knights to
exchange places. This variation of Guarini’s Problem appeared
in Scientific American in the December 1979 issue. A solution
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Figure 1.3 Switch the knights.

was given the following month. Remember though that you can,
if you like, find solutions to these problems at the end of each
chapter.

The Knight’s Tour Problem

Since we have just studied a problem involving knights, and
we now know how they move, let’s continue with them for the
moment. Note that in Guarini’s Problem the center square of
the 3× 3 chessboard is inaccessible to any of the four knights,
but that otherwise a single knight could visit each square of the
board exactly once and return to its original position merely by
making a complete circuit of the cycle graph in Figure 1.2. What
about on a larger board, such as a 4×4 board or an 8×8 board,
might a knight be able to do a tour of the entire board, that
is, visit every square exactly once and return to the start? The
answer is: well, sometimes yes, and sometimes no.

The general question of which chessboards have a knight’s
tour is known as the Knight’s Tour Problem. This famous prob-
lem has a long and rich history. The Knight’s Tour Problem
dates back almost to the very beginnings of chess in the sixth
century in India and will in fact be one of the main topics con-
sidered in this book.

You might wish to try the following problem before continu-
ing further. The key feature of a knight’s tour is that a knight
visits each square of the board exactly once. A tour can be
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closed , meaning the knight returns to its original position, or it
can be open, meaning it finishes on a different square than it
started. Unless otherwise indicated, the word ‘tour’ in this book
will always mean a closed tour.

Problem 1.2 The smallest chessboards for which knight’s
tours are possible are the 5 × 6 board and the 3 × 10 board.
Find a tour for each of these boards. The smallest board for
which an open tour is possible is the 3×4 board. Find an open
tour for this board.

Figure 1.4 Find closed tours for the 5× 6 and the 3× 10 boards;
and an open tour for the 3× 4 board.

Leonhard Euler, perhaps the most prolific mathematician of
all time, did extensive work on the Knight’s Tour Problem. One
particularly attractive knight’s tour for the 8 × 8 chessboard,
done by Euler in 1759, is shown in Figure 1.5. What is especially
interesting about this particular tour is that Euler first does an
open tour of the lower half of the board, starting at square 1
and ending at square 32. He then repeats exactly this same tour,
in a symmetric fashion, for the upper half of the board, starting
at square 33 and ending at square 64. Note that Euler has also
very carefully positioned both the beginning and the end of
these two open half-tours so that they can be joined together
into a tour of the entire chessboard.

This tour of Euler’s tells us something very useful about the
Knight’s Tour Problem, at least we now know for sure that the
8 × 8 chessboard has a knight’s tour. On the other hand, we
already know that not all chessboards have knight’s tours. For
example, as we have seen, the 3 × 3 board can’t have a tour
for the simple reason that the center square is inaccessible. A
more interesting, and much more surprising, example is the
4 × 4 board. A quick glance at the graph in Figure 1.6 shows
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Figure 1.5 Euler’s tour of the chessboard.

Figure 1.6 Why a 4× 4 board has no tour.

why a knight’s tour is impossible for this chessboard. The two
bold lines, or edges as they are usually called in graph theory,
coming from the upper left-hand corner represent the only pos-
sible way for a knight to get into or away from that particular
corner square. Thus, both of these bold edges must be a part
of any knight’s tour of the entire board. For exactly the same
reason, the two bold edges coming from the lower right-hand
corner must also be part of any tour of the entire board. But,
as we can easily see, these four bold edges form a small closed
cycle visiting just four squares, which means that they cannot
simultaneously also be part of a larger tour of the entire board.
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So, because of this unavoidable conflict, a tour of the entire 4×4
board is impossible.

Are there any other chessboards on which a knight’s tour is
impossible? In order to answer this question, it is going to turn
out to be useful for us to color the squares of our chessboards,
as we shall see.

Coloring Chessboards

Omar Khayyám used the black and white ‘chequer’-board pat-
tern of the chessboard to represent nights and days in the pas-
sage I quoted earlier from The Rubáiyát, thereby invoking a dis-
turbing sense of the endless cyclic repetitiveness of life. These
days, we see the checkerboard pattern used so often for deco-
rative purposes—on taxicabs, on table cloths in Italian restau-
rants, for tiling floors, for the checkered flags at auto races—
that it will seem quite amazing to us how wonderfully useful
this pattern also turns out to be for purely mathematical pur-
poses. This is a theme to which we will return again and again.
But, for now, let’s use coloring to see how to find infinitely many
chessboards that can’t possibly have knight’s tours!

Up to this point, of course, we have not bothered to color the
squares on any of our chessboards. But now, look at the 5× 5
chessboard in Figure 1.7, where we have colored the squares in
the usual way. The main thing to note is that a knight on this
board always moves from a square of one color to a square of
the other color. You should verify this for yourself. Therefore,
a knight’s tour necessarily alternates between black squares
and white squares; and so, a knight’s tour must consist of an
equal number of black squares and white squares. But, the 5×5
chessboard doesn’t have an equal number of black squares and
white squares! In fact, our 5×5 chessboard has 12 white squares
and 13 black squares. And so a tour of the 5× 5 chessboard is
impossible.

The same argument, of course, works for any ‘odd’ chess-
board, such as a 13× 17 board, where both of the dimensions
are odd, simply because in that case the total number of squares
would also be odd, and so the number of black squares could
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Figure 1.7 An open tour of the 5× 5 board.

not be equal to the number of white squares. Thus, there are
infinitely many chessboards for which a knight’s tour is impos-
sible.

Playing on Other Surfaces

It may have occurred to you, however, that just because there
isn’t a closed knight’s tour for a 5×5 chessboard doesn’t mean
that there can’t be an open knight’s tour. After all, couldn’t an
open tour begin on a black square and then also end on a black
square and in that way successfully alternate 13 black squares
with 12 white squares? This is indeed possible! One such tour
is shown in Figure 1.7.

This particular open tour suggests a natural extension of
the Knight’s Tour Problem, or at least it suggests something
that might seem natural to anyone who has spent a significant
amount of time playing video games. What if we change the
rules for the knight and now allow the knight to move off the
bottom of the board and then reappear at the top, exactly as
happens in some video games? Or if we allow the knight to go
off of one side of the board and instantly reappear at the other
side? This is not an idea that would have seemed particularly
natural to Euler in the middle of the eighteenth century when
he was playing with knight’s tours, but it certainly seems nat-
ural to us now. With this new-found, computer-aided freedom,
the poor knight who was previously stuck at square 25 in Fig-
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ure 1.7 can now happily return to square 1 in a single move,
thus closing the tour.

In this particular situation, a mathematician might say we
were playing chess on a flat torus. As we shall see later, this is
actually the same as playing chess on the surface of a doughnut!
Since I intend for us to be investigating knight’s tours on a wide
variety of strange surfaces like the torus, you should perhaps
warm up a bit first on the following problem.

Problem 1.3 Find a knight’s tour on the surface of a 2× 2× 2
cube. This needs some explaining. First of all, this cube has only
four squares on each face and so if a knight is to move at all
it must be able to pass over an edge of the cube onto another
face. So, we will agree ahead of time that a knight moves over
an edge of the cube without even noticing it. The various pos-
sible knight moves will be far easier to visualize with an actual
cube in your hand, such as a Rubik’s Mini Cube, and using a
water-based pen to record the moves. A reasonably good alter-
native is to use the unfolded diagram of the cube shown in
Figure 1.8 as a visual aid. For clarity, we should also agree on
exactly what constitutes a knight’s move. I earlier described this
move as being ‘two squares in one direction followed by one
more square either left or right’. On a flat board this happens
to be the same as saying ‘one square in one direction followed
by two more squares either left or right’. But on a 2×2×2 cube
these two ‘moves’ don’t always turn out to be the same. Since
it is pretty hard to argue that either one or the other of these
two ‘moves’ is the real knight’s move, I will arbitrarily decree
that you can use both. You might want to check that a knight at
any position, therefore, has a total of ten possible moves. With
that much mobility, this shouldn’t be a hard problem!

The Domino Puzzle

We have just seen how the standard checkerboard pattern
of alternating black and white squares can be used to show
that chessboards having odd dimensions cannot possibly have
knight’s tours. Here, now, is a clever, and quite well known, puz-
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Figure 1.8 An unfolded 2× 2× 2 cube.

zle that also illustrates the usefulness of coloring. This puzzle
involves dominoes. You may well have seen this puzzle before,
but it still provides us with a good introduction to a large class
of interesting geometric problems. A domino, for us, is just a
1× 2 rectangle. We are not interested in any spots it may have,
just its one-by-two rectangular shape. If the size of our domi-
noes exactly matches the size of two adjacent squares on our
chessboard, then we can easily see that an 8×8 chessboard can
be ‘covered’ with 32 dominoes. No problem!

Here is the well-known Domino Puzzle : remove two diametri-
cally opposite corner squares from an 8×8 chessboard; can you
cover the 62 remaining squares of the chessboard with 31 domi-
noes? It seems as if you should be able to do this, after all,
2 · 31 = 62, but I do not recommend spending very much time
trying to do it—well, maybe a little—because you are doomed
to failure.

Instead, try to visualize the checkerboard pattern of the 8×8
chessboard, or, better yet, look at an actual chessboard. All you
have to do is note that the two diametrically opposite corner
squares that have been removed from the original chessboard
have the same color! So, we now have 32 squares of one color,
but only 30 squares of the other color. Clearly, then, since a
domino covers one white square and one black square, it is
impossible to cover the remaining 62 squares with 31 domi-
noes.

I have always observed that what makes the Domino Puz-
zle so successful as a puzzle is that people tend to concentrate
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mostly on the rather bizarre geometric shape of the board once
the two opposing corners have been removed, so they approach
the problem geometrically. Moreover, the checkerboard pattern
is such a familiar design in our daily lives, one which is so fre-
quently encountered that we hardly notice it, and so the color
of the squares in this puzzle seems irrelevant.

On the other hand, what if we start over with this same puz-
zle and remove, say, the upper left-hand corner square and the
upper right-hand corner square? Then, as we expected all along,
it is a piece of cake to cover the remaining board with 31 domi-
noes. What if we make things a little harder and instead remove
a single black square and a single white square from random
positions on the board? Can we still always manage to cover
the remaining board with 31 dominoes? Happily, the answer is:
yes. In other words, the following remarkable theorem is true.

Theorem 1.1 (Gomory’s Theorem) If you remove one black
square and one white square from anywhere on the 8×8 chess-
board, then you can cover the remaining board with 31 domi-
noes.

It is surprisingly easy to give a proof of this theorem. In order
to do so, I first need to return to the idea of a tour of a chess-
board. This time, however, I want to be thinking of a rook’s tour
rather than a knight’s tour. A rook can move in either a hori-
zontal or a vertical direction and it can also go as many squares
as it wants. For our purpose, which, after all, is touring chess-
boards and visiting squares, it is best to think of the rook as
moving just one square at a time. In other words, when a rook
moves along a row or column it ‘visits’ every square along the
way. Armed with this knowledge of how a rook moves, I am
sure you will have no trouble finding a rook’s tour of the 8× 8
chessboard. Spend a moment and do this. You probably came
up with something like the rook’s tour illustrated in Figure 1.9.

Now, using the rook’s tour in Figure 1.9, we can give the easy
proof of Gomory’s Theorem I promised you. First, I suggest
you try to ignore completely the fact that this is happening on
a chessboard at all and instead just think about the tour itself,
which, after all, is just one very long, very big cycle with the rook
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Figure 1.9 A rook’s tour of the 8× 8 board.

marching merrily along from square to square: black square,
white square, black square, white square, black square, white
square, until finally the rook gets back to the original starting
square. Now, if a black square is removed from anywhere along
this cycle, then the cycle stays connected in one piece, but is
now open with a white square at each end. If a white square is
now removed from somewhere along this piece, then we will
be left with two pieces (unless, of course, we remove one of the
two white ends, but then the argument becomes even easier).
We can see that each of these two pieces is now white at one
end and black at the other end. So, each individual piece can be
covered with a string of dominoes, each domino covering one
white square and one black square, and we are done with the
proof.

If this argument wasn’t clear to you, try thinking of a necklace
with 32 black beads alternating with 32 white beads. Cut one
black bead out of the necklace and visualize what you are left
with, and then also cut one white bead out and visualize the
two remaining pieces. That’s all there is to it.

There were two keys to the unlocking of Gomory’s Theorem:
first, our very good friend the standard checkerboard coloring
of the chessboard; and, second, the extremely convenient fact
that the 8×8 chessboard has a rook’s tour. Figure 1.10 presents
several attractive rook’s tours of the 8 × 8 board in a slightly
different form, including the original tour from Figure 1.9 on
the left in this new form. You may want to look for a few more
tours. There are lots of them.
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Figure 1.10 Three rook’s tours of the 8× 8 board.

We will return later in the book to the topic of covering chess-
boards with ‘ominoes’ in all manner of sizes: monominoes,
dominoes, trominoes, tetrominoes, pentominoes, and so on. In
the meantime, here is another problem involving ‘ominoes’ for
you to work on.

Problem 1.4 Figure 1.11 shows the five tetrominoes, that is,
the five connected figures that cover four squares of a chess-
board. Note that two of these tetrominoes look different if you
turn them over, but they are still considered to be the same
tetromino. If you take sixteen of the straight 1×4 tetrominoes,
you can easily cover the 8× 8 chessboard with them. Similarly,
for the square 2 × 2 tetromino, with sixteen of them you can
also easily cover the 8×8 board. Which of the other three tetro-
minoes can be used to cover the 8×8 board in this way, that is,
using sixteen copies of the same tetromino? Here is a slightly
different covering problem: can you cover the 4×5 board using
each of the five tetrominoes? What about a 2×10 board? Don’t
forget that you can place a tetromino with either side facing up.

Figure 1.11 The five tetrominoes.

Domination

In the previous section, we talked about a certain kind of ‘cover-
ing’ for chessboards in which a chessboard was literally covered
by various geometric shapes such as dominoes or tetrominoes.
I’d like to turn now to a consideration of a very different kind
of ‘covering’ for a chessboard. We begin our discussion with
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Figure 1.12 Four queens almost cover the entire board.

queens. The queen is by far the most powerful piece in chess,
combining as it does the strength of the rook, which moves
any distance it likes horizontally or vertically, with that of the
bishop, which moves any distance it likes diagonally. Depend-
ing upon which square it is placed on, a single queen can cover
or control anywhere from 22 to 28 squares of the chessboard.
Now that is power.

In fact, the four queens in Figure 1.12 together control almost
the entire board, only the two shaded squares escape their con-
trol. (I can’t resist interrupting myself to point out that if the
board in Figure 1.12 were on a flat torus—where, remember,
queens could go off the board on one side and reappear at
the opposite side—then the two shaded squares would already
be covered! Do you see how? In other words, the entire board
would be covered by just these four queens. End of interrup-
tion, we now return to regular chessboards.)

Since only two squares are uncovered in Figure 1.12, it is easy
to place a fifth queen on the board so that the entire board is
covered or controlled by these five queens. Unfortunately, it is
not at all easy to prove that you actually need five queens in
order to cover the 8× 8 chessboard. This is the case, however.
We will come back to this and other questions about queens
later in the book.
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Figure 1.13 Nine kings are required to cover the board.

In the meantime, because it will prove to be a far easier ques-
tion to answer, let us ask the same question about kings: how
many kings do you need to cover an 8×8 chessboard? The king,
like the queen, can move in any direction, but is far more lim-
ited than the queen, being able to move only one square, that
is, to an immediately adjacent square. Thus, a king can cover
at most nine squares, namely, the 3×3 portion of the board in
which it is centered. It is easy to see, then, that nine kings can
be placed so as to cover an 8 × 8 chessboard, for example, as
arranged in the diagram on the left in Figure 1.13.

But, do you need nine kings in order to cover the board? The
answer is: yes, you do. This turns out to be easy to show. Con-
sider the nine shaded squares in the diagram on the right in
Figure 1.13. No matter where you might decide to place a king
on this board, a single king would cover at most one of these
shaded squares. In other words, a king could never cover two
of the shaded squares at the same time. Therefore, you need at
least nine kings merely to get the shaded squares covered, and
hence, you need at least nine kings to cover the entire board.

Note that in addressing the question: ‘how many kings do you
need to cover an 8×8 chessboard?’, we had to do two different
things in order to conclude that ‘nine’ is the correct answer. We
had to demonstrate that the answer was ‘nine or less’ by actu-
ally covering the board with nine kings. We also had to demon-
strate that the answer was ‘nine or more’ by some other kind of
ad hoc argument; in this case, a rather clever argument involv-
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ing shaded squares did the trick. Since we could do both of
these things, the answer ended up being ‘nine’.

In the kind of covering problems we have just been looking at
we are seeking the minimum number of pieces of a given type
needed to cover or control the entire board. How many bishops
do you need to cover a chessboard? How many knights? These
are examples of a large and important category of problems
called domination problems in graph theory. Domination prob-
lems are being energetically investigated by mathematicians all
over the world these days, in large part because they arise so
naturally in a large number of real-world applications. However,
it is worth remembering that domination problems first orig-
inated when people began asking ‘covering’ questions about
chess pieces. Even the aggressive sound of the term ‘domina-
tion’ should serve to remind us that domination in graph theory
is a topic that had its origins in chess, which, after all, began so
many centuries ago as a game of war.

Independence

We now turn to another large and important category of prob-
lems. In these problems we will ask questions that are similar
to those that we have just met in domination theory, but that
have a kind of reverse spin. For example, what is the maximum
number of knights that you can place on an 8 × 8 chessboard
so that no two knights attack one another? You might want to
think about that for a moment before continuing. We will call a
group of knights independent if none of them attacks any other.
So, questions like the one we have just posed are referred to as
independence problems.

In order to answer this particular question about placing
independent knights on a chessboard, we have to do two differ-
ent things, just as was required of us in answering domination
problems. First, we have already noted that a knight on, say, a
black square, can only move to a white square, so if we place
32 knights on the 32 black squares, then no two knights can
attack one another. So, these 32 knights are independent. It
would seem pretty obvious that surely this must be the best
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that we can do, but how do we go about proving it? That is the
second thing we have to do.

Here is one way to do that. Thanks to the work of Euler, we
have already seen that the 8×8 chessboard has a knight’s tour
and we have also observed that this tour alternates between
black and white squares. Since we can’t place two independent
knights on ‘adjacent’ squares anywhere along this tour, we can
place at most 32 independent knights along the tour. So, 32 is
the best that we can hope to do. This argument gives us a bonus
that we weren’t even looking for: because the tour alternates
between black and white, the 32 knights must either all go on
the black squares or they must all go on the white squares.
In other words, the easy placement we first thought of—that
is, putting all the knights on one color—was, in fact, the only
solution.

Here is an alternative argument that 32 is the best that we can
do. First, divide the board into eight 2 × 4 rectangles. Since a
knight placed anywhere within one of these 2×4 rectangles cov-
ers exactly two squares in the 2×4 rectangle, at most four inde-
pendent knights can be placed in each rectangle. But there are
eight such rectangles, and so we can’t possibly fit more than 32
independent knights on the chessboard.

We will return to both domination problems and indepen-
dence problems in considerable detail later, but for now, here
is a problem for you to do.

Problem 1.5 Place eight bishops on the 8 × 8 chessboard so
that they dominate the entire board. Place fourteen bishops on
the 8×8 chessboard so that they are independent. In each case,
this is the best that can be done. A reminder: a bishop moves
as many squares as it likes along a diagonal path. Note that a
bishop always remains on squares of the same color.

Graeco-Latin Squares

We have at this point introduced the main topics with which we
will be concerned in this book: knight’s tours, domination, inde-
pendence, coloring, geometric problems, chessboards on other
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surfaces, and even polyominoes. But a subject as broad—and
as vaguely defined—as ‘chessboards’ also contains within its
scope plenty of room for a large number of miscellaneous top-
ics and problems that, while not particularly easy to categorize,
are nonetheless worthy of our attention. I’d like to conclude this
introduction by turning briefly to such a topic now.

The very first time I saw one of Martin Gardner’s Mathemati-
cal Games columns was in the November 1959 issue of Scientific
American. The topic of this column was Graeco-Latin squares.
They even had a painting on the cover of that issue that had
been inspired by his column, a large 10 × 10 grid that looked
like something that might have been painted by Piet Mondrian.

That’s about all I’m going to tell you about Graeco-Latin
squares for now. It turns out that the painting on the cover of
the magazine, and Gardner’s column on the inside, were noth-
ing less than a stunning announcement that a very famous con-
jecture that had originally been made by Leonhard Euler and
that had survived unscathed for nearly 200 years had finally
just crashed spectacularly to defeat. As to what a Graeco-Latin
square actually is, I’ll let you discover that for yourself by doing
a puzzle that was popular in the eighteenth century, called
Ozanam’s Problem.

Problem 1.6 Take all four aces, all four kings, all four queens,
and all four jacks from a single deck of playing cards. Arrange
these sixteen cards in four rows and four columns so that each
row and each column contains all four card values as well as all
four suits. If you succeed in doing this, you will have created a
Graeco-Latin square of order 4. Martin Gardner even tossed in
an extra challenge: arrange the cards so that the two diagonals
of the square also satisfy this same condition.
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Solutions to Problems

Solution 1.1 In Figure 1.14 we first draw the knights graph
in its natural position on the chessboard and also at the same
time number the squares of the board in a convenient fashion.
We then, of course, unfold the graph.

Figure 1.14 Switch the knights in sixteen moves.

We can immediately see that it takes seven moves just to
move the three black knights into the correct position; and, by
symmetry, there is really only one way to do this: bring the
knight at 5 straight down to 8 and move the other two knights
two squares each, that is from 3 to 1 and from 12 to 10. And so,
we might hope to do the complete switch of all the knights in
just fourteen moves, seven for each color, but unfortunately we
can’t move both the black and the white knights in these seven
moves without the knights getting in each other’s way. What we
can do however is have one knight take a single step backwards
at an appropriate time to clear the way for an opposing knight.
The result will be a loss of only two moves, which is the best
we can hope for.

Here, then, is a sixteen-move solution: the black knight at 5
moves down to 7; this allows the white knight at 1 to move into
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place at 5, which allows the black knight at 3 to move into place
at 1, which then allows the white knight at 10 to move straight
into place at 3, and in turn the black knight at 12 to move into
place at 10. So far, this has been perfectly efficient, but now
the black knight at 7—the polite knight, if you will—steps back
to 6, allowing the white knight at 8 to move into place at 12,
before continuing his otherwise straight path down to 8.

Solution 1.2 The solutions for this problem are given in Fig-
ure 1.15.

Figure 1.15 Tours of the 5× 6 and the 3× 10 boards, and an
open tour of the 3× 4 board.

Solution 1.3 The strategy here is to do an open tour of the
front three faces (squares 1–12 in Figure 1.16). Then repeat
this exact same open tour on the back three hidden faces
(squares 13–24). Finally, these two open tours can be linked
with knight’s moves at squares 12–13 and at squares 24–1 to
complete the tour of the entire 2 × 2 × 2 cube. This particular
solution of course imitates Euler’s tour of the 8×8 board given
in Figure 1.5.

Figure 1.16 The front and back sides of a 2× 2× 2 tour.
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Figure 1.17 A hexagonal cross-section and four mini-tours.

Another solution uses an idea given by Ian Stewart in Another
Fine Math You’ve Got Me Into [28]. At the heart of this solu-
tion is the following very beautiful idea from geometry: if you
hold a 2 × 2 × 2 cube so that one of its main diagonals is ver-
tical and then cut the cube exactly in half with a horizontal
slice, the cross-section you get will be a hexagon. In fact, the
sides of this hexagon are nothing but the diagonals of the six
1× 1 squares bisected by the horizontal slice, as shown in Fig-
ure 1.17.

Now, here is the nice surprise. This hexagon just happens
to form a small knight’s mini-tour, which has been labeled
A1, A2, . . . , A6 in Figure 1.17. Furthermore, since a cube has
four main diagonals, we can in this way construct four dis-
tinct hexagons and, hence, four distinct knight’s mini-tours.
The remaining three mini-tours have been labeled B1, B2, . . . , B6;
C1, C2, . . . , C6; and D1,D2, . . . ,D6 in Figure 1.17. These mini-
tours are, of course, closed 6-cycles which must be joined
together in some way. But, note that A6–B1, B6–C1, C6–D1, and
D6–A1 are all legal knight’s moves on the 2× 2× 2 cube. Thus,
we can form the following knight’s tour of the entire 2× 2× 2
cube:

A1, A2, . . . , A6, B1, B2, . . . , B6, C1, C2, . . . , C6,D1,D2, . . . ,D6, A1.
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Solution 1.4 The 8 × 8 board can easily be covered by either
sixteen L tetrominoes or by sixteen T tetrominoes; the simplest
ways to do this are shown in Figure 1.18.

Figure 1.18 Covering the 8× 8 board with tetrominoes.

On the other hand, it is impossible to cover the entire 8 × 8
board using only Z tetrominoes. Suppose you were to start by
covering the upper left-hand corner square with a Z tetromino
placed horizontally. This would then force you to place another
one right next to it, also along the top row, and then a third
one is forced as well. But then you are really completely stuck,
since there is no way to cover the remaining two squares at
the end of the top row. Of course, it makes no difference if
you begin in the upper left-hand corner by orienting the first
tetromino vertically. The same difficulty arises along the left
edge.

It is also impossible to cover either a 4 × 5 or a 2 × 10
board with the five distinct polyominoes. A checkerboard col-
oring of either of these boards has ten white squares and ten
black squares. Now, it is easy to see that no matter how you
place them on the board, the square tetromino, the straight
tetromino, the L tetromino, and the Z tetromino each cover
exactly two white squares and two black squares. However, the
T tetromino always covers three squares of one color and one
square of the other color. So, it is impossible for all five tetro-
minoes to cover an equal number of white squares and black
squares.

Solution 1.5 The solutions for this problem are given in Fig-
ure 1.19.
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Figure 1.19 Eight dominating bishops and
fourteen independent bishops.

Solution 1.6 The solution for this problem is given in Fig-
ure 1.20.

Figure 1.20 A solution to Ozanam’s Problem.
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