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Chapter Overview

In Chapters 5 and 6 we studied the graphical and geometric properties of trigono-
metric functions. In this chapter we study the algebraic aspects of trigonometry, that
is, simplifying and factoring expressions and solving eguations that involve trigono-
metric functions. The basic tools in the algebra of trigonometry are trigonometric
identities.

A trigonometric identity is an equation involving the trigonometric functions that
holds for all values of the variable. For example, from the definitions of sine and
cosineit follows that for any 6 we have

sinf + cos’d = 1
Here are some other identities that we will study in this chapter:
sin20 = 2sin6 cosé sinAcosB = [sin(A + B) + sin(A — B)]

Using identities we can simplify a complicated expression involving the trigonomet-
ric functionsinto amuch simpler expression, thereby allowing usto better understand
what the expression means. For example, the area of the rectanglein the figure at the
leftisA = 2sin 6 cos6; then using one of the aboveidentitieswe seethat A = sin 26.

A trigonometric equation is an equation involving the trigonometric functions.
For example, the equation

. 1
sin 6 5 0

isatrigonometric equation. To solve this equation we need to find all the values of 6
that satisfy the equation. A graph of y = sin 6 shows that sin 9 = 3 infinitely many
times, so the equation has infinitely many solutions. Two of these solutions are
6 = Z and °; we can get the others by adding multiples of 27 to these solutions.

A

0 2 6

+-1

We al so study the inverse trigonometric functions. In order to define the inverse of
atrigonometric function, wefirst restrict its domain to an interval on which the func-
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528 CHAPTER 7 Analytic Trigonometry

tion is one-to-one. For example, we restrict the domain of the sine function to
[—m/2, /2] Onthisinterval Sn% = 3, sosin 13 = Z. Wewill seethat theseinverse
functions are useful in solving trigonometric equations.

In Focus on Modeling (page 575) we study some applications of the concepts of
this chapter to the motion of waves.

71 Trigonometric Identities

We begin by listing some of the basic trigonometric identities. We studied most
of these in Chapters 5 and 6; you are asked to prove the cofunction identities in
Exercise 100.

Fundamental Trigonometric Identities

Reciprocal Identities

1
CSCX = ——— X=— cotx = ——
SIin X COs X
sin COS X
tanx = B =
Cos Sin X

Pythagorean Identities
sin’x + cos’x = 1 tan’x + 1 = secx 1 + cot’ = csc’x

Even-Odd Identities

S.n(_X) = —sinx COS(—X) = COS X tan(_X) = —tanx

Cofunction Identities

sin(w - u) = cosu tan(w - u) = cotu sec(w - u) =cscu

2 2 2

cos(w—u>—sjnu cot<7T—u)—tanu csc(w—u)—secu
2 2 2

Simplifying Trigonometric Expressions

| dentities enable usto write the same expression in different ways. It is often possible
to rewrite a complicated looking expression as a much simpler one. To simplify al-
gebraic expressions, we used factoring, common denominators, and the Special Prod-
uct Formulas. To simplify trigonometric expressions, we use these same techniques
together with the fundamental trigonometric identities.
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Example 1 Simplifying a Trigonometric Expression
Simplify the expression cost + tantsint.

Solution We start by rewriting the expression in terms of sine and cosine.

. sint) .
cost + tantsint = cost + (C) sint Reciprocal identity

oSt

cos’t + sin%t

= Common denominator
cost
1 Pyth d

= agorean identit

cost ythag J
= sect Reciprocal identity [ ]

Example 2 Simplifying by Combining Fractions

sin @ cos 6
cosfd 1+ sné

Simplify the expression

Solution We combine the fractions by using a common denominator.

sinf)+ cos§  snf(1+sind) + cosh
cosf 1+sn6  cosh(1+sing)

Common denominator

sne + sin + cos’d
= - Distribute sin 0
cosf (1 + sinf)

sné + 1 . o
= . < thagorean igentit;
cosf (1 + sino) e /

1 _ 0 Cancel and use reciprocal
cos 0 - S identity [ ]

Proving Trigonometric Identities

Many identities follow from the fundamental identities. In the examples that follow,
we learn how to prove that a given trigonometric equation is an identity, and in the
process we will see how to discover new identities.

First, it's easy to decide when a given equation isnot an identity. All we need to do
is show that the equation does not hold for some value of the variable (or variables).
Thus, the equation

sinx + cosx = 1
is not an identity, because when x = /4, we have
T T V2 V2
sn—+cos—=——+-——=V2#1
4 4 2 2 V2

To verify that atrigonometric equation is an identity, we transform one side of the
equation into the other side by a series of steps, each of which isitself an identity.
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Guidelines for Proving Trigonometric Identities

1. Start with oneside. Pick one side of the equation and write it down.
Your goal isto transform it into the other side. It's usually easier to start with
the more complicated side.

2. Useknown identities. Use algebraand the identities you know to change
the side you started with. Bring fractional expressions to a common denomi-
nator, factor, and use the fundamental identities to simplify expressions.

3. Converttosinesand cosines. If you are stuck, you may find it helpful to
rewrite all functionsin terms of sines and cosines.

Warning: To prove an identity, we do not just perform the same operations on both
sides of the equation. For example, if we start with an equation that is not an identity,
such as

(1 sinx = —sinx
and sguare both sides, we get the equation
(2) sin’ = sin’x

which is clearly an identity. Does this mean that the original equation is an identity?
Of course not. The problem hereisthat the operation of squaring isnot reversiblein
the sense that we cannot arrive back at (1) from (2) by taking square roots (reversing
the procedure). Only operationsthat arereversible will necessarily transform aniden-
tity into an identity.

Example 3 Proving an Identity by Rewriting in Terms
of Sine and Cosine

Verify the identity cos6 (sec® — cos6) = sin.
Solution Theleft-hand side looks more complicated, so we start with it and try
to transform it into the right-hand side.

LHS = cos6 (sec — cos@)

1
= cosf ( - COSO) Reciprocal identity
cos

=1 — cos’ Expand

=sin’ = RHS Pythagorean identity [ ]

In Example 3 it isn't easy to see how to change the right-hand side into the
left-hand side, but it's definitely possible. Simply notice that each step is reversible.
In other words, if we start with the last expression in the proof and work backward
through the steps, the right side is transformed into the left side. You will probably
agree, however, that it's more difficult to prove the identity this way. That’s why



See Focus on Problem Solving,
pages 138-145.

We multiply by 1 + sinu because we
know by the difference of squaresfor-
mulathat (1 — sinu)(1 + sinu) =

1 — sinfu, and thisisjust cou, a
simpler expression.
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it's often better to change the more complicated side of the identity into the sim-
pler side.

Example 4 Proving an Identity by Combining Fractions
Verify the identity

1 B 1
1—snx 1+ sinx

2tanxsecx =

Solution Finding acommon denominator and combining the fractions on the
right-hand side of this equation, we get

1 1

RHS = - - -
1—sinx 1+ snx
(1 +sinx) — (1 — sinx)
= - - Common denominator
(1 —sinx)(1 + sinx)
2sinx Simpliy
=5 impli
1 — sin’ P
2snx Pyth identit,
= agorean identi
coX ythag J
snx/ 1
=2 - Factor
COS X\ COS X
=2tanxsecx = LHS Reciprocal identities ]

In Example 5 we introduce “something extra’ to the problem by multiplying the
numerator and the denominator by atrigonometric expression, chosen so that we can
simplify the result.

Example 5 Proving an Identity by Introducing
Something Extra

cosu
Verify theidentity —————— = secu + tanu.
y ty 1-snu
Solution We start with the left-hand side and multiply numerator and

denominator by 1 + sin u.

LHS — cos_u
1—-snu

_ cosu 1+ snu Multiply numerator and
- 1—sinu' 1+ snu denominator by 1 + sinu

cosu (1l + sinu)
= Expand denominator
1—-sn‘u
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Euclid (circa 300 B.c.) taught in
Alexandria. His Elements is the
most widely influentia scientific
book in history. For 2000 years it
was the standard introduction to
geometry in the schools, and for
many generations it was considered
the best way to develop logical rea-
soning. Abraham Lincoln, for in-
stance, studied the Elements as a
way to sharpen his mind. The story
istold that King Ptolemy once asked
Euclid if there was a faster way to
learn geometry than through the
Elements. Euclid replied that there
is “no roya road to geometry”—
meaning by this that mathematics
does not respect wealth or socia sta-
tus. Euclid was revered in his own
time and was referred to by thetitle
“The Geometer” or “ The Writer of
the Elements.” The greatness of the
Elements stems from its precise,
logical, and systematic treatment of
geometry. For dealing with equality,
Euclid lists the following rules,
which he calls*common notions”

1. Things that are equa to the
same thing are equal to each other.

2. If equals are added to equals,
the sums are equal.

3. If equals are subtracted from
equals, the remainders are equal .

4. Things that coincide with one
another are equal.

5. The whole is greater than the
part.

CHAPTER 7 Analytic Trigonometry

cosu(l + sinu)
= Pythagorean identity

cos’u
1+ sinu
= Cancel common factor
Ccosu
1 sinu
= + Separate into two fractions
Ccosu cosu
=secu + tanu Reciprocal identities [ ]

Hereis another method for proving that an equation isan identity. If we can trans-
form each side of the equation separately, by way of identities, to arrive at the same
result, then the equation is an identity. Example 6 illustrates this procedure.

Example 6 Proving an Identity by Working
with Both Sides Separately

+cosf  tan’d
cos 6 sech — 1

1
Verify the identity

Solution We prove the identity by changing each side separately into the same
expression. Supply the reasons for each step.

1+
LHS = 0036: 1 0050238004-1
cos 6 cosf  cosf
2 - sech — 1)(sech + 1
mHg - tare _sech -1 ( ) ) e+ 1
sech —1 sech—1 sech — 1
It followsthat LHS = RHS, so the equation is an identity. u

We conclude this section by describing the technique of trigonometric sub-
stitution, which we use to convert algebraic expressions to trigonometric ones.
This is often useful in calculus, for instance, in finding the area of a circle or an
elipse.

Example 7 Trigonometric Substitution

Substitute sin § for x in the expression V1 — x? and simplify. Assume that
0=0=m/2

Solution Setting X = sin 6, we have

V1-x2=V1-sn¥

Substitute x = sin 6

= \Vcos#h Pythagorean identity
= cosf Take square root

The last equality istrue because cos # = 0O for the values of 6 in question. |
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Exercises

1-10 = Write the trigonometric expression in terms of sine and 36. (sinx + cosx)® = 1 + 2sin X cosx
cosine, and then simplify. 1
37. (1 —cosB)(1+cosB) =—-

1. costtant 2. costcesct csc?B
3. sinf sec6 4. tan6 csc o cosX  sinX
3B wox Tosex 1
SEC X
5. tan?x — sec? , —— ) )
CsC X 29 (sinx + cosx)®  s€in’x — cos’x
7. sinu + cot ucosu 8. cos’f (1 + tan®) - sin’x —cos’x  (sinx — cosx)?
secH — coso 10 cot 6 40. (sinx + COSX)4 = (l +2 Sil’lXCOSX)2
siné " csch — sind t — cost
g, LTS
sect
11-24 = Simplify the trigonometric expression. .
: 42 w=(secx—tanx)2
Sin X Sec X . ' '
11, ——— 12. cos* + sin’ cos x 1+ 9nx
tan x 1
_ 2 L q _
3 1 + cosy u tan x 43. 1—sin2y_1+tany 44. cscx — SnX = COSX Cot X
1+ ' - .
1+ secy see(—) 45. (cotx — cscx)(cosx + 1) = —sinx
15 X1 16, XX~ COSX 46. sin'0 — cos'0 = sin% — cos’
sec?x tan x
) 47. (1 — cos)(1 + cot®x) = 1
17 1+ cscx 18 smx+cosx L,
© CoSX + cot X Coox | secx 48. cosx — sin’x = 2cos?x — 1
1+ sinu cosu 49. 2cosx — 1 =1— 2sin’x
19. + , 20. tan X coS X CSC X .
cosu 1+ snu 50. (tany + coty) sinycosy = 1
2 + tan’x 1+ cotA 1 — cos sin
21 -1 2 === L~ = =
SecX CsCA Sina 1+ cosa
23. tan 6 + cos(—0) + tan(—0) 52. sinfa + coa + tan’a = seC’a
o4 COS X 53. tan’d — sin?d = tan?) sin’d
SECX + tan X 54. cot?d cos’h = cot’d — cosd
. N snx—1 —cos’x snw tan w
25-88 m Verify the identity. 55. — = — 5 96. — =
snx+1 (sinx+ 1) snw+ cosw 1+ tanw
sinf tan x . .
25. —— = cosf 26. —— = sinx (sint + cost)?
tan 0 Sec X 57. ————— =2+ sectesct
sint cost
COS U Sec U Cot X Sec X
27. ————— =cotu 28 ———=1 58. sectesct(tant + cott) = sec’t + csc’t
tanu CsC X ,
1 + tan“u 1
tan cos . 50. =
29. —y=secy—cosy 30, — Y = ¢cscw — snv 1—tanu cos’u — sinfu
cscy secvsiny o
- 1+
31. sinB + cosBcot B = cscB 60.72)(=1+c032x
1 + tan“x
32. cog(—x) — sin(—x) = cosX + sinx e x
33. cot(—a) cog(—a) + sin(—a) = —cC @ 6l o — tanx sec x (secx + tanx)
34. csex [escx + sin(—x)] = cot’ e X + CSeX
62. ——————— =sinX + cosX

35. tan6 + cotd = secH csch tan x + cot X
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63.

65.

66.

67.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.
80.

81.

83.

85.

86.

87.
88.

" 1-— cosA

CHAPTER 7 Analytic Trigonometry

1

secy —tanp = ———
secv + tanv

SinA
— COtA = cscA

sin X + cosx
SEC X + CSC X

= SiN X COS X

1 — cosx
+

sinx
- = 2CsCX
sinx

1—cosx

CSC X — cot X
secx — 1

2, 2,
CSCX — CotX
68. —— 5 — =

ey cosX

= cot X

tan’u — sinfu = tanu sinfu
tanvsinv  tanp — sinp
tanv + sinv tanvsinv

sec’x — tan*x = sec?x + tan®x

Lso—sece-i-tane
1-sné

sinf — csco
cos6f — cot 6

cosf
1-sné

CcosX + sinx
COSX — SinX

1+tanx
1-—tanx

cos’t + tan’t — 1
sin’t
11
1—snx 1+sinx
1 N 1
SECX + tanx  Ssecx — tanx

tan’t

= 2secXxtanx

= 2secX

1+snx 1-snx
1—-snx 1+ sinx

= 4tan X secx

(tan x + cot x)? = sec® + csc
tan® — cot’x = sec’ — Csc?X
secu—1 1-—cosu
secu+1 1+ cosu

cotx+1 1+ tanx
"cotx—1 1-—tanx

sin®x + cos’ .
—— =1 —38nxcosx
sin X + cos x

tanv — coto .

5 ., = Snvcosv
tan‘v — cotv

1+sinx 2
—— = (tanx + secx)
1-—sinx

tanx + tany
———— = tanxtany
cot x + coty

(tanx + cot x)* = cscx secx

(sina — tana)(cosa — cota) = (cosa — 1)(sina — 1)

[ D]
(]

89-94 m Make the indicated trigonometric substitution in
the given algebraic expression and simplify (see Example 7).
Assume0 =< 6 < /2.

X :
89. ——, X =sing 90. V1+ x% x=tan6

1-—x
1
91. Vx?—1, x=sech 9Q2. ————, x=2tand
x>\V4 + x2
\Vx? — 25
93. V9 —x? x=3sn6 94 Xf X = 5secH

95-98 m Graph f and ¢ in the same viewing rectangle. Do the
graphs suggest that the equation f(x) = g(x) isan identity?
Prove your answer.

95. f(x) = cos’x — sin, ¢(x) =1 — 2sin’
Sin X cos x
96. =t 1+s =—
F(x) an x ( sinx), g¢g(x) 1+ snx

97.
98.
99. Show that the equation is not an identity.
(8 sin2x=2sinx (b) sin(x +y) =sinx + siny
(c) sec®™ + cscx =1

1
@ -~
sinx + cosx

f(x) = (sinx + cosx)?, ¢g(x) =1
f(x) = cos’x — sin’x, g(x) = 2cosx — 1

= CSCX + secX

Discovery ¢ Discussion

100. Cofunction Identities Intheright triangle shown,
explanwhy v = (7/2) — u. Explain how you can
obtain all six cofunction identities from this triangle, for
o<u<m/2

101. Graphs and Identities Suppose you graph two func-
tions, f and g, on agraphing device, and their graphs
appear identical in the viewing rectangle. Does this prove

that the equation f(x) = ¢(x) isan identity? Explain.

102. Making Up Your Own Identity If you start with a
trigonometric expression and rewrite it or simplify it,
then setting the original expression equal to the rewritten
expression yields a trigonometric identity. For instance,

from Example 1 we get the identity
cost + tantsint = sect

Use this technique to make up your own identity, then give
it to a classmate to verify.
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Addition and Subtraction Formulas

We now derive identities for trigonometric functions of sums and differences.

Addition and Subtraction Formulas

Formulas for sine: sin(s + t) = sinscost + cosssint
sin(s — t) = sinscost — cosssint
Formulas for cosine: cos(s + t) = cosscost — sinssint
cos(s — t) = cosscost + sinssint
tans + tant
Formulas for tangent: tan(s+t) = ————
1—tanstant
tans — tant
tan(s—t) = ————
1+ tanstant

®  Proof of Addition Formula for Cosine To prove the formula

cos(s + t) = cosscost — sinssint, we use Figure 1. In the figure, the distances
t, s + t, and —s have been marked on the unit circle, starting at Py(1, 0) and
terminating at Q,, P;, and Q,, respectively. The coordinates of these points are

Po(1, 0) Qo(cos(—s), sin(—s))
P,(cos(s + t), sin(s + t)) Qa(cost, sint)
Since cos(—s) = cossand sin(—s) = —sin s, it follows that the point Q, has the

coordinates Qy(cos s, —sin s). Notice that the distances between P, and P, and be-
tween Q, and Q, measured along the arc of the circle are equal. Since equal arcs are
subtended by equal chords, it followsthat d(P,, P;) = d(Qo, Q;). Using the Distance
Formula, we get

Vcos(s + t) — 12 + [sin(s + t) — 02 = V/(cost — coss)? + (sint + sins)?
Squaring both sides and expanding, we have

ﬁthese add to lﬁ

cos (s +t) — 2cogs+ t) + 1 + sin¥s + t)

= cos’t — 2cosscost + cos’s + sintt + 2sinssint + sin’s

L theeaddto 14‘T:T )
these add to 1.

Using the Pythagorean identity sin?d + cos’d = 1 three times gives
2—2cos(s+1t) =2— 2cosscost + 2sinssint
Finally, subtracting 2 from each side and dividing both sides by —2, we get
cos(s + t) = cosscost — sinssint

which proves the addition formula for cosine. [
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Jean Baptiste Joseph Fourier
(1768-1830) is responsible for
the most powerful application of
thetrigonometric functions (seethe
margin note on page 427). He used
sums of these functionsto describe
such physical phenomena as the
transmission of sound and the flow
of heat.

Orphaned as a young boy,
Fourier was educated in a military
school, where he became a mathe-
matics teacher at the age of 20.
Hewasl|ater appointed professor at
the Ecole Polytechnique but re-
signed this position to accompany
Napoleon on his expedition to
Egypt, where Fourier served as
governor. After returning to France
he began conducting experiments
on heat. The French Academy re-
fused to publish hisearly papers on
this subject due to hislack of rigor.
Fourier eventually became Secre-
tary of the Academy and in this
capacity had his papers published
in their original form. Probably
because of his study of heat and
his years in the deserts of Egypt,
Fourier became obsessed with
keeping himself warm—he wore
several layers of clothes, even in
the summer, and kept his rooms at
unbearably high temperatures. Ev-
idently, these habits overburdened
his heart and contributed to his
death at the age of 62.

CHAPTER 7 Analytic Trigonometry

®  Proof of Subtraction Formula for Cosine Replacing t with —t in the

addition formulafor cosine, we get

cos(s — t) = cos(s + (—t))

cosscos(—t) — sinssin(—t)

Addition formula for cosine
= Ccosscost + sinssint Even-odd identities

This proves the subtraction formulafor cosine.

See Exercises 56 and 57 for proofs of the other addition formulas.

Example 1 Using the Addition and Subtraction Formulas
Find the exact value of each expression.
o m
(@) cos75 (b) cos 2
Solution

(a) Noticethat 75° = 45° + 30°. Since we know the exact values of sine and
cosine at 45° and 30°, we use the addition formulafor cosine to get

cos 75° = cos(45° + 30°)

= c0s45° cos 30° — sin 45° sin 30°

V2V3 V21 _ V2V3-V2 _ V6- V2
2 2 2 2 4 4
(b) Since— =T _ 1’ the subtraction formulafor cosine gives
12 4 6
cos = = cos(w - 77)
12 4 6
= 00s - cos— + sin —sn—
ST 4776 476
_V2v3 v21 N+ V2

2 2 2 2 4

Example 2 Using the Addition Formula for Sine

Find the exact value of the expression sin 20° cos 40° + cos 20° sin 40°.

Solution We recognize the expression as the right-hand side of the addition
formulafor sinewith s = 20° and t = 40°. So we have
V3

sin 20° cos40° + cos 20° sin40° = sin(20° + 40°) = sin60° = -
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Example 3 Proving a Cofunction Identity
Prove the cofunction identity cos(g - u) = sinu.

Solution By the subtraction formulafor cosine,

cos(w - u>
2

aw . T
COSE cosu + smE sinu

0-cosu + 1-sinu = sinu ]

Example 4 Proving an Ildentity

. . 1+ tanx T
J—————— — 4+ .
Verify the identity 1= tanx tan(4 x)

Solution Starting with the right-hand side and using the addition formulafor
tangent, we get

tan — + tan x

T 4

RHS = tan<4 + x) =
ar

1 — tan— tanx
4

_ 1+ tanx

= = LHS
1-—tanx -

The next example is a typical use of the addition and subtraction formulas in
calculus.

Example 5 An Identity from Calculus
If f(x) = sinx, show that

fxt ) = 79 =sinx (COSh — 1) + CosXx (th>

h h h
Solution

X+ h)— f(x) sin(x+ h) —sinx
£( r)] (%) — ( h) Definition of f

sinxcosh + cosxsinh — sinx
= Addition formula for sine

h

sinx(cosh — 1) + cosxsinh
= Factor

h

. cosh -1 sinh
=snNX| —— | + COSX | —/— Separate the fraction ®

h h



Expressions of the Form A sin X + B cos x

We can write expressions of the form Asin x + B cos x in terms of a single trigono-
metric function using the addition formula for sine. For example, consider the
expression

1sianL@cosx
2 2

If weset ¢ = /3, then cos¢ = 3 and sin ¢ = V/3/2, and we can write

1. V3 . :
Esmx+TCosx= COS¢ SINX + sSin ¢ cos x

=gn(x + ¢) = sin(x + g)

We are able to do this because the coefficients 3 and \/3/2 are precisely the cosine
and sine of a particular number, in this case, /3. We can use this same ideain gen-
eral towrite Asinx + B cos x in the form k sin(x + ¢). We start by multiplying the
numerator and denominator by VA% + B? to get

A B
Asinx + Bcosx = VA? + Bz( snx + ——— cosx)
VA? + B? VA? + B?

We need a number ¢ with the property that

A B
COSp = —F——— and

sing =————
VA? + B? VA? + B?

Figure 2 shows that the point (A, B) in the plane determines a number ¢ with pre-

538 CHAPTER 7 Analytic Trigonometry
A
' (4,B)
BA,
>
¢
0 A X
Figure 2

cisely this property. With this ¢, we have
Asinx + Bcosx = VA? + B?(cos¢ sinx + sin ¢ cosx)
= VA? + B2sin(x + ¢)

We have proved the following theorem.

Sums of Sines and Cosines

If A and B arereal numbers, then
Asinx + Bcosx = ksin(x + ¢)
wherek = VA2 + B2and ¢ satisfies

A B
COSh = —F——— and

sng =———
VA? + B? VA? + B?
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Example 6 A Sum of Sine and Cosine Terms
Express3sinx + 4 cosxintheformksin(x + ¢).

Solution By the preceding theorem, k = V/AZ + B2 = \/3? + 42 = 5. The
angle ¢ has the property that sin ¢ = ¢ and cos ¢ = 2. Using a calculator, we find
¢ = 53.1°. Thus

3sinx + 4cosx = 5sin(x + 53.1°) [

Example 7 Graphing a Trigonometric Function

Write the function f(x) = —sin 2x + V3 cos 2xin the form k sin(2x + ¢) and
use the new form to graph the function.

Solution SinceA= —1andB = V3,wehavek = VA? + B?= V1 + 3= 2.
Theangle ¢ satisfiescos ¢ = —5andsin ¢ = V/3/2. From thesigns of these
quantitieswe concludethat ¢ isin quadrant I1. Thus, ¢ = 27/3. By the preceding
theorem we can write

2
f(x) = —sin2x + V3 cos2x = 25in(2x + ;)
Using the form
f(x) = 2sin Z(X + g)

we see that the graph is a sine curve with amplitude 2, period 277/2 = 7, and phase
Figure 3 shift —7/3. The graph is shown in Figure 3. ]

Exercises

_ iti i i 3 2 . 37 2
1-12 m Useanadd!tlon or wbtractlonfqrmulatoflnd the exact 15. c0s " cos =™ + sin 27 gn 57
value of the expression, as demonstrated in Example 1. 7 21 7 21
1. sin75° 2. sin15° T T
tan — + tan —
3. c0s105° 4. c0s195° 16 18 9
o ar
5. tan 15° 6. tan 165° 1-—tan——tan—
a a 189
7 nlg—w 8 cosﬂ—w tan 73° — tan 13°
' 12 ' 12 17. lan/s” —tanls”
1 + tan 73°tan 13°
T . 5
% tan(—E) 10. sm( E) 18, cos =T cos( E) - sinls—wsin(—z>
' 15 5 15 5
117 T
11. cos ——— 12. tan —
12 12 19-22 m Prove the cofunction identity using the addition and
13-18 ® Use an addition or subtraction formulato write the subtraction formulas.
expression as a trigonometric function of one number, and then T T
find its exact value. 19. tan| — —u ) = cotu 20. cot E —u ) =tanu

13. sin 18° cos 27° + cos 18° sin 27°

. . 21. sec(z—u):cscu 22. csc(z—u):secu
14. cos 10° cos 80° — sin 10° sin 80°

2 2
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23-40 m Prove the identity.

23. sin<x — %) = —COSX

24. cos x—%) =snx

25. sin(x —
27. tan(x —

ar T
28. sin| — — =gn| — +
8. sin > x) sm(2 x)
a . a
. +—= )+ -— =
29 cos(x 6) sun(x 3) 0

™ tanx — 1
.tan( x—— | = ——
(X 4> tanx + 1

31 sin(x +y) —sin(x —y) = 2cosxsiny
32. cos(x +y) + cos(x —y) = 2COSXCOSY
cotxcoty + 1

33. cot(x —y) =
cot(x =) coty — cot X
cotxcoty — 1
34. cot(x +y) = Coxey = 2
cotx + coty
sin(x —
35. tanx — tany = M
COS X COSY
cos(x +y)

36. 1 —tanxtany =
COS X COSY

sin(x +y) — sin(x — y) B
3. cos(x + y) + cos(x — y) tany

38. cos(x + y) cos(x — y) = cos’x — sin¥y

39. sin(x +y + z) = SiNXCOSY COSz + COSXSINY COSz
+ cosxcosysinz — sinxsinysinz
40. tan(x — y) + tan(y — z) + tan(z — x)
= tan(x — y) tan(y — z) tan(z — x)

41-44 m \Write the expression in terms of sine only.
41. —V3sinx + cosx
43. 5(sin 2x — cos 2x)

42. sinx + cosx
44. 3sinx + 3\V3cos wx

4546 m (a) Expressthe function interms of sineonly.
(b) Graph the function.

45. f(x) = sinx + cos X
47. Show that if B — a = /2, then
sin(x + «) + cos(x + B) = 0

46.g(x) = cos2x + V3sin 2x

48. Letg(x) = cosx. Show that

g(x+h) —g(x) fcosx<l - cosh> B sinx(smh)
h a h h

49. Refer tothefigure. Show that « + 8 = vy, and find tanvy.

50. (a) If Lisalineinthe plane and 6 isthe angle formed by
the line and the x-axis as shown in the figure, show that
the slope m of the line is given by

m=tané

YA

=Y

o/
(b) LetL;and L, betwo nonparallel linesin the plane with

slopes m, and my, respectively. Let ¢ be the acute angle
formed by the two lines (see the figure). Show that

X

(c) Find the acute angle formed by the two lines

y=1ix+1 ad y=-3x—3

(d) Show that if two lines are perpendicular, then the slope
of oneisthe negative reciprocal of the slope of the
other. [Hint: First find an expression for cot i.]
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r! 51-52 m (@) Graph the function and make a conjecture, then

(b) prove that your conjectureistrue.

ar a
51. y=sin®[ x+ — ) + sin2( - —)
Y (X 4) X7

52, y = —3[cog(x + 7) + cog(x — 7)]

53. Find A + £B + «Cinthefigure. [Hint: First use an ad-
dition formulato find tan(A + B).]

/ !

A B C
1 1 1
Applications

E% 54. Adding an Echo A digital delay-device echoes an input

signal by repeating it afixed length of time after itisre-

ceived. If such adevice receives the pure note fy(t) = 5sint

and echoes the pure note f,(t) = 5 cost, then the combined

soundis f(t) = fi(t) + f(t).

(8) Graphy = f(t) and observe that the graph has the form
of asinecurvey = ksin(t + ¢).

(b) Find kand ¢.

55. Interference Two identical tuning forks are struck, one a
fraction of a second after the other. The sounds produced are
modeled by f;(t) = C sinwt and fy(t) = Csin(wt + «a).
The two sound waves interfere to produce a single sound
modeled by the sum of these functions

f(t) = Csnwt + Csin(wt + «)

(a) Usethe addition formulafor sine to show that f can be
written in theform f(t) = Asin wt + B cos wt, where
A and B are constants that depend on a.

7.3
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(b) Supposethat C = 10 and a = /3. Find constants k and
¢ sothat f(t) = ksin(wt + ¢).

L MAVAVAV

Discovery ¢ Discussion

56. Addition Formula for Sine In the text we proved only
the addition and subtraction formulas for cosine. Use these
formulas and the cofunction identities

sinx = cos(z - x)
2

COSX = s:in(z — x)
2

to prove the addition formulafor sine. [Hint: To get started,
use the first cofunction identity to write

sin(s +t) = cos<% —(s+ t))

o))

and use the subtraction formulafor cosine]

57. Addition Formula for Tangent Use the addition formu-
las for cosine and sine to prove the addition formula for tan-
gent. [Hint: Use

sin(s + t)

tan(s + —_—
( cos(s + t)

t) =

and divide the numerator and denominator by cos s cost.]

Double-Angle, Half-Angle,

and Product-Sum Formulas

Theidentities we consider in this section are consequences of the addition formulas.
Thedouble-angle formulasallow usto find the val ues of the trigonometric functions
at 2x from their values at x. The half-angle for mulasrelate the values of the trigono-
metric functions at 3x to their values at x. The product-sum for mulasrelate products
of sines and cosines to sums of sines and cosines.

Double-Angle Formulas

The formulas in the following box are immediate consequences of the addition for-
mulas, which we proved in the preceding section.
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Double-Angle Formulas

Formula for sine: Sin 2x = 2.sin X cos x

Formulas for cosine: cos2x = cosX — sin’x
=1-2sin’x
=2cosx — 1

2tan x

Formula for tangent: tan2x = ———-
1 — tan'x

The proofs for the formulas for cosine are given here. You are asked to prove the re-
maining formulas in Exercises 33 and 34.

®  Proof of Double-Angle Formulas for Cosine
€os2x = cos(X + X)
= COSX COSX — SinXsinXx
= cos’x — Sin’x

The second and third formulas for cos 2x are obtained from the formula we just
proved and the Pythagorean identity. Substituting cos’x = 1 — sin?x gives
C0S 2X = COS’X — Sin’X
= (1 — sinX) — sin’
=1—2sn

Thethird formulais obtained in the same way, by substituting sin’x = 1 — cos>x. =

Example 1 Using the Double-Angle Formulas
If cosx = —3and xisin quadrant |1, find cos 2x and sin 2x.
Solution Using one of the double-angle formulas for cosine, we get

cos2x = 2cosx — 1

2\? 8 1
—2(‘3> B R

To use the formulasin 2x = 2 sin x cos x, we need to find sin x first. We have

5
snx=V1-cosx=V1-(-2P= %
where we have used the positive square root because sinx is positive in quadrant 11.

Thus

Sin2x = 2sin X Cos X

B
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Example 2 A Triple-Angle Formula
Write cos 3x in terms of cos x.
Solution

€os 3x = cog(2X + X)

COS2X COSX — Sin 2X sin X Addition formula

(2cos’>x — 1) cosx — (2sinx cosx) sin x Double-angle formulas

= 20X — COSX — 2 SiN°X COS X Expand

= 2c0S’X — cosX — 2cosX (1 — cos’) Pythagorean identity

= 20X — COSX — 2COSX + 2 cos’X Expand

= 4 cos’x — 3cosX Simplify "

Example 2 shows that cos 3x can be written as a polynomial of degree 3 in cos x.
The identity cos 2x = 2 cos’x — 1 shows that cos 2x is a polynomial of degree 2 in
cos x. Infact, for any natural number n, we can write cos nx as a polynomial in cos x
of degree n (see Exercise 87). The analogous result for sin nx is not true in general.

Example 3 Proving an Ildentity

_— sin 3x
Prove the identity —————— = 4 CcOoSX — SeCX.
Sin X COS X

Solution We start with the left-hand side.
sin 3x sin(x + 2x)
Sin X CoS X Sin X cos X

Sin X CoS 2X + COoS X Sin 2X
= - Addition formula
Sin X Cos X

sinx (2cos — 1) + cosx (2sinx cosx)
= - Double-angle formulas
Sin X cos X

snx(2cos™ — 1)  cosx(2sinxcosx)
= + Separate fraction

Sin X COS X Sin X cos X
2cosx — 1
= ———— + 2C0SX Cancel
COS X
1
=2C0SX — ——_ + 2C0sX Separate fraction
COoS X
= 4C0SX — SEC X Reciprocal identity m

Half-Angle Formulas

The following formulas allow us to write any trigonometric expression involving
even powers of sine and cosine in terms of the first power of cosine only. This tech-
nique isimportant in calculus. The half-angle formulas are immediate consequences
of these formulas.
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Formulas for Lowering Powers

. 51— cos2x 1 + cos2x
SnNX=——— COSX = ————
2 2
tarex = 1 — cos2x
1 + cos2x

= Proof Thefirst formulaisobtained by solving for sin? in the double-angle
formulacos 2x = 1 — 2 sin’x. Similarly, the second formula s obtained by solving
for cos?x in the double-angle formula cos 2x = 2 cos?x — 1.

The last formula follows from the first two and the reciprocal identities:

1 — cos2x
tarx — sin’ 2 1 - cos2x .
cos’x 1+ cos2x 1+ cos2x
2

Example 4 Lowering Powers in a
Trigonometric Expression

Express sin’x cosx in terms of the first power of cosine.

Solution We use the formulas for lowering powers repeatedly.

. 1—cos2x\ [ 1+ cos2x
Sin’X cos’X =
2 2
1-cof2x 1 1
—f—z—zcoszZX
_1_1<1+cos4x>_1_1_cos4x
4 4 2 4 8 8

1 1cos4x = 1(1 — cos 4x)
8 8 8

Another way to obtain thisidentity isto use the double-angle formulafor sinein
the form sin x cosx = 3 sin 2x. Thus

1 1/ 1 — cos4x 1
Ta o =g 2 = = — —
sin® cos’x 4 S 2x 4( 5 ) 8(1 Cos 4x) n

Half-Angle Formulas
R /1 — cosu . — /1 + cosu
2 2 2 2

u 1-cosu sinu
tan— = - =
2 sinu 1 + cosu

The choice of the + or — sign depends on the quadrant in which u/2 lies.
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® Proof We substitute x = u/2 in the formulas for lowering powers and take the
square root of each side. Thisyields the first two half-angle formulas. In the case of
the half-angle formulafor tangent, we get

ian Y — & [Lcosu
2 N1+ cosu
N 1——cosu\/1-cosu Multiply numerator and
— 1+ cosu 1 — cosu denominator by 1 — cos u
. [ —cos u)?
=t [ Simplify
1 — coslu P

+\1—cosu| VA% = |A|

|sinul and 1— cos’u = sin‘u

Now, 1 — cos u is nonnegative for all values of u. It isalso true that sinu and
tan(u/2) aways have the same sign. (Verify this.) It follows that

u 1--cosu
tan - = ——
2 snu

The other half-angle formulafor tangent is derived from this by multiplying the
numerator and denominator by 1 + cos u. u

Example 5 Using a Half-Angle Formula
Find the exact value of sin 22.5°.

Solution Since 22.5° ishalf of 45°, we use the half-angle formulafor sine with
u = 45°. We choose the + sign because 22.5° isin the first quadrant.

> = 5 alf-angle formula
= 1_7\[2/2 Cos 45° = V2/2
2
2—-\V2
= 4 Common denominator

% 2 - \/5 Simplify ]

Example 6 Using a Half-Angle Formula
Find tan(u/2) if sinu = 2and uisin quadrant I1.

Solution To usethe half-angle formulas for tangent, we first need to find cos u.
Since cosine is negative in quadrant 11, we have

cosu=—V1- snu
- ViI-FF- 5

5
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u_ 1-cosu

Thus tan — -
2 sinu
1+ V21/5 54+ V21
= = .
2 2

5

Product-Sum Formulas

It is possible to write the product sin u cos v as a sum of trigonometric functions. To
see this, consider the addition and subtraction formulas for the sine function:

sin(u + v) = sinucosv + cosusny
sin(u — v) = sinucosv — cosusnv
Adding the left- and right-hand sides of these formulas gives
sin(u + v) + sin(u — v) = 2sinucosv
Dividing by 2 yields the formula
sinucosv = 3[sin(u + v) + sin(u — v)]

The other three product-to-sum formulas follow from the addition formulas in a

similar way.
Product-to-Sum Formulas
sinucosv = 3[sin(u + v) + sin(u — v)]
cosusinv = 3[sin(u + v) — sin(u — v)]
cos U cosv = 3[cos(U + v) + cos(u — v)]
snusiny = 3[cos(u — v) — cos(U + v)]

Example 7 Expressing a Trigonometric Product as a Sum
Express sin 3x sin 5x as a sum of trigonometric functions.

Solution Using the fourth product-to-sum formulawith u = 3x and v = 5x and
the fact that cosine is an even function, we get

sin 3xsin 5x = 3[cos(3x — 5x) — cog(3x + 5x) ]
= 3 cos(—2x) — 3 cos 8x
= 2c0S2x — 3 cos 8x "
The product-to-sum formulas can also be used as sum-to-product formulas. This

is possible because the right-hand side of each product-to-sum formulais a sum and
the left sideis a product. For example, if we let

X+y
= d =
u > an v >
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in the first product-to-sum formula, we get
X+y x-—-y
cos
2 2

sin = (sinx + siny)

x+ycosx—y
2

S'e] sinx + siny = 2sin

The remaining three of the following sum-to-product formulas are obtained in a
similar manner.

Sum-to-Product Formulas

. ) Xty  x-—-y
sinX + siny = 2sin cos
2 2
. . X+y . X—-Yy
sinx — siny = 2 cos sin
v 2 2
X+y x-—-y
COSX + COSy = 2 COoS cos >
X + X —
COSX — COSy = —2sin ys:in > ¢

Example 8 Expressing a Trigonometric Sum as a Product
Write sin 7x + sin 3x as a product.
Solution Thefirst sum-to-product formula gives

X + 3X oS X — 3X
2 2

SiN7x + sin3x = 2sin
= 2 sin 5x cos 2x ]

Example 9 Proving an Identity
sin3x — sinx

Verify theidentity ———— = tanx.

enty thel enlwcos3x+cos;x anx

Solution We apply the second sum-to-product formula to the numerator and the
third formula to the denominator.

X+ X . 3X—X
sin

. . 2 cos
sin3X — sin X 2 2
LHS = = Sum-to-product formulas
€0s 3X + Cos X 3X + X 33X — X
2 cos cos

2 2

2 cos2xsinx
== = Simplify

 2.00S2X COS X

sinx
= —— =tanx = RHS Cancel [
COS X
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Exercises

1-8 ®m Find sin 2x, cos 2x, and tan 2x from the given
information.

33. Usethe addition formulafor sineto prove the double-angle
formulafor sine.

5

1. sinx =33, Xxinquadrant| 34. Usethe addition formula for tangent to prove the double-

angle formulafor tangent.

2. tanx = —3%, xinquadrant |
3. cosx =137, cscx<0 4. cscx=4, tanx<0 X x X o _
] s 3540 m Findsin_, cos_, and tan — from the given information.
5. sinx= —3, xinquadrant |1l 22 2
6. secx =2, xinquadrant IV 35. snx=3 0°<x<90°
7. tanx = —3, cosx>0 36. cosx = —3, 180° < x < 270°
8 cotx =3 sinx>0 37. cscx =3, 90° < x< 180°

) ) 38 tanx=1 0°<x<90°
9-14 m Usetheformulas for lowering powers to rewrite

the expression in terms of the first power of cosine, asin 39. secx =3, 270° < x<360°
Example 4. 40. cotx =5, 180° < x < 270°
9. sin®x 10. cos’x
41-46 = Write the product as a sum.
11. cosx sin*x 12. cos’x sin’x P
41. sin 2x cos 3x 42. sinxsinbx
13. cos’x sin*x 14. cos’x
43. cos X sin 4x 44. cos 5x cos 3x
1526 ®m Use an appropriate half-angle formulato find the X X
exact value of the expression. 45. 3 cos4x cos 7x 46. 11sin 2 cosz
15. sin 15° 16. tan 15°
17, tan 22.5° 18, sin 75° 47-52 m Write the sum as a product.
19. cos 165° 20. cos 112.5° 47. sin5x + sin 3x 48. sSinx — sin 4x
. 3 49. cos4x — cos 6x 50. cos9x + cos 2x
2L tang 22. coso" 51. sin2x — sin7x 52. sin 3x + sin4x
23. cosiz 24. tan 5% 53-58 m Find the value of the product or sum.
1 1
53. 2sin52.5°sn97.5° 54. 3 cos37.5° cos7.5°
. 97 L ) ) )
25. sin Y 26. sin 1 55. cos37.5°sin7.5° 56. sin 75° + sin 15°

. o i s
27-32 m Simplify the expression by using a double-angle 57. €05 255° — cos 195 58. cos 12 +cos 12

formula or a half-angle formula.

27. (a) 2sin18° cos18° 59-76 m Prove the identity.

(b) 2sin 360 cos30

2tan 7° 2tan 76 59. cos?5x — sin?5x = cos 10x
28. —_— b) ———— . .
@ 1-—ta?7° (®) 1— tan’ 76 60. sin 8x = 2 sin 4x cos 4x
29. (a) cos?34° — sin?34° (b) cos’50 — sin?56 61. (sinx + cosx)? =1 + sin2x
0 0 % 0 2tanx sin 4x
30. (a) cos’= — si’— b) 2sin—cos— 62. ———— = sn2x 63. — = 4 C0S X COS 2X
@ 2 2 () 22 1 + tan® sinx
sin 8° 1 — cos49 1+ sin2x
31 —_— by ———— — " =1+2lscxcsc
@ 1+ cos& () sin 46 sin 2x 2 SBOXCSEX
/1 — cos30° /1 — cos 80 2tanx — cotx) 1 — tan®
2. - - 65, ————5— =9n2Xx 66. cot2Xx = ——
%2 @ 2 (b) 2 tan’x — cot?x 2 tan x



(D
e

[ D]
]

(D
e

67.

68.
69.

70.

71.

73.

74.

75.

76.

77.
78.
79.
80.
81.

82.

83.

85.

86.

SECTION 7.3 Double-Angle, Half-Angle, and Product-Sum Formulas 549

3tanx — tan’x
tandx =" "%
1— 3tanx
4(sin’k + cos’x) = 4 — 3s8in? 2x

cos’™x — sin*x = cos 2x
tan2(§+ E) _1+sinx
2 4 1—sinx
sin3x + sin 7x

sinx + sin 5x
— =tan3x 72
C0S 3X — COS 7x

= = cot 2x
Ccos X + €os 5x

snl0x  cos5x
sSn9x + sinx  cos4x

sinx + sin3x + sin 5x
COS X + €0S 3X + C0s bx

snx + siny X+y
COSX + Cosy - tan( 2 )
_sin(x +y) —sin(x —y)

cos(x +y) + cos(x — y)
Show that sin 130° — sin 110° = —sin 10°.
Show that cos 100° — cos 200° = sin 50°.
Show that sin 45° + sin 15° = sin 75°.
Show that cos 87° + cos 33° = sin 63°.

= tan 3x

tan

Prove the identity

Sinx + sn2x + sin3x + sin4x + sin5x tan 3x
COSX + €O0S2X + cos3X + cos4x + cos bx

Use theidentity

Sin 2X = 2 Sin X cos X
n times to show that

sin(2"x) = 2"sin X COSX COS 2X COS4X - - - c0s 2" 1x

sin3x  cos3x
Graph = -
(2) Graph f(x) sinx COS X

(b) Prove the conjecture you made in part (a).

and make a conjecture.

. (8) Graph f(x) = cos2x + 2 sin®x and make a conjecture.

(b) Prove the conjecture you made in part (a).

Let f(x) = sin6x + sin 7x.

(a) Graphy = f(x).

(b) Verify that f(x) = 2 cos3xsin ¥x.

(c) Graphy = 2cosixandy = —2 cos 3 x, together with
the graph in part (a), in the same viewing rectangle.
How are these graphs related to the graph of f?

Let 3x = 7r/3 and let y = cos x. Use the result of Example 2
to show that y satisfies the equation

8y’ —6y—1=0

NOTE This equation has roots of a certain kind that are
used to show that the angle /3 cannot be trisected using a
ruler and compass only.

. (&) Show that thereisapolynomia P(t) of degree 4 such

that cos 4x = P(cos x) (see Example 2).

(b) Show that thereis apolynomial Q(t) of degree 5 such
that cos 5x = Q(cosX).

NOTE In general, there is a polynomial P,(t) of degreen
such that cos nx = P,(cos x). These polynomials are called
Tchebycheff polynomials, after the Russian mathematician
P L. Tchebycheff (1821-1894).

. Intriangle ABC (see the figure) the line segment s bisects

angle C. Show that the length of sis given by

_ 2ab cosx
a+b

[Hint: Use the Law of Sines.]

A

. If A, B, and C are the angles in atriangle, show that

sin2A + sin2B + sin2C = 4sinAsinBsinC

90. A rectangleisto beinscribed in asemicircle of radius5 cm

as shown in the figure.
(a) Show that the area of the rectangle is modeled by the
function
A(B) = 25sin20
(b) Find the largest possible areafor such an inscribed
rectangle.

(c) Find the dimensions of the inscribed rectangle with the
largest possible area.

0
l«—5cm—>]

Applications

91. Sawing a Wooden Beam A rectangular beamisto be

cut from acylindrical log of diameter 20 in.

(a) Show that the cross-sectional area of the beamis
modeled by the function

A(6) = 200sin 20

where 6 is as shown in the figure on the next page.
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(b) Show that the maximum cross-sectional area of such a 94. Touch-Tone Telephones When akey is pressed on a
beam is 200 ir?. [Hint: Use the fact that sinu achieves touch-tone telephone, the keypad generates two pure tones,
its maximum value at u = /2] which combine to produce a sound that uniquely identifies

the key. The figure shows the low frequency f, and the high
frequency f, associated with each key. Pressing a key pro-

duces the sound wave y = sin(27fit) + sin(2mft).
20in. 20in. (a) Find the function that models the sound produced when
P the 4 key is pressed.
9 (b) Use asum-to-product formulato express the sound gen-

erated by the 4 key as a product of asine and a cosine
function.

fa% () Graph the sound wave generated by the 4 key, from

92. Length of a Fold Thelower right-hand corner of along
t=0tot = 0.006s.

piece of paper 6 in. wideisfolded over to the left-hand edge

as shown. The length L of the fold depends on the angle 6. .
Show that High frequency f,
1209 1336 1477 Hz

697 Hz — 1]
fre:&‘;"ncy 770 Hz — 4] (6]

f, 852 Hz — (7] (9]
941Hz — (] (0]

Discovery ¢ Discussion

_ 3
sin 6 cos?

95. Geometric Proof of a Double-Angle Formula Usethe
figureto provethat sin 26 = 2 sin 6 cos 6.

Eﬁ 93. Sound Beats When two pure notes that are closein fre- ¢
quency are played together, their sounds interfere to produce
beats; that is, the loudness (or amplitude) of the sound alter-
nately increases and decreases. If the two notes are given by M 0 B
f1(t) = cos 11t and  fy(t) = cos13t ! 0 !
the resulting sound is f(t) = fi(t) + fy(t). Hint: Find the area of triangle ABC in two different ways.

() Graph thefunctiony = f(t). You will need the following facts from geometry:

(b) Verify that f(t) = 2 cost cos 12t. Anangleinscribed in asemicircleis aright angle, so
(¢) Graphy = 2costandy = —2 cost, together with the £ACBisaright angle.
graph in part (&), in the same viewing rectangle. How The central angle subtended by the chord of acircleis
do these graphs describe the variation in the loudness twice the angle subtended by the chord on the circle, so
of the sound? £BOCis26.

'3 Inverse Trigonometric Functions

If fis aone-to-one function with domain A and range B, then its inverse f  is the
function with domain B and range A defined by

i =y < fly)=x



Figure 1
i) =y & fy) =x

y=sn'x

xY
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(See Section 2.8.) In other words, f ~*istherule that reversesthe action of f. Figure 1
represents the actions of f and f~* graphically.

For afunction to have an inverse, it must be one-to-one. Since the trigonometric
functions are not one-to-one, they do not have inverses. It is possible, however, to re-
strict the domains of the trigonometric functionsin such away that the resulting func-
tions are one-to-one.

The Inverse Sine Function

Let’sfirst consider thesinefunction. Therearemany waysto restrict thedomain of sine
so that the new function isone-to-one. A natural way to do thisisto restrict thedomain
to the interval [— /2, 7/2]. The reason for this choice is that sine attains each of its
values exactly once on thisinterval. Aswe seein Figure 2, on this restricted domain
the sine function is one-to-one (by the Horizontal Line Test), and so hasan inverse.

y =sinx

Theinverse of the function sin is the function sin™* defined by
snlx=y <« sny=x

for —1=x=1land —7/2=<y=m/2. Thegraphof y = sin"*xisshownin Figure 3;
it is obtained by reflecting the graph of y = sinx, —7/2 = x < 7/2, intheliney = x.

Definition of the Inverse Sine Function

Theinverse sine function isthe function sin~* with domain[—1, 1] and
range[—/2, /2] defined by

snlx=y <« sny=x

Theinverse sine function is also called arcsine, denoted by arcsin.

Thus, sin"*x is the number in the interval [— /2, /2] whose sine is x. In other
words, sin(sin"*x) = x. Infact, from the general properties of inverse functions stud-
ied in Section 2.8, we have the following relations.

sin(sin"*’x) =x for—-1=x=1

a a
sin Y(sinx) = x for——=x=<—
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Example 1 Evaluating the Inverse Sine Function
Find: (@ sin'3, (b) sin(—-3), and (c) sin*3.
Solution
(8 Thenumber intheinterval [—/2, 7/2] whose sineis} is /6. Thus,
11
sn '3 = 7/6.

(b) The number in theinterval [— /2, 7r/2] whose sineis —3 is —/6. Thus,

sin (—1) = —/6.

(c) Since3 > 1,itisnotinthedomain of sin"'x, sosin~* 2 is not defined. ]

Example 2 Using a Calculator to Evaluate Inverse Sine
Find approximate values for (&) sin"}(0.82) and (b) sin"*3.

Solution Since no rational multiple of 7 hasasine of 0.82 or 3, we use a calcu-
|lator to approximate these values. Using the| 1nv |[s1n], or [s1n~"], or [ARC STN]
key(s) on the calculator (with the calculator in radian mode), we get

(8 sin"(0.82) ~ 0.96141 (b) sin"!1~ 0.33984 n

Example 3 Composing Trigonometric Functions
and Their Inverses

Find cog(sin™*3).

Solution 1 It'seasy tofind sin(sin™*2). In fact, by the properties of inverse
functions, this valueis exactly 2. To find cos(sin™* £), we reduce this to the easier
problem by writing the cosine function in terms of the sine function. Let
u=sin'2 Since —7/2 = u = /2, cosu s positive and we can write

cosu= +V1-snru
Thus cos(sin'?) = \/1 — sn¥sin"*g)
“ViI-@=Vi-3- VE-!
Solution 2 Let# = sin"2 Then 6 isthe number in the interval [ — /2, 7/2]
whose sineis2. Let'sinterpret  as an angle and draw aright triangle with 6 as one
of its acute angles, with opposite side 3 and hypotenuse 5 (see Figure 4). The

remaining leg of the triangleis found by the Pythagorean Theorem to be 4. From
the figure we get

cog(sin*2) = cosf = ¢ L

From Solution 2 of Example 3 we can immediately find the values of the other

trigonometric functions of § = sin~* 2 from the triangle. Thus

tnfsn %) =3 sedanid=3  osfsin =3
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pu
y=cos 'x
s
2
+ 1 >
-1 0 1 X

Figure 6

Figure 5
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The Inverse Cosine Function

If the domain of the cosine function is restricted to the interval [0, 7, the resulting
function is one-to-one and so has an inverse. We choose this interval because on it,
cosine attains each of its values exactly once (see Figure 5).

y = COs X y=cosx, 0=x=m

Definition of the Inverse Cosine Function

The inver se cosine function is the function cos™ with domain[—1, 1] and
range |0, 7] defined by

coslx=y <« cosy=x

Theinverse cosine function is also called ar ccosine, denoted by arccos.

Thus, y = cos 'x is the number in the interval [0, 7] whose cosine is x. The fol-
lowing relations follow from the inverse function properties.

cos(cos 'x) =x for—1=x=1

cos {cosx) =x for0=x==x

The graph of y = cos™!x is shown in Figure 6; it is obtained by reflecting the graph
of y=cosx,0=x=q,intheliney = x.

Example 4 Evaluating the Inverse Cosine Function
Find: (&) cos (V3/2), (b)cos'0, and (c)cos 3.

Solution

(@ Thenumber in theinterval [0, 77] whose cosineis V/3/2is /6. Thus,
cos (V3/2) = =/6.

(b) The number in the interval [0, 7] whose cosineis 0 is 77/2. Thus,
cos 10 = m/2.

(c) Since no rational multiple of 7 has cosine 3, we use a calculator (in radian
mode) to find this value approximately: cos * 3 =~ 0.77519. [
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1— x?
0
X
Figure 7
cosf = X_ X
1
1
1—x?
0
X
Figure 8
cosf = X_ X
1

Example 5 Composing Trigonometric Functions
and Their Inverses
Write sin(cos™*x) and tan(cos 'x) as algebraic expressionsin xfor —1 = x = 1.

Solution 1 Letu = cos 'x. We need to find sinu and tanu in terms of x.
Asin Example 3 the idea here is to write sine and tangent in terms of cosine.
We have

. snu *V1- cosu
sinu = +V1 — cosu and tanu = =

Cosu cosu

To choose the proper signs, note that u liesin the interval [0, 7] because

u = cos 'x. Since sinu is positive on thisinterval, the + sign is the correct
choice. Substituting u = cos™x in the displayed equations and using the relation
cos(cos 'x) = x gives

- -1 2 -1 1-x

sin(cos *x) = V1 — X and tan(cos *x) = —
Solution 2 Let# = cos x, socosf = x. In Figure 7 we draw aright triangle
with an acute angle 6, adjacent side x, and hypotenuse 1. By the Pythagorean Theo-
rem, the remaining legis V1 — x2. From the figure,

sn(cos *x) =singd = V1—-x* and tan(cos 'x) =tanfh=———" =

NOTE In Solution 2 of Example 5 it may seem that because we are sketching a
triangle, the angle # = cos™*x must be acute. But it turns out that the triangle method
worksfor any 6 and for any x. The domainsand ranges of all six inversetrigonometric
functions have been chosen in such away that we can always use a triangle to find
ST (x)), where Sand T are any trigonometric functions.

Example 6 Composing a Trigonometric Function
and an Inverse

Write sin(2 cos *x) as an algebraic expressioninx for —1 = x < 1.

Solution Letd = cos x and sketch atriangle as shown in Figure 8. We need to
find sin 20, but from the triangle we can find trigonometric functions only of 0, not
of 20. The double-angle identity for sineis useful here. We have

sin(2 cos *x) = sin 26

= 2sinfcos6 Double-angle formula

— o(\/ 2

- 2( 1-x )X From triangle

=2xV1-x? m

The Inverse Tangent Function

We restrict the domain of the tangent function to theinterval (—/2, 7/2) in order to
obtain a one-to-one function.



Figure 9
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Definition of the Inverse Tangent Function

555

The inver se tangent function is the function tan™* with domain R and range

(—m/2, w/2) defined by
tan"lx=y < tany=x

Theinverse tangent function is also called ar ctangent, denoted by
arctan.

Thus, tan~*x is the number in the interval (—/2, 7/2) whose tangent is x. The

following relations follow from the inverse function properties.

tan(tan"'x) = x  forxeR

aw a
tan Y(tanx) = x  for—— < x < —
(tanx) 2 >

Figure 9 shows the graph of y = tan x on the interval (—/2, 7/2) and the graph

of itsinverse function, y = tan™x.

YA

Example 7 Evaluating the Inverse Tangent Function

Find: (a) tan'1, (b) tan"*V3, and (c) tan *(—20).

Solution

(@ Thenumber intheinterval (—/2, /2) with tangent 1 is /4. Thus,
tan 11 = 7w/4

(b) The number in theinterval (—/2, /2) with tangent V3is /3. Thus,
tan V3 = /3.

() Weuseacaculator to find that tan~*(—20) =~ —1.52084.
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Shoreline

Z
/\T
P 0
Z
d

Lighthouse
< 2 mi >

Figure 10

See Exercise 59 for away of finding
the values of these inverse trigono-
metric functions on a calculator.

Example 8 The Angle of a Beam of Light

A lighthouseislocated on an island that is 2 mi off a straight shoreline (see
Figure 10). Express the angle formed by the beam of light and the shorelinein
terms of the distance d in the figure.

Solution From the figure we see that tan = 2/d. Taking the inverse tangent of
both sides, we get

tan Y(tan ) = tan‘1<§>

2
0 = tan1<d> Cancellation property [

The Inverse Secant, Cosecant,
and Cotangent Functions

To define the inverse functions of the secant, cosecant, and cotangent functions, we
restrict the domain of each function to a set on which it is one-to-one and on which
it attains all its values. Although any interval satisfying these criteriais appropriate,
we choose to restrict the domainsin away that simplifies the choice of signin com-
putations involving inverse trigonometric functions. The choices we make are also
appropriate for calculus. This explains the seemingly strange restriction for the do-
mains of the secant and cosecant functions. We end this section by displaying the
graphs of the secant, cosecant, and cotangent functions with their restricted domains
and the graphs of their inverse functions (Figures 11-13).

TRRE 1 \ \ r4
\ \ \ \
| | | | — P
\ \ \ \
\ \ \ \ |
\ \ \ \ ™
\ O v 7 I 27 | x R I
[ \ \ 2
\ \ \ \
\ \ \ \ ; / >
\ \ \ \ -1 |01 x
Figure 11 ‘ ‘ ‘ ‘
The inverse secant function y=secx, 0=sx<Z r=x< y = sec 'x
\ 74 \ \ I4
\ \ \ .
\ \ \ 15
\ \ \ J
\ 14 \  — I
\ \ \
- 0 T 27 X s
\ T \ \ 2
\ \ \
‘ | | } | >
\ \ \ -10] 1 x
Figure 12 ‘ ‘ ‘

. . 3 _
The inverse cosecant function y=cscx, 0<x=7,m<x=73 y=csc 'x
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The inverse cotangent function

Exercises

1-8 = Find the exact value of each expression, if itis
defined.

1 (a) sn*}  (b) cos '} (c) cos*2

2. (a) sin‘lﬁ (b) cos‘lﬁ (©) cos‘l( ﬁ)
2 2 2

3. (a) sin’lﬂ (b) cos’lg (©) sin’l(—ﬁ)
2 2 2

4. (a) tan*V3 (b) tan ¥(—V3) (¢) sn"*v3

5 (a) sin'1 (b) cos 1 (©) cos}(—1)

6. (@ tan"'1  (b) tan ¥(—1) (¢) tan"10

7. (a) tan’1§ (b) tan’l( %) (©) sn"¥-2)

8. (@ sn'0  (b) cos 'O (©) cosH(—1)

9-12 m Useacalculator to find an approximate value of each
expression correct to five decimal places, if it is defined.

9. (a) sin"%(0.13844)
(b) cos™(—0.92761)
(@) cos (0.31187)
(b) (26.23110)
@) (1.23456)
(b) (1.23456)
(@ cos}(—0.25713)
(b) tan™}(—0.25713)

10.

tan™
11. tan™
sin”

12.

y=cotx, 0<x<m

y =cot™'x

13-28 = Find the exact value of the expression, if itis
defined.

13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

sin(sin"*%)
cos(cos *%)
tan(tan™*5)

sin(sin~'5)

cos’l( cos E)
3
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27.

28.

CHAPTER 7 Analytic Trigonometry
AT A% 51-52 ® (a) Useagraphing deviceto find all solutions of the
tan{ 2s8n7 equation, correct to two decimal places, and (b) find the exact
solution.

cos’l( V3sin %)

51. tan ix + tan 12x = %

52. sin"'x — cos 'x =0

29-40 = Evaluate the expression by sketching atriangle, asin
Solution 2 of Example 3.

29. sin(cos*2 ..
( J Applications
B 71 4
30. tan(sin™*4) 53. Height of the Space Shuttle An observer views
31 sin(tan ' %) the space shuttle from a distance of 2 miles from the
. launch pad.
32. cogtan™S5) (a) Expressthe height of the space shuttle as a function of
33. sec(sin ' 3) the angle of elevation .
17 (b) Expressthe angle of elevation 6 as afunction of the
34. csofcos ™ ) height h of the space shuittle.
35. cos(tan'2)
36. cot(sin"'3)
37. sin(2 cos ') -1 5
-
38, tan(2tan 1 5) IR
39. sin(sin"*3 + cos *3) //// : h
-~
40. cos(sin'2 — cos ') //// :
-~ |

et N
41-48 m Rewrite the expression as an algebraic expression in x. | 2 mi |
41. cog(sin *x)
42. sin(tan™*x) . _

54. Height of a Pole A 50-ft pole casts a shadow as shown in
43. tan(sin”*x) the figure.
44. cos(tan~? (a) Expressthe angle of elevation 6 of the sun asafunction
s(tan™x) of thelength s of the shadow.

45. cos(2 tan"*x) (b) Find theangle # of elevation of the sun when the
46. sin(2:sin"1) shadow is 20 ft long.
47. cog(cos x + sin"'x)

48.

sin(tan *x — sin"*x)

49-50 m (a) Graph the function and make a conjecture, and

(b) prove that your conjectureistrue.

49.

50.

50 ft
y =sin"tx+ cos!x

.1

= tan"x + tan =
y X



55. Height of a Balloon A 680-ft rope anchors a hot-air
balloon as shown in the figure.

(a) Expresstheangle# asafunction of the height h of the

balloon.
(b) Findtheangled if the balloon is 500 ft high.

56. View from a Satellite Thefiguresindicate that the
higher the orbit of a satellite, the more of the earth the
satellite can “see” Let 0, s, and h be asin the figure, and
assume the earth is a sphere of radius 3960 mi.

(a) Expresstheangle 6 asafunction of h.
(b) Expressthe distance s asafunction of 6.

(c) Expressthe distance s asafunction of h.
[Hint: Find the composition of the functionsin
parts (a) and (b).]

(d) If the satelliteis 100 mi above the earth, what isthe
distance sthat it can see?

(e) How high does the satellite have to be in order
to see both Los Angeles and New York, 2450 mi
apart?

N

57.
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Surfing the Perfect Wave For awave to be surfableit
can't break al at once. Robert Guza and Tony Bowen have
shown that a wave has a surfable shoulder if it hitsthe
shoreline at an angle 6 given by

6= sin’l<71 )
(2n+1)tanp

where B isthe angle at which the beach slopes down and

wheren=0,1,2,....

(a) For B =10° find ® whenn = 3.

(b) For B = 15°, find # when n = 2, 3, and 4. Explain why
the formula does not give avalue for 6 whenn = 0 or 1.

Discovery ¢ Discussion

58.

59.

Two Different Compositions The functions

fX) =snsnx)  ad  g(x) = sin"(sinx)

both simplify to just x for suitable values of x. But these
functions are not the same for all x. Graph both f and g to
show how the functions differ. (Think carefully about the
domain and range of sin™1)

Inverse Trigonometric Functions on a Calculator

Most calculators do not have keys for sec™?, csc™?, or cot ™.
Prove the following identities, then use these identities and a
calculator to find sec 12, csc 13, and cot *4.

1
sec x = cos‘l(;), x=1

1
cscix = sin’l(;) x=1

1
cot ix = tan’l(;), x>0
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e

DISCOVERY
PROJECT

Small 6 Large 6

Where to Sit at the Movies

Everyone knows that the apparent size of an object depends on its distance from
the viewer. The farther away an object, the smaller its apparent size. The appar-
ent size is determined by the angle the object subtends at the eye of the viewer.

If you are looking at a painting hanging on awall, how far away should you
stand to get the maximum view? If the painting is hung above eye level, then the
following figures show that the angle subtended at the eye is small if you are too
close or too far away. The same situation occurs when choosing whereto sitin a
movie theatre.

-

Small 6

1. Thescreenin atheatreis 22 ft high and is positioned 10 ft above the floor,

whichisflat. Thefirst row of seatsis 7 ft from the screen and the rows are
3 ft apart. You decide to sit in the row where you get the maximum view, that
is, where the angle 0 subtended by the screen at your eyesis a maximum.
Suppose your eyes are 4 ft above the floor, asin the figure, and you sit at a
distance x from the screen.
11
7
Ve
e
7

e 22 ft

7
7
7
e
z Al
.
4’&’ 10 ft
41y 4

3t Tt

I X }

(a) Show that = tan1<zf) - tanl(i>.

(b) Use the subtraction formulafor tangent to show that

0 = tan—l(22X>
x% + 168

(c) Useagraphing deviceto graph 6 as afunction of x. What value of
X maximizes 62 In which row should you sit? What is the viewing angle
inthisrow?
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2. Now suppose that, starting with the first row of seats, the floor of the seating
areaisinclined at an angle of @ = 25° above the horizontal, and the distance
that you sit up theinclineis x, as shown in the figure.

(a) Usethe Law of Cosines to show that

I b Cosl(a2+b2—484>
2ab
221t where
l a?= (7 + xcosa)? + (28 — xsina)?
and
o b2 = (7 + xcosa)? + (xsina — 6)°

(b) Use agraphing device to graph 6 as afunction of x, and estimate the
value of x that maximizes 6. In which row should you sit? What is the
viewing angle 6 in this row?

y#A 3 Trigonometric Equations

An equation that contains trigonometric functions is called a trigonometric equa-
tion. For example, the following are trigonometric equations:

sin’x + cos’x = 1 2snx—1=0 ta’2x—1=0

The first equation is an identity—that is, it is true for every value of the variable x.
The other two equations are true only for certain values of x. To solve a trigonomet-
ric equation, we find all the values of the variable that make the equation true. (Ex-
cept in some applied problems, we will always use radian measure for the variable.)

Solving Trigonometric Equations

To solve a trigonometric equation, we use the rules of algebrato isolate the trigono-
metric function on one side of the equal sign. Then we use our knowledge of the val-
ues of the trigonometric functions to solve for the variable.

Example 1 Solving a Trigonometric Equation
Solvethe equation2sinx — 1 = 0.
Solution We start by isolating sinx.
2snx—1=0 Given equation

2snx=1 Add 1

. 1
SNX = 5 Divide by 2
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Weather Prediction

Modern meteorologists do much
more than predict tomorrow’'s
weather. They research long-term
wesather patterns, depletion of the
ozone layer, global warming, and
other effects of human activity on
the weather. But daily weather pre-
dictionisstill amajor part of mete-
orology; its value is measured by
theinnumerable human lives saved
each year through accurate predic-
tion of hurricanes, blizzards, and
other catastrophic weather phe-
nomena. At the beginning of the
20th century mathematicians pro-
posed to model weather with equa-
tionsthat used the current values of
hundreds of atmospheric variables.
Although this model worked in
principle, it was impossible to pre-
dict future weather patterns with it
because of the difficulty of measur-
ing all the variables accurately and
solving al the equations. Today,
new mathematical models com-
bined with high-speed computer
simulations have vastly improved
weather prediction. As a result,
many human as well as economic
disasters have been averted.
Mathematicians at the National
Oceanographic and Atmospheric
Administration (NOAA) are con-
tinually researching better meth-
ods of weather prediction.
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Because sine has period 27, we first find the solutions in the interval [0, 27r). These

arex = /6 and x = 5/6. To get al other solutions, we add any integer multiple
of 27 to these solutions. Thus, the solutions are

_ 57

X:z+2k’7T, X—?+2k7r

6

wherek is any integer. Figure 1 gives a graphical representation of the solutions.

YA

N\ T/ /N [
\ [\ /

T

<
Il

=Y

il
_Im s Sm 137 17 25m
6 6 6 6 6 6
=sinx
1+ y
Figure 1

Example 2 Solving a Trigonometric Equation
Solve the equation tan?x — 3 = 0.
Solution We start by isolating tanx.

tan’x — 3 =10 Given equation
tan’x = 3
tanx = +V/3

Because tangent has period 7, we first find the solutionsin the interval
(—m/2,m/2). Thesearex = —m/3 and x = /3. To get al other solutions, we
add any integer multiple of 7 to these solutions. Thus, the solutions are

Add 3

Take square roots

X=—%+k77, X=%+k7T

wherek is any integer.

Example 3 Finding Intersection Points

Find the values of x for which the graphs of f(x) = sinx and g(x) = cosx
intersect.

Solution 1: Graphical

The graphsintersect where f(x) = g(x). In Figure 2 we graph y, = sin x and

Yy, = cos x on the same screen, for x between 0 and 27r. Using or the
Intersect command on the graphing calculator, we see that the two points of
intersection in thisinterval occur where x = 0.785 and x =~ 3.927. Since sine
and cosine are periodic with period 27, the intersection points occur where

x =~ 0.785 + 2k and X = 3.927 + 2k
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where k is any integer.

1.5 1.5

6.28 0 6.28

" Intersection " Intersection
© X=.78539816 Y=.70710678 © X=3.9269908 Y=-.7071068

—1.5 —1.5
Figure 2 (a (b)
Solution 2: Algebraic

To find the exact solution, we set f(x) = g(x) and solve the resulting equation
algebraicaly.

Sin X = COoS X Equate functions

Since the numbers x for which cos x = 0 are not solutions of the equation, we can

divide both sides by cos x.
sin x
— =1 Divide by cos x
COS X

tanx =1 Reciprocal identity

Because tangent has period 7, we first find the solutionsin the interval
(—/2, w/2). The only solution in thisinterval isx = /4. To get all solutions,
we add any integer multiple of #r to this solution. Thus, the solutions are

X:%-l—kﬂ

wherek is any integer. The graphs intersect for these values of x. You should use
your calculator to check that, correct to three decimals, these are the same values
aswe obtained in Solution 1. [

Solving Trigonometric Equations by Factoring

Factoring is one of the most useful techniques for solving equations, including trigo-
nometric equations. The ideaisto move all terms to one side of the equation, factor,

If AB=0,thenA=00rB=0. then use the Zero-Product Property (see Section 1.5).

Example 4 An Equation of Quadratic Type
Solve the equation 2 cos’x — 7 cosx + 3 = 0.
Solution We factor the left-hand side of the equation.

Equation of Quadratic Type 200X — 7cosX + 3 =0  Given equation

2C2-7C+3=0
(2C - 1)(C-3) =0

(2cosx — 1)(cosx — 3) =0 Factor
2cosx—1=0 or cosx—3=0 Set each factor equal to O

coOsSX=3  or cosx =3  Solve for cos x
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Because cosine has period 27, wefirst find the solutionsin the interval [0, 277). For
the first equation these are x = /3 and x = 57/3. The second equation has no so-
lutions because cosx is never greater than 1. Thus, the solutions are

5
X=%+2k77, X=%T+2k7r

wherek is any integer. |

Example 5 Using a Trigonometric Identity
Solve the equation 1 + sinx = 2 cos’x.

Solution We use atrigonometric identity to rewrite the equation in terms of a
single trigonometric function.

1+ sinx = 2 cos’x Given equation

1+ sinx=2(1— sin’x) Pythagorean identity

Equation of Quadratic Type Fut all terms on one side

2sn’X +snx—1=0

28°+S—-1=0 of the equation
(25-1)(S+1)=0 (Zsinx - 1)(sinx + 1) =0 Factor
2snx—1=0 or snx+1=0 Set each factor equal
to O
. 1 .
smx=5 or sinx= -1 Solve for sin x
_ T 5l _ 31 Solve for x in the
X= 6’ 6 or xX= 2 interval [0, 21r)

Because sine has period 27, we get all the solutions of the equation by adding any
integer multiple of 27 to these solutions. Thus, the solutions are
5 3
x=%+2k7r, x=%+2k7-r, x=777+2k77

where Kk is any integer.

Example 6 Using a Trigonometric Identity
Solve the equation sin2x — cosx = 0.

Solution Thefirst termisafunction of 2x and the second is afunction of x, so
we begin by using atrigonometric identity to rewrite the first term as a function of
xonly.

sin2x — cosx =0 Given equation
2sinxcosx — cosx =0 Double-angle formula

cosx(2snx—1) =0 Factor
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cosx =0 or 2snx—1=0 Set each factor equal to O
Solve for sin x

1377

x=— 22
2" 2

or X = Solve for x in the interval [0, 27r)

Both sine and cosine have period 27r, so we get all the solutions of the equation by
adding any integer multiple of 27 to these solutions. Thus, the solutions are

T 3 T 57
=+ ==+ =—+ ==+
X 2 2Kkar, X 2 2kar, X 5 2kar, X 5 2k

where k is any integer. [

Example 7 Squaring and Using an ldentify
Solve the equation cosx + 1 = sinxin theinterval [0, 277).

Solution To get an equation that involves either sine only or cosine only, we
square both sides and use a Pythagorean identity.

cosx + 1 =sinx Given equation
cos’x + 2cosx + 1 = sin’ Square both sides

COX + 2CosX + 1 =1 — cos>X  Pythagorean identity

2cos’X + 2cosx = 0 Simplify
2cosx(cosx + 1) =0 Factor
2cosx =0 or cosx+1=0 Set each factor equal to O
cosx =0 or cosx = —1 Solve for cos x
T 3 Solve for x in the
X= 2" 2 or X=m interval [O, 27r)

Because we squared both sides, we need to check for extraneous solutions. From
Check Your Answers, we see that the solutions of the given equation are 7r/2 and 7.

Check Your Answers

x=". x=2r. ‘=
2. 2 .
COSE‘F]._' sinz 0033—77+1—? sins—w cos +12 sin
2 2 2 2 m T
0+1=1 v oO+12 -1 X -1+1=0 v

If we perform an operation on an equation that may introduce new roots, such as
squaring both sides, then we must check that the solutions obtained are not extrane-
ous; that is, we must verify that they satisfy the original equation, asin Example 7.
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Equations with Trigonometric Functions
of Multiple Angles

When solving trigonometric equations that involve functions of multiples of angles,

we first solve for the multiple of the angle, then divide to solve for the angle.

Example 8 Trigonometric Functions
of Multiple Angles
Consider the equation 2sin 3x — 1 = 0.
(@) Find all solutions of the equation.
(b) Find the solutionsin theinterval [0, 27).

Solution
(8) We start by isolating sin 3x, and then solve for the multiple angle 3x.

2sn3x—1=0 Given equation
2sn3x =1 Add 1
. 1
Sin3x = 5 Divide by 2
T 5
X = g, ? Solve for Bx in the interval [0, 27r)

To get al solutions, we add any integer multiple of 27 to these solutions. Thus,

the solutions are of the form

5
3x=%+2k7-r, 3x=%+2k7r

To solvefor x, we divide by 3 to get the solutions

T 2kar 50  2kw
+==, x=-—+
18 3 18 3

where k is any integer.

(b) The solutionsfrom part (a) that arein theinterval [0, 277) correspond to k = O,
1, and 2. For al other values of k, the corresponding values of x lie outside this

interval. Thus, the solutionsin theinterval [0, 27) are

« — o 5i 137 177m 257 297w
18 18’ 18’ 18’ 18 18

Example 9 Trigonometric Functions of Multiple Angles

Consider the equation \/§tan§ —1=0.

(a) Find al solutions of the equation.
(b) Find the solutionsin theinterval [0, 4r).



Equation of Quadratic Type
T2-T-2=0
(T—=2)T+1) =0
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Solution
(@ We start by isolating tan(x/2).

X
\/§tan5 —1=0 Given equation
X
\@tani =1 Add 1
X 1
tanE RV Divide by V'3
X z T

Solve for ~ in the int \( T >
- olve Tor —In e interva —
2 6 2 2' 2

Since tangent has period 7, to get all solutions we add any integer multiple
of 7r to this solution. Thus, the solutions are of the form

X v
—=—_+k
2 6 7

Multiplying by 2, we get the solutions
X = % + 2kar

where k is any integer.

(b) The solutions from part (@) that arein the interval [0, 477) correspondtok = 0
and k = 1. For all other values of k, the corresponding values of x lie outside
thisinterval. Thus, the solutionsin theinterval [0, 47) are

(=2 :
33

Using Inverse Trigonometric Functions

to Solve Trigonometric Equations

So far, al the equations we've solved have had solutions like 7r/4, /3, 57 /6, and so
on. We were able to find these solutions from the special values of the trigonometric
functions that we've memorized. We now consider equations whose solution requires
us to use the inverse trigonometric functions.
Example 10 Using Inverse Trigonometric Functions
Solve the equation tan®x — tanx — 2 = 0.
Solution We start by factoring the left-hand side.
tan’x —tanx — 2= 10 Given equation
(tanx — 2)(tanx + 1) =0 Factor
tanx —2=0 or tanx +1=0 Set each factor equal to O

tanx = 2 or tanx = —1 Solve for tan x

1 w Solve for x in the interval
X =tan "2 or X=—-—

F Gy
2' 2
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Because tangent has period 7, we get all solutions by adding integer multiples of 7
to these solutions. Thus, al the solutions are

X = tan 12 + kar, x=—%+kw

wherek is any integer. |

If we are using inverse trigonometric functions to solve an equation, we must keep
in mind that sin~* and tan™* give valuesin quadrants | and IV, and cos™* gives values
in quadrants | and I1. To find other solutions, we must look at the quadrant where the
trigonometric function in the equation can take on the value we need.

Example 11 Using Inverse Trigonometric Functions

() Solvetheequation3sing — 2 = 0.

(b) Useacalculator to approximate the solutionsin theinterval [0, 27), correct to
five decimals.

Solution

(8 Westart by isolating sin 6.

v 3snf —2=0 Given equation
1 3snf =2 Add 2
. 2
____‘\_2__ sm9=§ Divide by 3
3
,  FromFigure3we seethat sing equals in quadrants | and I1. The solution in quad-
-1 1 x rantlisf = sin 2 Thesolutionin quadrant Il is@ = 7 — sin"* 2. Since these are
the solutionsin theinterval [0, 27), we get all other solutions by adding integer
multiples of 27 to these. Thus, all the solutions of the equation are
= 0= (sn') +2km, 0= (7m—snty+ 2kn
where k is any integer.
Figure 3 (b) Using acalculator set in radian mode, we see that sin* 3 =~ 0.72973 and
m — sin 12 = 2.41186, so the solutionsin the interval [0, 277) are
0 =~ 0.72973, 0 ~ 2.41186 =
Exercises
1-40 = Find al solutions of the equation. 11. 3cseX — 4 =0 12. 1 —tanx =0
1L cosx+1=0 2.snx+1=0 13. cosx(2sinx+ 1) =0  14. secx(2cosx — V2) =0
3. 2snx—1=0 4. V2cosx—1=0 15. (tanx + V3)(cosx + 2) = 0
5 V3tanx +1=0 6. cotx+1=0 16. (2cosx + V3)(2sinx — 1) =0
7. 4cosx—1=0 8 2co’Xx—1=0 17. cosxsinx—2cosx =0 18. tanxsinx + sinx =0
9. sec™—2=0 10. csc’x — 4=0 19. 4cox —4cosx+1=0 20. 2siP’x—sinx—1=0



21. sin’x=2snx+ 3 22. 3tan’x = tan x

23. sin’x = 4 — 2 cosx 24, 2cox +sinx =1
25.2sn3x+1=0 26. 2cos2x+1=0
27. secd4x—2=0 28. V3tan3x+1=0
29. V3sin2x = cos2x 30. cos3x = sin 3x
31.cos§—1:o 32.25in§+\/§=0
33. tan§+\/§=0 34. secg=cosf

35. ta’x — 9tanx =0

36. 3tan®x — 3tan>x —tanx+ 1=10
37.
38.

40.

4sinxcosx+2sinx—2cosx—1=0
sin 2x = 2 tan 2x 39. cos?2x — siP2x =0

SeC X — tan X = cos X

41-48 = Find all solutions of the equation in the
interval [0, 27).

41.
43.
44,
45.
47.

2cos3x=1 42. 3cscx = 4
2sinxtanx —tanx=1—2sinx

Sec x tan X — cosx cot X = sin X

46. 2sin®x — cosx = 1

48. 3sec? + 4 cosx = 7

tanx — 3cotx=0

tan 3x + 1 = sec 3x

49-56 m (@) Find all solutions of the equation. (b) Usea
calculator to solve the equation in the interval [0, 27), correct
to five decimal places.

49. cosx =04

51. secx—5=0

53. 58n’x—1=0

55. 3sin’x — 7sinx+2=0
56. tan*x — 13tan>x + 36 = 0

50. 2tanx =13
52. 3sinx = 7 cos x

54. 2sin2x —cosx =0

57-60 m Graph f and g on the same axes, and find their points
of intersection.

57. f(x) = 3cosx + 1, g¢g(x) =cosx — 1

58. f(x) = sin2x, ¢(x) =2sn2x+ 1
59. f(x) =tanx, g(x) = V3
60. f(x) =sinx — 1, g(x) = cosx

61-64 ® Use an addition or subtraction formulato simplify the
equation. Then find all solutionsin theinterval [0, 27r).

61. cosxcos3x —sinxsin3x =0
62. COSXCOS2X + Sinxsin2x = 3

[ D)
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63. Sin2xcosx + cos2xsinx = V3/2

64. sin3xcosx — cos3xsinx =0

65-68 ® Use adouble- or half-angle formulato solve the
equation in theinterval [0, 27).

65. sin2x + cosx =0 66. tang—sinx=0

67. cos2Xx + cosx = 2 68. tanx + cot x = 4sin 2x

69-72 m Solve the equation by first using a sum-to-product
formula.
69. sinx+sn3x=0 70. cosbx — cos7x =0

71. cos4x + cos 2X = COoS X 72. sin5x — sin 3x = cos 4x

73-78 m Use agraphing device to find the solutions of the
equation, correct to two decimal places.

73. sin2x =X 74. cosx=§
75. 25" = x 76. sinx=x3
COS X
77. Tl 2 78. cosx = 3(eX + e™)
Applications

79. Range of a Projectile If aprojectileisfired with velocity
vp @ an angle 0, then itsrange, the horizontal distance it
travels (in feet), ismodeled by the function

v2sin26
RO ="

(See page 818.) If v, = 2200 ft/s, what angle (in degrees)
should be chosen for the projectile to hit atarget on the
ground 5000 ft away?

80. Damped Vibrations The displacement of a spring vibrat-

ing in damped harmonic motion is given by

y = 4e *sin 27t
Find the times when the spring is at its equilibrium
position (y = 0).

81. Refraction of Light It has been observed since ancient
timesthat light refracts or “bends’ asit travels from one

medium to another (from air to water, for example). If v, is
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82.

83.

84.
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the speed of light in one medium and v, its speed in another
medium, then according to Snell’s L aw,
sinf; vy

sind, v,
where 6, is the angle of incidence and 6, is the angle of
refraction (see the figure). The number v,/v, is called the
index of refraction. Theindex of refraction for several
substancesis given in the table. If aray of light passes
through the surface of alake at an angle of incidence of 70°,
find the angle of refraction.

Refraction

from air to
Substance substance
Water 1.33
Alcohol 1.36
Glass 1.52
Diamond 241

Total Internal Reflection When light passes from a
more-dense to aless-dense medium—from glass to air, for
example—the angle of refraction predicted by Snell’s Law
(see Exercise 81) can be 90° or larger. In this case, the light
beam is actually reflected back into the denser medium.
This phenomenon, called total internal reflection, isthe
principle behind fiber optics.

Set 0, = 90° in Snell’s Law and solve for 6, to determine
the critical angle of incidence at which total internal reflec-
tion begins to occur when light passes from glassto air.
(Note that the index of refraction from glassto air isthe
reciprocal of theindex from air to glass.)

Hours of Daylight In Philadel phiathe number of hours
of daylight on day t (wheret is the number of days after
January 1) is modeled by the function

2m

L(t) = 12 + 2.83 sin(365 (t - 80))

(@) Which days of the year have about 10 hours of day-
light?

(b) How many days of the year have more than 10 hours of
daylight?

Phases of the Moon Asthe moon revolves around the
earth, the side that faces the earth is usually just partialy
illuminated by the sun. The phases of the moon describe
how much of the surface appears to be in sunlight. An astro-
nomical measure of phaseis given by the fraction F of the
lunar disc that is lit. When the angle between the sun, earth,

85.

[ M
‘an

and moonisé (0 = 6 = 360°), then
F=1(1- cos#)
Determine the angles 6 that correspond to the following
phases.
(@ F=0 (new moon)
(b) F=0.25 (acrescent moon)
(c) F=0.5 (firstor last quarter)
(d) F=1 (full moon)

L 4

Belts and Pulleys A thin belt of length L surrounds two
pulleys of radii Rand r, as shown in the figure.
(a) Show that the angle 6 (in radians) where the belt
crosses itself satisfies the equation
L

0
0+ 2cot—- = —
2 R+ 7

[Hint: ExpressL intermsof R, r, and 6 by adding up
the lengths of the curved and straight parts of the belt.]
(b) Supposethat R = 2.42ft,r = 1.21ft,and L = 27.78ft.
Find 6 by solving the equation in part (8) graphically.
Express your answer both in radians and in degrees.

Discovery ¢ Discussion

86.

87.

Equations and Identities Which of the following
statements is true?

A. Every identity is an equation.
B. Every equation is an identity.
Give examplesto illustrate your answer. Write a short

paragraph to explain the difference between an equation and
an identity.

A Special Trigonometric Equation What makesthe
equation sin(cos x) = 0 different from all the other
equations we've looked at in this section? Find all solutions
of this equation.
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1

(a) Statethe reciprocal identities.
(b) State the Pythagorean identities.
(c) Statethe even-odd identities.
(d) State the cofunction identities.

(b) For what values of x is the equation sin(sin"*x) = x
true?

(c) For what values of x isthe equation sin(sinx) = x
true?

2. Explain the difference between an equation and an identity. 8. (a) Definetheinverse cosinefunction cos . What areits
g )  identity? domain and range?
3. How do you prove a trigonometric identity (b) For what values of x is the equation cos(cos *x) = x
4. (a) Statethe addition formulas for sine, cosine, and tangent. true?
(b) Statethe subtraction formulas for sine, cosine, and (c) For what values of x isthe equation cos Y(cos x) = x
tangent. true?
5. (a) Statethe double-angle formulasfor sine, cosine, and 9. (a) Define the inverse tangent function tan™*. What are its
tangent. domain and range?
(b) Statethe formulas for lowering powers. (b) For what values of x is the equation tan(tan™*x) = x
(c) Statethe half-angle formulas. true?
i ; -1 -
6. (a) Statethe product-to-sum formulas. (@] tFrﬂre ’\;vhat values of x isthe equation tan™*(tanx) = x
(b) State the sum-to-product formulas. '
i . ) S ) 10. Explain how you solve atrigonometric equation by
7. (a) Definetheinverse sinefunctionsin™. What areits factoring
domain and range? '
Exercises
1-24 m Verify the identity. 13, tang — csCX — cot X
1. sinf(cotf + tan6) = sec o . .
s 1 sin(x +y) + sin(x —y) ~ tanx
2. (sec — 1)(sec6 + 1) = tan‘0 " cog(x +y) + cosg(x — )
3. COS’XCSCX — CSCX = —sinX 15, sin(x + y) sSin(x — y) = sirx — siny
1 _ 2 X X
A g LTt 16. cscx — tan ;) = cotx 17. 1 + tenxtan = secx
cos’x — tanx :
5. ————— = cot? — sec sin3x + cos3x ,
sin 18. m—1+28n2x
g Lt ocx sin’ ; cOs’X  COSX X % \2
" secx 1 — cosx "1-sinx secx — tanx 19. (0055_5”‘5) =1-4dnx
8. (1 —tanx)(1 — cotx) = 2 — sec X CC X cos 3X — CoS 7X
9. sin’ cot?x + cos’x tan’x = 1 sin3x + sin 7x
10. (tanx + cot x)? = csc?x secx sin2x  cos2x
21, —; — ——— = secX
sin 2x sinx Cos X
11— = tanx 0 o
1 + cos2x 22. (cosx + cosy)‘ + (sinx — siny)* = 2 + 2cos(X +Y)
cos(x + 1+ tanx secx — 1 X
12. M= coty — tanx 23. tan(x+z) = 24. =tan

cosxsiny

4) 1-tanx snxsecx 2
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2528 m (@) Graph fandg. (b) Do the graphs suggest that the
equation f(x) = g(x) isan identity? Prove your answer.

2
25 f(x) =1-— (cosE - sin§> , g(X) =sinx

2 2
26. f(x) = sinx + cosx, g¢g(x) = Vsn’ + cos
X 1
27. f(x) = tanxtan >, =—
f(x) = tanxtan > g(x) cosx

28. f(x) =1 — 8sin’ + 8sin%, ¢(x) = cos4x

29-30 = (@) Graph the function(s) and make a conjecture, and
(b) proveyour conjecture.

29. f(x) = 2.sin?3x + cos 6x

30. f(x) = sinxcot g g(x) = cosx

31-46 m Solvethe equation in theinterval [0, 277).
31. cosxsinx —sinx =10
33. 2sin’x—5sinx+2=0

32. sinx—2sin’x =0

34, sinx —cosx —tanx = —1
35. 2cos’x — 7cosx+3=0 36. 4sin’x + 2cos’x = 3
1—cosx

37. =
1 + cosx

38. sinx = cos 2x

39. tan’x + tan’x — 3tanx — 3 =10
40. oS 2X CSC?X = 2 €0S 2X 41. tan3x + 2sin2x = cscX
42. cos3x + cos2x + cosx = 0

43, tanx + secx = V3

45, cosx =x2—1 Eﬁ 46, 57 = x

44, 2 cosx — 3tanx =0

47. If aprojectileisfired with velocity v, at an angle 6, then the
maximum height it reaches (in feet) is modeled by the
function

v2sintg

64

(0) =

Suppose v, = 400 ft/s.

(a) Atwhat angle 6 should the projectile be fired so that the
maximum height it reaches is 2000 ft?

(b) Isit possible for the projectile to reach a height of
3000 ft?

(c) Findthe angle 6 for which the projectile will travel
highest.

/\ TM(G)

48. The displacement of an automobile shock absorber is
modeled by the function

f(t) = 27%% gin 4at
Find the times when the shock absorber is at its equilibrium
position (that is, when f(t) = 0). [Hint: 2*> Ofor al real x.]

49-58 m Find the exact value of the expression.

5
49, 15° . Sin——
9. cos 15 50. si 1
51. tanz 52. 25inlcosl

8 12 12
53. sin5° cos 40° + cos5° sin 40°

tan 66° — tan 6°

o4 1 + tan 66°tan 6°

55. coP~ — sin*~
CO: 8 S|n8

56. — cosl +

57. cos37.5° cos7.5°
58. cos67.5° + cos22.5°

59-64 ® Find the exact value of the expression given that
secx = 3 cscy = 3, and xand y are in quadrant I.

59. sin(x + ) 60. cos(x — y)
61. tan(x +y) 62. sin 2x

y y
63. cos > 64. tan >

65—72 m Find the exact value of the expression.

65. sin"%(V/3/2) 66. tan (V3/3)

67. cos(tan 1V/3) 68. sin(cos ¥(V/3/2))

69. tan(sin"* 2) 70. sin(cos* 3)

71. cos(2sin"t3) 72. cos(sin* 3 — cos ' d)

73-74 m Rewrite the expression as an algebraic function of x.

73. sin(tan *x) 74. sec(sin"'x)

75-76 m Express6 interms of x.
75. 76.
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77. A 10-ft-wide highway sign is adjacent to aroadway, as 78. A 380-ft-tall building supports a 40-ft communications
shown in the figure. As adriver approaches the sign, the tower (seethe figure). As adriver approaches the building,
viewing angle 6 changes. the viewing angle 0 of the tower changes.

(a) Expressviewing angle 6 as afunction of the distance x (a) Expresstheviewing angle 6 asafunction of the
between the driver and the sign. distance x between the driver and the building.
(b) Thesignislegible when the viewing angleis2° or Eﬁ (b) At what distance from the building is the viewing angle

greater. At what distance x does the sign first become 0 aslarge as possible?

legible?

40 ft
// T
——1 s
\ 10t T
\ o
0 e
3 N 380 ft
\ o
v X vz
\ ///
\ Sz
\ 60 27
X /é
\ L % s
\ |
[ X \
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Test

. Verify each identity.

(a) tanfsin6 + cosh = sech

tan x
(b) ————— = cscx (1 + secx)
1 — cosx
2tan
(c) 7)(2: sin 2x
1 + tan“x

. Letx=2sin0, —7/2 < 0 < x/2. Simplify the expression

4 — x?

. Find the exact value of each expression.

(a) Sin 8 cos22° + cos & sin 22° (b) sin75° () sin%

. For the angles « and B in the figures, find cos(a + B).

. (a) Writesin3x cos 5x as a sum of trigonometric functions.

(b) Writesin 2x — sin 5x as a product of trigonometric functions.

. Ifsing = —¢ and 9 isin quadrant 111, find tan(6/2).

7. Graphy = sinxand y = sin™1x, and specify the domain of each function.

10.

11.

. Express 6 in each figure in terms of x.

(a) (b)

/) ] ]
4

. Solve each trigonometric equation in the interval [0, 27).

(a) 2cos’x +5cosx+2=0 (b) sin2x — cosx =0

Find all solutionsin the interval [0, 27r), correct to five decimal places:

5cos2x = 2

Find the exact value of cos(tan™* ).



Focus on Modeling
Traveling and Standing Waves

WEe've learned that the position of a particle in simple harmonic motion is described
by afunction of the formy = A sin wt (see Section 5.5). For example, if astring is
moved up and down asin Figure 1, then the red dot on the string moves up and down
in simple harmonic motion. Of course, the samehol dstruefor each point onthestring.

;

Figure 1

What function describes the shape of the whole string? If wefix an instant in time
(t = 0) and snap a photograph of the string, we get the shape in Figure 2, which is
modeled by

y = Asinkx
wherey isthe height of the string above the x-axis at the point x.

| o~
Figure 2 _A% AN\, N A

y = Asinkx

Traveling Waves

If we snap photographs of the string at other instants, as in Figure 3, it appears that
the wavesin the string “travel” or shift to the right.

(2]
oo
oo

Figure 3

The velocity of the wave isthe rate at which it movesto theright. If the wave has
velocity v, then it movesto the right adistance vt in timet. So the graph of the shifted
wave at timetis

y(x, t) = Asink(x — ut)

This function models the position of any point x on the string at any time t. We use
the notation y(x, t) to indicate that the function depends on the two variables x and t.
Here is how this function models the motion of the string.

= |f wefix X, then y(x, t) isafunction of t only, which gives the position of the
fixed point x at timet.

= |f wefix t, then y(x, t) isafunction of x only, whose graph is the shape of the
string at the fixed timet.

575
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Figure 4
Traveling wave

Example 1 A Traveling Wave

A traveling wave is described by the function

y(X, t) :33in(2x—72Tt>, x=0

(@ Find the function that models the position of the point x = /6 at any timet.
Observe that the point movesin simple harmonic motion.

(b) Sketch the shape of the wave whent = 0, 0.5, 1.0, 1.5, and 2.0. Does the wave
appear to be traveling to the right?

(c) Findthe velocity of the wave.

Solution
(@) Substituting x = 7/6 we get

a . ar a . ar a
Zt)=3sn(2-Z - Zt) =3sn[ = - Tt
y<6 > S”( 6 2 > s”(s 2 >

The functiony = 3 sin(3 — 5t) describes simple harmonic motion with ampli-
tude 3 and period 277/(7/2) = 4.
(b) The graphsare shown in Figure 4. Ast increases, the wave movesto the right.

(c) We express the given function in the standard form y(x, t) = Asink(x — ut):
y(x, t) =3 sin<2x = Zt) Given

=3sin2<x—Zt> Factor 2

Comparing this to the standard form, we see that the wave is moving with
velocity v = /4. n

Standing Waves

If two waves are traveling along the same string, then the movement of the string is
determined by the sum of the two waves. For example, if the string is attached to a
wall, then the waves bounce back with the same amplitude and speed but in the op-
posite direction. In this case, one wave is described by y = A sin k(x — wt) and the
reflected wave by y = Asin k(x + ut). Theresulting waveis

y(x,t) = Asink(x — ot) + Asink(x + ut) Add the two waves
= 2A sin kx cos kvt Sum-to-product formula

The points where kx is a multiple of 27r are special, because at these pointsy = 0
for any timet. In other words, these points never move. Such points are called nodes.
Figure 5 showsthe graph of thewavefor several valuesof t. We see that the wave does
not travel, but simply vibrates up and down. Such awaveis called a standing wave.

y

- 2

Figure 5 —ZAJ{ v \/E

A standing wave
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Example 2 A Standing Wave

Traveling waves are generated at each end of awave tank 30 ft long, with equations
y=15 sin(Zx - 3t) and y=15 sin<7;x + 3t>

(a) Find the equation of the combined wave, and find the nodes.

(b) Sketchthegraphfort =0, 0.17, 0.34, 0.51, 0.68, 0.85, and 1.02. Isthisa
standing wave?

Solution
(@) The combined wave is obtained by adding the two equations:

y=15 sin(gx = 3'[) + 15 sin(gx = 3'[) Add the two waves

. T
= 34dn EX cos 3t Sum-to-product formula

The nodes occur at the values of x for which singx = 0, that is, where
£x = kar (k aninteger). Solving for x we get x = 5k. So the nodes occur at

x = 0,5, 10, 15, 20, 25, 30

(b) The graphs are shown in Figure 6. From the graphs we see that thisisa
standing wave.

t=20 t=0.17 t=0.34 t=0.51 t=0.68 t=0.85 t=1.02

(=)

%5’;
>
!

Figure 6

y(x, t) = 3sin%xcos,3t
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Problems

1. Wave on a Canal A wave on the surface of along canal is described by the
function

y(x t) = 55in(2xf %t) XxX=0

(a) Find the function that models the position of the point x = 0 at any timet.

(b) Sketch the shape of the wave whent = 0, 0.4, 0.8, 1.2, and 1.6. Isthis a traveling
wave?
(c) Find the velocity of the wave.

2. Wave in a Rope Traveling waves are generated at each end of atightly stretched
rope 24 ft long, with equations

y = 0.2sin(1.047x — 0.524t) and y=0.2sin(1.047x + 0.524t)

(a) Find the equation of the combined wave, and find the nodes.
(b) Sketchthegraphfort =0, 1, 2, 3, 4, 5, and 6. Is this a standing wave?

3. Traveling Wave A traveling waveisgraphed at theinstant t = 0. If it ismoving to the
right with velocity 6, find an equation of theformy(x, t) = A sin(kx — kut) for thiswave.

2.7 /\
0 4.6\/.2 13.\/ X
-2.7

4. Traveling Wave A traveling wave has period 277/3, amplitude 5, and velocity 0.5.
(a) Find the equation of the wave.
(b) Sketchthegraphfort =0, 0.5, 1, 1.5, and 2.

5. Standing Wave A standing wave with amplitude 0.6 is graphed at several timest as

shown in the figure. If the vibration has afrequency of 20 Hz, find an equation of the
formy(x, t) = A sin ax cos Bt that models this wave.

y y
0.6 0.6 /\
—0.6 —0.6

t=0s t=10.010s t=0.025s
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6. Standing Wave A standing wave has maximum amplitude 7 and nodes at 0, 7/2, 7,
3w /2, 277, as shown in the figure. Each point that is not a node moves up and down with
period 47r. Find afunction of the form y(x, t) = A sin ax cos Bt that models this wave.

%/\
AN

7. Vibrating String When aviolin string vibrates, the sound produced results from a
combination of standing waves that have evenly placed nodes. The figureillustrates
some of the possible standing waves. Let’s assume that the string has length 7.

(a) For fixed t, the string has the shape of asine curvey = Asinax. Find the appropriate
value of « for each of theillustrated standing waves.

(b) Do you notice a pattern in the values of « that you found in part (2)? What would
the next two values of « be? Sketch rough graphs of the standing waves associated
with these new values of a.

(c) Suppose that for fixed t, each point on the string that is not a node vibrates
with frequency 440 Hz. Find the value of B for which an equation of the form
y = A cos Bt would model this motion.

(d) Combine your answers for parts (&) and (c) to find functions of the form
y(x, t) = Asin ax cos Bt that model each of the standing waves in the figure.
(AssumeA = 1))

f\\/ \/\/ A\/\/

8. Waves in a Tube Standing wavesin aviolin string must have nodes at the ends of
the string because the string is fixed at its endpoints. But this need not be the case with
sound waves in atube (such as a flute or an organ pipe). The figure shows some possible
standing wavesin a tube.

Suppose that a standing wave in atube 37.7 ft long is modeled by the function

y(x, t) = 0.3 cos 3x cos 50zt

Here y(x, t) represents the variation from normal air pressure at the point x feet from the
end of the tube, at time t seconds.

(a) Atwhat points x are the nodes located? Are the endpoints of the tube nodes?
(b) At what frequency doesthe air vibrate at points that are not nodes?



