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Abstract

The most famous cat in modern physics must be the Schrodinger’s cat, in which 
he hypothesized that his cat cannot be determined alive or dead until we look into 
his box, by which the paradox of his half-live cat had been puzzling the quantum 
physicists over three quarter of a century since Schrödinger disclosed it in a 
Copenhagen forum in 1935. Since the disclosure, the paradox has been debated by 
Einstein, Bohr, Schrodinger, and many other renowned physicists, until now. We 
have found the cause of the paradox, and we will show in this chapter of which the 
hypothesis of Schrodinger’s cat is not a paradox after all. It was the timeless radio-
active particle he introduced into the box, since timeless and temporal spaces are 
mutually exclusive. We will show that the whole quantum world is timeless  
(i.e., t = 0), since quantum mechanics can be regarded as mathematics.

Keywords: Schrödinger’s cat, quantum mechanics, superposition principle,  
timeless subspace, temporal space

1. Introduction

One the most famous cats in science must be the Schrödinger’s cat in quantum 
mechanics, in which the cat can be either alive or dead at the same time, unless 
we look into the Schrödinger’s box. The life of Schrödinger’s cat has been puzzling 
the quantum physicists for over eight decades as Schrödinger disclosed it in 1935. 
In this chapter, I will show that the paradox of the cat’s life is primarily due to the 
underneath subspace in which the hypothetical subatomic model is submerged 
within a timeless empty subspace (i.e., t = 0). And this is the atomic model that all 
the particle physicists, quantum scientists, and engineers had been using for over 
a century, since Niels Bohr proposed it in 1913. However, the universe (our home) 
is a temporal space (i.e., t > 0), and it does not allow any timeless subspace in it. I 
will show that by immersing the subatomic model into a temporal subspace, instead 
of a timeless subspace, the situation is different. I will show that Schrödinger’s cat 
can only either be alive or dead, but not at the same time, regardless if we look into 
or not look into the Schrödinger’s box. Since the whole quantum space is timeless 
(i.e., t = 0), we will show that the fundamental superposition principle fails to exist 
within our temporal space but only existed within a timeless virtual space. This is 
by no means of saying that timeless quantum space is a useless subspace. On the 
contrary it has produced numerous numbers of useful solutions for practical appli-
cation, as long as the temporal or causality condition (i.e., t > 0) is not the issue. In 
short, we have found the hypothesis of Schrödinger’s cat is not a physical realizable 
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postulation, and his quantum mechanics as well as his fundamental principle of 
superposition is timeless, which behaves like mathematics does.

One important aspect within our temporal universe (or time-dependent uni-
verse) [1, 2] is that one cannot get something from nothing: there is always a price 
to pay. For example, every piece of temporal subspace (or every bit of information) 
takes energy and time to create. And the created subspace (or substance) cannot 
bring back the section of time that has expensed for its creation. Every temporal 
subspace cannot be a subspace of an absolute empty subspace, and any absolute 
empty space cannot have temporal subspace in it. Any science proven within 
our temporal universe is physically real; otherwise, it is fictitious unless it can be 
repeated by experiments.

Science is a law of approximation and mathematics is an axiom of absolute cer-
tainty. Using exact math to evaluate inexact science cannot guarantee the solution 
exists within our temporal subspace. Science is also an axiom of logic; without logic 
science would be useless for practical application.

In addition, all the fundamental sciences need constant revision. For example, 
science has evolved from Newtonian mechanics to Einstein’s theory of relativity 
and to Schrödinger’s quantum mechanics. And the beauty of the fundamental laws 
must be mathematical simplicity, so that their complicated logics and significances 
can be understood easily. And the advantages have been very useful for extending 
scientific researches and their applications.

Nonetheless, practically all the particle sciences were developed from point-
singularity approximation and had been “unintentionally” embedding a point-
singularity atomic model [3] within an empty timeless subspace, as shown in 
Figure 1.

In which we see that, nucleus and electrons were shown by a dimensionless sin-
gularities representation. And we may not be aware that the model is not a physically 
real model, since the submerged background represents a timeless empty subspace. 
However, a timeless empty subspace cannot exist within our temporal universe! 
Although Bohr’s atomic model have been used since the birth of Bohr’s atom [3], its 
background has been mistakenly interpreted as an absolutely empty timeless subspace. 
Strictly speaking, as a whole it is not a physically correct model, and the solution 

Figure 1. 
An isolated Bohr’s atomic model (or a timeless model); h is the Planck’s constant, and v is the radiation 
frequency.
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should not be used for temporal or causality problems. The reason is that the timeless 
subspace model (i.e., t = 0) cannot exist within our temporal space (i.e., t > 0).

On the other hand, any atomic model as presented in Figure 2 is physically real, 
in which we see that a Bohr atom is embedded within a temporal (time-dependent) 
subspace (e.g., our universe).

2. Flaws of a physical model

Basically all the models are approximated. For example, point-singularity 
approximation for an atomic model offers the advantage of simplicity represen-
tation, but it deviates away from a real physical dimension, which causes the 
accuracy in solution. Secondly, physical model embedded within a timeless  
(i.e., t = 0) subspace is absolutely incorrect, since every physical subspace is a tem-
poral (i.e., t > 0) subspace, and it cannot be coexisted with a time-independent 
(or a timeless) subspace [1, 2]. Therefore as we can see, solution obtained from a 
physical model embedded within a timeless empty subspace shown in Figure 2 is 
absolutely incorrect, and it bounds to have incomplete or fictitious solution. The 
fact is that one of the significant reasons other than the singularity approxima-
tion is the temporal or causality condition (i.e., t > 0) which is required as we 
applied within our temporal universe. Therefore as depicted in Figure 1, it is not a 
physical realizable model, since time-dependent (or temporal) atom cannot exist 
within an absolute empty timeless subspace. As shown, it produces physically 
nonexistent fictitious solutions, which is similar as plunging a temporal machine 
into a nontemporal subspace.

On the other hand as referenced to Figure 2, a temporal (time-dependent) 
atomic model which is embedded within a time-dependent (or temporal) sub-
space is a physical realizable model, in which we see that the temporal or causality 
requirement (i.e., t > 0) imposed by our temporal subspace is included. In fact our 
universe was created by a Big Bang explosion followed by the laws of physics, which 
is a temporal (i.e., t > 0) universe [1, 2]. Therefore, any physical system within our 
temporal space has to follow the law of time (or causality condition), so that every 
physical science has to be proven temporal (i.e., t > 0) within our universe (our 
home); otherwise it is a virtual fictitious science.

Figure 2. 
An isolated atomic model embedded in temporal subspace (or a temporal atomic model). f(x, y, z; t); t > 0 
represents a function of three-dimensional space and time t as a forward variable.
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3. Schrödinger’s equation

One of the most important equations in quantum mechanics must be the 
Schrödinger equation as given by [4, 5]:

     ∂   2  ψ ___ 
∂  x   2 

   +   8  π   2  m _____ 
 h   2 

    (E − V) ψ = 0  (1)

where 𝝍 is the Schrödinger wave function, m is the mass, E is the energy, V is 
potential energy, and h is Planck’s constant. The description of Schrödinger equa-
tion shows that changes of a physical system over time, in which quantum effects 
take place, such as wave-particle duality, are significant. However, the derivation of 
Schrödinger equation was based on point-singularity dimensionless atomic model 
submerged in a timeless empty space. And we have seen that there is a contrasting 
paradox, by which the model used in deriving the famous Schrödinger equation is 
incorrect, since a time-dependent atomic structure was, by not knowing it, embed-
ded in an absolute empty timeless subspace, for which the evaluated Schrödinger 
equation is also a timeless equation [5]. We note that the intention of using the 
timeless subspace Bohr model was inadvertent, since Bohr’s atomic model has been 
successfully accepted, in fact for over a century, and we are still using this model. 
This may be the reason that causes us to overlook the basic assumption, of which a 
time-dependent (temporal) subspace should not be embedded in a timeless sub-
space, since they are mutually exclusive. Nevertheless, the essence of Schrödinger 
equation is to predict a particle probabilistic behavior, as a dynamic particle, by 
means of a wave function. In other words, the outcome is not deterministic but 
a distribution of possible outcomes. But the question is: Is Schrödinger equation 
a physically reliable equation to derive its wave equations? The answer is “no,” as 
remained to be shown in the following:

Since the derivation of Schrödinger equation is based on point-singularity 
approximation which is not a perfect assumption, it is an acceptable good approxi-
mation for this hypothesis. But it is the timeless subspace of the Bohr’s atomic model 
embedded, which produces timeless solutions (i.e., t = 0) that are not acceptable 
within the temporal (time-dependent) subspace. In other words, the solution as 
derived from Schrödinger equation is expected to be timeless since Schrodinger 
equation is a time-independent equation. Thus we see that Schrödinger’s quantum 
mechanics is a time-independent mechanics or timeless (i.e., with respect to the 
absolute empty timeless subspace) mechanics, which does not exist within our 
temporal universe!

As quoted by Feynman [6], “He think he can safely say that nobody under-
stands quantum mechanics. So do not take his lecture too seriously….” Yet, after we 
understood the flaw of Schrödinger’s cat, which has haunted quantum physicists for 
decades, we shall take a closer look at the paradox of the Schrodinger’s cat. And at 
that moment, we may change our mind to saying that we have learned the inconsis-
tency of Schrödinger’s timeless (i.e., t = 0) quantum mechanics, as applied within 
our temporal universe (i.e., t > 0).

However, as I attempt to derive a wave dynamic where a particle is assumed 
situated within a temporal subspace, I am not sure that I will not be buried by 
complicated mathematical formulation (e.g., I have not attempted to do it yet at 
the time being). But I anticipate that the new result would not be paying off at 
least for the time being; it will have a better one than the Schrödinger equation 
that has already provided. But I am sure the solution will obey toward the causality 
condition (i.e., t > 0).
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As has been done by using the Schrödinger equation to evaluate the particle 
wave function, one may need to reinterpret the solution to meet the causality 
constraint as imposed by our temporal universe. Otherwise, the evaluated solution 
would not be useful for practical application, in which we see that instant quantum 
entanglement [7] is one of the typical examples that was derived from the classic 
Schrödinger superposition principle. And we can see that the “instant” (i.e., t = 0) 
entanglement between particles is “fictitious” and it would not happen within our 
temporal space. As we know that within our temporal universe time is distance and 
distance is time, any particle entanglement cannot happen instantly without a price 
to pay (e.g., time or distance).

As we look back to the particle model embedded in an empty subspace for 
deriving the classic Schrödinger equation, without such a simplistic model, viable 
solution may not be able to obtain even using tons of complicated mathematic 
manipulation. Although those assumptions alleviate (somewhat) the complexity in 
analysis, it also introduces incomplete results that may not exist within our uni-
verse. Thus by knowing Schrödinger’s quantum mechanics, it is a time-independent 
(or more precisely a timeless quantum computing machine) mechanics which was 
the consequence of using the assumed particle model within a timeless subspace. 
Since in practice timeless substance cannot exist within our temporal universe, we 
see that the flaw of Schrödinger cat as well the whole quantum space is due to the 
assumption that the embedded subspace is absolutely empty, in which we see that 
one cannot simply insert a timeless quantum machine into a time-dependent  
(i.e., t > 0) subspace.

4. Pauli exclusive principle and particle entanglement

The Pauli exclusive principle [8] states that two identical particles with the same 
quantum state cannot occupy the same quantum state simultaneously, unless these 
particles exist with a different half-spin. While quantum entanglement [7] occurs 
when a pair of particles interacts in such a way that the quantum state of the par-
ticles cannot be independently described, even when the particles are separated by a 
large distance, a quantum state must be described by the pair of particles as a whole.

In view of Pauli exclusive principle, the entanglement between particles does 
exist, but the separation between the particles has to be limited, since the particles 
are situated within a time-dependent subspace (i.e., t > 0) [8]. Again we see that the 
flaw of instant entanglement comes from the assumption that the exclusive prin-
ciple was derived within the timeless subspace, in which we see again that temporal 
and timeless subspaces cannot coexist. In other words, time-dependent particles 
cannot coexist within a timeless subspace.

Before we move away from the timeless issue, we would point out that practi-
cally all of the fundamental principles in science, such as Paul’s exclusive principle, 
Schrödinger’s superposition principle, Einstein’s energy equation, and others, are 
timeless principles, of which they were hypothesized “inadvertently” within a time-
less environment.

5. Schrödinger’s cat

One of the most intriguing cats in quantum mechanics must the Schrödinger’s 
cat, in which it has eluded the particle physicists and quantum scientists for 
decades. Let us start with the Schrödinger’s box as shown in Figure 3; inside the box 
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we have equipped a bottle of poison gas and a device (i.e., a hammer) to break the 
bottle, triggered by the decaying of a radioactive particle, to kill the cat. The box is 
assumed totally opaque of which we do not know that the cat will be killed or not, as 
imposed by the Schrödinger’s superposition principle, until we open the box.

With reference to the fundamental principle of superposition of quantum 
mechanics [4], the principle tells us that superposition holds for multi-quantum 
states in an atomic particle, of which the principle is the “core” of quantum 
mechanics. In other words, without the superposition principle, it will not have 
Schrödinger’s quantum mechanics. In view of this principle, we see that the 
assumed two states of radioactive particle inside the box can actually simultane-
ously coexist, with a cloud of probability (i.e., both one thing and the other existed 
at the same time).

Since the hypothetical radioactive particle has two possible quantum states 
(i.e., decay or non-decay) that existed at the same time, which is imposed by the 
virtue of superposition principle in quantum mechanics, this means that the cat 
can be simultaneously alive and dead, before we open the box.

But as soon as we open the box, the state of superposition of the radioactive 
particle collapses, without proof! In an instant, we have found that after the box 
is opened, the cat is either alive or dead, but not both. This paradox in quantum 
mechanics has been intriguing particle physicists and quantum scientists over 
eight decades, since the birth of Schrodinger’s cat in 1935, as disclosed by Erwin 
Schrödinger who is as famous as Albert Einstein in modern physics.

Let us momentarily accept what the fundamental principle holds, such that 
superposition of a dual-quantum state radioactive particle exists within the box. 
This tells us that the principle has created itself a timeless (i.e., t = 0) quantum 
subspace or time-independent quantum space. However, timeless subspace 
cannot exist within our temporal universe, in which we see that any solution 
(i.e., wave function) as obtained by Schrödinger equation contradicts the basic 
superposition principle, such that a timeless quantum subspace exists within 
our temporal (i.e., time-dependent) universe. This conjecture tells us that the 
hypothetical radioactive material cannot actually exist within the box, since both 
quantum states (i.e., decay or non-decay) cannot occur at the same time within 
a time-dependent subspace. We stress that time is distance and distance is time 
within a temporal subspace.

Figure 3. 
Inside the box we equipped a bottle of poison gas and a device (i.e., hammer) to break the bottle, triggered by 
the decaying of a radioactive particle, to kill the cat.



7

Schrödinger’s Cat and His Timeless (t = 0) Quantum World
DOI: http://dx.doi.org/10.5772/intechopen.86970

Nevertheless, it remains a question to be asked: Where is the source that 
produces the timeless radioactive particle? Why is Schrodinger’s superposi-
tion principle timeless (i.e., t = 0) for which the particle’s quantum states exist 
simultaneously (i.e., t = 0)? A trivial answer is that it has to be coming from 
a timeless subspace where the particle model embedded is shown in Figure 5. 
As we continue searching the root of paradox of the Schrödinger cat, we will 
provide an equivalent example to show that the paradox of the half-life cat is not 
a paradox.

6. Paradox of Schrödinger’s cat

Let us replace the binary radioactive particle with a flipping coin in the 
Schrödinger’s box shown in Figure 4.

So as one flips a coin before it is landed, it is absolutely uncertain that the coin 
will land either as a head or as a tail. Suppose we are able to “freeze” the flipping 
coin in the space at time t’; then the flipping coin is in a timeless mode subspace at 
time t’, which is equivalent to a two-state timeless particle frizzed as time equates 
to t’. Then as soon as we let the flipping coin continuingly flip down at the same 
instance time t = t’, there should be “no” lost time with respect to the time of the 
coin itself, but “not” with respect to the time of the box. In other words, there is a 
section of time 𝛥t that the box has gone by. So there is a time difference between 
the coin’s time and box’s time. That is precisely why we cannot tell if the cat will 
die or be alive, as Schrödinger himself assumed his fundamental principle is 
correct. As soon as we open the box, we have to accept the physical consequence 
that the cat is either dead or alive, but not both. Then I guess Schrödinger creates 
a logic to save his fundamental principle that superposition of the radioactive 
particle quantum states suddenly “collapses” as we open the box, without any 
physical proof. Otherwise the core of quantum mechanics fails to live up with the 
physical reality. Nevertheless as we see it, the failure of the fundamental principle 
is due to the fact that a timeless flipping coin “cannot be coexisted” within a time-
dependent (i.e., t > 0) box.

We further note that it is possible to alleviate the timelessness of superposi-
tion, if we appropriately add the temporal constraint (i.e., t > 0) in deriving the 
Schrödinger equation. We can change the timeless Schrödinger’s equation to a 

Figure 4. 
A flipping coin analogy is substituted in the box for Schrödinger’s cat paradox.
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time-dependent (i.e., t > 0) equation, of which we will see that Schrödinger’s wave 
functions of the dual-state radioactive particle can be shown as 𝝍1 (t) and 𝝍2  
(t + 𝛥t), respectively, where 𝛥t represents a time delay between them. Since time is 
distance and distance within a temporal subspace, we see that the quantum states 
will not occur at the same time (i.e., t = 0). Furthermore, the degree of their mutual 
superposition states can be shown as a time ensemble of < 𝜓1 (t) 𝜓 2*(t+𝛥t)>, 
respectively, where * denotes the complex conjugate, in which we see that a perfect 
degree of mutual superimposition occurs if and only if 𝛥t = 0, which corresponds to 
the timeless (i.e., t = 0) quantum state of the radioactive particle.

Now let us go back to the half-live cat in Schrödinger’s box, where the radioactive 
particle is assumed within a timeless sub-box as shown in Figure 5, in which we see 
that a timeless (i.e., t = 0) radioactive particle is situated inside the time-dependent 
(i.e., t > 0) box, which is “not” a physical realizable postulation for Schrödinger’s 
cat. The fact is that a timeless (t = 0) subspace cannot exist within a time-dependent 
(t > 0) space (i.e., the box). Thus we have shown that again the paradox of 
Schrödinger’s is not a paradox, since the postulated superposition is timeless, and it 
is not a physical realizable principle within our temporal universe!

However, by replacing the timeless particle with a time-dependent (i.e., t > 0) 
particle shown in Figure 5, then we see there is a match in time as a variable with 
respect to the box. Then Schrödinger’s cat can only either be dead or not be dead but 
not at the same time, in which we see that there is nothing to do whether we open 
the box or not to cause the fundamental principle to collapse. In other words, a dead 
cat or a live cat has already been determined before we open up the box. And the 
occurrence of the particle’s quantum states is not simultaneously by means of the 
fundamental principle of Schrödinger, in which we have shown that superposition 
principle does not exist within our temporal space and it only exists within a time-
less virtual subspace similar to what mathematics does.

At last, we have found the flaw of Schrödinger’s cat, where Schrödinger was 
not supposed to introduce a timeless radioactive particle into the box. This vital 
mistake that he committed is apparently due to an atomic model in which sub-
space is assumed to be absolutely empty as shown in Figure 1, in which we see 
that a timeless (i.e., t = 0) particle is wrongly inserted into a temporal (i.e., t > 0) 
box. I believe we have finally found the root of the paradox of Schrödinger’s cat, 
for which we shall leave the cat behind with a story to tell; once upon a time, there 
was a half-life cat!

Figure 5. 
Schrödinger’s box with a timeless radioactive particle. Notice that timeless radioactive particle cannot exist in a 
temporal (i.e., time-dependent) subspace.
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7. Essence of a subatomic model

With high degree of certainty, most of the fundamental laws of science 
embraced the singularity approximation which includes the atomic models embed-
ded within a timeless subspace. As we look at any conventional atomic model, we 
might inadvertently assume that the background subspace is an absolutely empty 
space. And this is the consequence of Schrödinger’s timeless quantum mechanics, 
since any physical atom (i.e., t > 0) cannot be situated within a timeless  
(i.e., t = 0) subspace. Although singularity model works very well for scores of 
quantum mechanical application until the postulation of Schrödinger’s cat emerged. 
Since the paradox of the half-life cat is the core of the fundamental principle, it has 
been argued for over eight decades by Einstein, Bohr, Schrödinger, and many others 
since Schrödinger disclosed the postulation at a Copenhagen forum in 1935. This 
intrigues us to look at Schrödinger’s equation which was developed on an empty 
(i.e., t = 0) subspace platform, in which we see that superposition position collapses 
as soon as we open Schrödinger’s box. This must be the apparent justification for 
Schrödinger to preserve the fate of his fundamental principle. Otherwise his time-
less fundamental principle cannot survive within our temporal universe (i.e., t > 0). 
In short, we see that the hypotheses of Schrödinger’s cat are a fictitious postulation, 
and we have proof that it does not have a viable physical solution, since any time-
less radioactive particle cannot coexist in a temporal box, and we have seen that 
Schrödinger have had inadvertently introduced in the box (Figure 6).

8. Timeless quantum world

Fundamental principle of quantum mechanics tells us that superposition of a 
multi-quantum-state particle holds if and only if within a quantum environment, 
by which it creates itself a timeless quantum subspace, but quantum subspaces can-
not exist within our temporal universe. Then there is a question being asked: Can 
those quantum subspaces be utilized in our temporal universe? The answer is “no” 
and “yes.”

The “no” part answer is that if time component in application is an issue, such 
as applied to “instant” quantum entanglement [9] and “simultaneous” quantum 

Figure 6. 
A time-dependent cat is in a temporal (time-depending) box, in which we see a temporal radioactive particle 
is introduced within Schrodinger’s temporal box.
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states computing [10], then the superposition principle as derived from the time-
independent Schrödinger equation would have a problem, as applied within our 
temporal universe, since the superposition is timeless. For example, those instant 
and simultaneous response promises by the fundamental principle do not exist 
within our temporal space. And the postulated Schrödinger’s cat is not a physical 
realizable solution, in which we have shown that the burden of the cat’s half-life can 
be liberated by using a temporal (i.e., t > 0) radioactive particle instead, in which 
we see that the paradox of Schrödinger’s cat may never be discovered that it is not a 
paradox, if we did not discover that Schrödinger’s quantum mechanics is timeless.

Since the Schrödinger equation is a timeless quantum computer, which is 
designed to solve a variety of particle’s quantum dynamics, the solution as obtained 
from Schrodinger’s equation is also timeless, which produces a non-realizable solu-
tion such as timeless (i.e., t = 0) superposition.

We see that if one forces a timeless (i.e., t = 0) solution into a temporal  
(i.e., t > 0) subspace, one would anticipate paradox solution that does not exist 
within our temporal universe, such as Schrödinger’s half-live cat. This is equivalent 
to chasing a ghost of a timeless half-life cat in a temporal subspace, in which we have 
found that a timeless radioactive particle was inserted within Schrödinger’s box!

As to answer the “yes” part, if temporal aspect as applying a quantum mechani-
cal solution is not an issue within our temporal space, then we have already seen 
scores of solutions as obtained from the Schrödinger equation which have been 
brought to use in practice, since the birth of quantum mechanics in 1933. This is 
similar to using mathematics (i.e., a timeless machine) to obtain solution for time-
dependent application and sometime produces solution not physically realizable, in 
which we see that the Schrödinger equation is a mathematics, which requires a time 
boundary condition (i.e., t > 0) to justify that its solution is physically realizable.

9. Math and temporal (t > 0) space duality

Every physical science existed within our temporal subspace must be temporal 
(i.e., t > 0); otherwise, it is a virtual (or fictitious) science as mathematics does. The 
burden of a scientific postulation is to prove it exists within our universe and then 
find the solution. We shall now show that there exists a duality between science 
and mathematics in which any scientific hypothesis has to be shown that it is within 
the boundary condition of our temporal universe, before accepting it as a real 
postulation. Otherwise, the hypothesis is not a guarantee to be physically real. One 
of the essential boundary conditions is the causality condition (i.e., t > 0), which 
is to show that the solution is temporal and causal (i.e., t > 0). For instance, take 
Einstein’s energy equation [11] as an example as given by.

  𝞮 =  mc   2   (2)

where m is the rest mass and c is the speed of light. In view of this equation, we 
first see that it is not a temporal or time-domain function. Strictly speaking, this 
equation cannot be directly implemented within our temporal subspace, since our 
universe is a temporal variable spatial function which can be described by [1, 2].

  f (x, y, z; t) , t > 0  (3)

where (x, y, z) is a spatial variable and (t > 0) is a forward time variable, in 
which we see that every subspace within our universe is time-dependent variable 
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space. Since energy equation of Eq. () is not time variable equation, it is apparent 
that the equation cannot be directly implemented within our temporal universe. 
To make the energy equation be acceptable or match to our temporal (i.e., t > 0) 
subspace condition, we can transform the equation to become time-domain or 
temporal equation as given by [].

    ∂ ε (t)  _____ ∂ t   =  c   2    ∂ m (t)  _____ ∂ t  , t > 0  (4)

where  ∂ ε (t)  / ∂ t  is the rate of increasing energy conversion,  ∂ m (t)  / ∂ t  is the 
corresponding rate of mass reduction, c is the speed of light, and t > 0 represents a 
forward time variable. Notice that we have transformed the equation into a partial 
differential form which exists only at time t > 0. This indicates that the solution as 
obtained by this equation is compiled by means of the causality (i.e., t > 0) con-
straint, of which the solution can be used within our temporal universe (i.e., t > 0).

On the other hand, if Eq. (4) is imposed by a timeless (i.e., t = 0) constraint as 
shown by

    ∂ ε (t)  _____ ∂ t   =  c   2    ∂ m (t)  _____ ∂ t  , t = 0  (5)

then we see that the solution as obtained by Eq. (5) will be timeless (i.e., existed 
at t = 0). And it cannot be implemented within our temporal (i.e., t > 0) universe.

Needless to say, if we put a constraint on Eq. (3) as can be shown by f(x, y, z; t), 
t = 0. Then we see that a temporal equation has been transformed into a timeless 
equation which exists only at t = 0, in which we see that Eq. (5) cannot be used 
within our temporal universe (i.e., t > 0).

As we know that a timeless space is actually a mathematical virtual space, only 
mathematician and possibly quantum physicist can produce it, since quantum 
mechanics is mathematics. Nevertheless, a timeless space has no time and no 
substance in it. When we look back at all the fundamental laws in science, they 
are mostly presented by point-singularity approximation, and many of them are 
timeless or time-independent equations, such as Schrödinger’s equation. And we 
have shown in proceeding that Schrodinger’s quantum machine is timeless since its 
mechanics was built on an empty subspace. Nevertheless we are going to show some 
possible outcome when a timeless superposition principle is implemented within 
a timeless platform. Before showing, let us introduce a few subspaces that may be 
used for the illustration, as depicted in Figure 7.

Figure 7. 
This figure shows an absolute empty space (a), a virtual space (b), a Newtonian space (c), and Yu’s temporal 
space (d).
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In Ref. to this figure, we see an absolute empty space which has no time, no 
substance, and no coordinate. A mathematical virtual space is an empty and 
timeless space with spatial coordinates. A Newtonian space is filled with substance 
but treated time as an independent variable. And finally a temporal space is filled 
with substance and existed only at t > 0, of which substance and time coexisted 
[1, 2]. We further see that none of the spaces such as absolutely empty, virtual, 
and Newtonian spaces can be a subspace of the temporal space or vice versa, since 
temporal (i.e., t > 0) space is a time-invariant system (i.e., the system analysis 
standpoint) and the others are not.

Now, let us take an example as illustrated in Figure 8 in which we assume three 
delta functions 𝛿(t−t1), 𝛿(t−t2), and 𝛿(t−t3) representing a set of particles that are 
plunging into a timeless subspace system diagram as depicted in Figure 8b. We see 
that output delta functions are superimposed on top of each other at t = 0, shown 
in Figure 8c, of which we note that all the input pulses (i.e., particles) lost their 
temporal identities within a timeless space. And this is precisely the superposition 
principle tells us that the entire quantum states exist simultaneously and instantly 
(i.e., at t = 0). However, superposition principle does not exist within a temporal 
(i.e., t > 0) space. Since time is distance and distance is time, the entire quantum 
states exist simultaneously everywhere only within a timeless space as can be seen 
in Figure 8e. Therefore, it is a serious mistake to assume superposition principle 
works within our temporal universe, such as the paradox of Schrödinger’s cat and 
possibly others. It is interesting to find out from system analysis standpoint [3] how 
a timeless (i.e., t = 0) subspace respond to a time-domain input excitation.

On the other hand, if we plunge the delta pulses within a temporal subspace, 
as shown in Figure 9, we see the output responses are faithfully temporally repro-
duced, which shows the time-invariant property of our temporal subspace, in which 
these particles (e.g., quantum states) are temporally separated, instead of superpos-
ing together at t = 0. And this is precisely the moment when we open Schrodinger’s 
box, we found the cat can only be either dead or alive but not both at the same time. 
Instead of assuming the fundamental principle collapses to justify the superposition 
principle.

Figure 8. 
(a) Shows a set of three pulses (e.g., particles) within a temporal subspace as shown in topographical view 
in (d). As these particles plunge into a timeless subspace of (b), the output responses are superposing at t = 0 
shown in (c), and the superimposed particles can be found all over the timeless domain as can be seen in (e). It 
is interesting to note that within a timeless space, all things are in one and one is everywhere within the space.
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In summing up our illustration, our universe is a causal (i.e., t > 0) time-
invariant system which can be symbolically described by f(x, y, z; t), t > 0, in 
which time and space coexisted. Since time is a constant forwarded variable, the 
speed of time is determined by the velocity of light as given by t ≈ 1/c, where 
c ≈ 186,282 miles/sec, by which our temporal universe was indeed created by 
means of Einstein energy equation that was derived with his relativity theory, 
in which we see that time is distance and distance is time within our temporal 
universe. In contrast within a timeless (i.e., t = 0) space, it has no time and no 
distance, since d = ct and t = 0, for which everything collapses instantly at t = 0 (or 
d = 0) within a timeless space, as superposition principle does. Although scores 
of quantum mechanical solutions have been put into use, it is the fundamental 
principle of superposition that confronted with the temporal boundary condition 
t > 0 that produces Schrödinger’s cat.

Regardless the mutual exclusive issues between timeless and temporal sub-
spaces, some quantum scientists still believe they can implant superposition prin-
ciple within our universe. This is the reason that we would show what would happen 
when a multi-quantum states particle is implemented within a temporal space. For 
simplicity, we will simulate a two-quantum states particle plunging into an empty 
subspace as shown in Figure 10a and b. We further let two quantum states associ-
ated with two eigenfunctions exp.[i(ω1t)] and exp.[i(ω2t)], where ω represents the 
angular frequency of the quantum state. And the output response from an empty 
space is given in Figure 10c that corresponds to a “timeless” superposing dual-
quantum state (a real quantity), where we assume energy is conserved. When this 
timeless simulated response is plunged into a temporal (i.e., t > 0) space as depicted 
in Figure 10d, its output response is shown in Figure 10e, in which we note that the 
output response occurs at t > 0 and it was not started instantly at t = 0, since time 
is distance and distance is time within a temporal space. In view of this simulation, 
we learn that particle’s quantum states lost their personalities as soon it plunges into 
a timeless space. Since the timeless subspace is assumed to be within a temporal 
(i.e., t > 0) space, it is the temporal space that dictates the end response, as shown 
in Figure 10e. This shows us that all the “instance and simultaneous” quantum 
states as indicated by the superposition principle are not happening. Equivalently 

Figure 9. 
The time-invariant response property from a temporal subspace.

Figure 10. 
System simulation for an empty subspace within a temporal space. (a) Input excitation, (b) empty timeless 
system, (c) output response from an empty space, (d) temporal system, and (e) final output from a temporal 
space.
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speaking, this is precisely why the dual-quantum states of the radioactive particle 
within Schrodinger’s box are dysfunctional or impaired, within a temporal space.

10. Quantum mechanical assessments

The Schrödinger equation was developed on an absolute timeless subspace 
platform, for which all the solutions are timeless or time-independent. Since the 
fundamental principle of superposition was derived from the timeless Schrodinger 
equation, the corresponding quantum states’ wave functions are also timeless with 
respect to the subspace that the particle is embedded in. Although wave function 
is time-dependent equation, it is with respect to the corresponding quantum state 
itself. This can be easily understood by an atomic model where the particle quantum 
states are represented by h𝜐n, where n = 1, 2, … N, number of quantum state, in 
which we see that each n-th wave function is time dependent with respect to h𝜐n 
quantum state. And it is not with respect to the subspace that the atomic model is 
embedded in, which is an empty subspace. Since time-dependent wave functions 
dictate the legitimacy of the superposition principle, the time dependency with 
respect to the particle’s subspace is timeless, which is precisely the reason the funda-
mental principle of superposition is timeless and the whole Schrodinger’s quantum 
world is timeless (i.e., t = 0).

Since the whole quantum space is timeless, it cannot coexist within our temporal 
universe. In view of the logic of collapsing superposition principle as soon as we 
open up the Schrödinger’s box, it must satisfy the physical reality that the cat cannot 
be alive and dead at the same time. Otherwise, the fundamental principle of super-
position has proven itself to not exist within our temporal (i.e., t > 0) universe. It 
is apparent that Schrödinger’s fundamental principle only exists within a timeless 
subspace. Personally I believe this must be the reason for him to justify the fate of 
his fundamental principle; otherwise, the principle is not able to survive. It must be 
Schrödinger himself that made the argument; otherwise, the paradox of his half-
life cat has no physical foundation to debate by the world’s top scientists over three 
quarter of a century, since 1935.

Since quantum mechanics is a virtual quantum machine as mathematics is, 
we have found that Schrödinger’s machine is a timeless (or a virtual quantum) 
computer and it does not exist within our temporal universe. As we have seen, the 
Schrödinger equation was derived within an empty subspace; it is not a physical 
realizable model to use, since empty subspace and non-empty subspace are mutu-
ally exclusive. And we have seen that, as one plunges the timeless superposition 
principle within a temporal (i.e., t > 0) subspace and then anticipates the timeless 
superposition to behave “timelessly” within a temporal subspace is physically 
impossible. We have shown that only mathematician and quantum mechanists can 
do it, since quantum mechanics is mathematics.

But this is by no means to say that timeless quantum mechanics is useless, since 
it has proven to us with scores of practical application that long solutions are not 
directly confronted with time-dependent or causality (i.e., t > 0) issue within 
our temporal universe. As quoted by the late Richard Feynman [12] that “nobody 
understands part of quantum mechanics,” we have found the part of quantum 
mechanics nobody understands which must be from the “timeless superposition 
principle” that causes the confusion. And the root of timelessness quantum world 
is from the empty subspace that the atomic model was inadvertently anchored on. 
We are sure this discovery would change our perception as applying the funda-
mental principle to quantum computing and to quantum entanglement in com-
munication, for which the “instance and simultaneous” (i.e., t = 0 and concurrent) 
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phenomena as promised by the fundamental principle do not exist within our 
temporal universe. The important fallout from this discovery of the non-paradox 
of Schrödinger’s cat encourages us to look for a new time-dependent quantum 
machine, similar to the one that Schrödinger has already paved the roadmap for us.

11. Remarks

In conclusion, I have shown that the atomic model that Schrödinger used must 
be anchored within an absolute empty subspace. And it must be the underneath 
timeless subspace that caused the paradox of his half-life cat. The reason for over-
looking the underneath timeless subspace must be due to the well-accepted Bohr’s 
model that has been used for over a century, since the birth of Niels Bohr’s atom in 
1913 [3]. It has been very successfully used with excellent results for over a century. 
And it has never in our wildness dream that the underneath empty subspace causes 
the problem. In view of Schrödinger’s time-dependent wave solutions, we have 
found the time dependency is with respect to the atomic particle itself but not with 
respect to the subspace the atomic model embedded in. In searching the root of the 
paradox of Schrödinger’s cat, we found that a timeless radioactive particle should 
not have had introduced within a time-dependent (or temporal) Schrödinger’s 
box. To alleviate the timeless radioactive particle issue, we have replaced a time-
dependent (i.e., t > 0) radioactive particle for which we have shown that the 
paradox Schrödinger’s cat is not a paradox after all. We have also used science and 
math duality analogy to illustrate the outcome of a temporal excitation into a time-
less system analog, as well as onto a temporal subspace, in which we have shown 
temporal space is a time-invariant space, while superposition principle is timeless 
and it is neither a time-invariant nor time-variant principle. It is however a no-time 
or timeless principle, which cannot be implemented within a time-invariant space. 
In short, we found the hypothesis of Schrödinger’s cat is not a physical realizable 
postulation and his whole quantum world is timeless and behaves like mathematics 
does. Nonetheless, many of Schrodinger’s timeless solutions are very useful until 
the implementation of fundamental principle that confronts with causality (i.e., 
t > 0) issue of our universe.
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