Chapter Six

Transient and Steady State Responses

In control systemanalysisand designit is importantto considerthe complete
systemresponseand to designcontrollerssuch that a satisfactoryresponseis
obtainedfor all time instantst > t3, wherety standsfor the initial time. It
is known that the systemresponsehastwo componentsiransientresponseand
steadystateresponsethat is

y(t) = ytr(t) ‘I' yss(t) (61)

The transientresponseis presentin the short period of time immediately
afterthe systemis turnedon. If the systemis asymptoticallystable,the transient
responsadisappearswhich theoreticallycan be recordedas

Jim g (1) = 0 (6.2)

However, if the systemis unstable,the transientresponsewill increasevery

quickly (exponentially)in time, and in the most casesthe systemwill be

practically unusableor even destroyedduring the unstabletransientresponse
(as can occur, for example,in someelectrical networks). Even if the system
is asymptoticallystable, the transientresponseshould be carefully monitored

sincesomeundesiredohenomentdike high-frequencyoscillations(e.g. in aircraft

during landing and takeof), rapid changesand high magnitudesof the output

may occur.

Assumingthat the systemis asymptoticallystable thenthe systemresponse
in the long run is determinedby its steadystatecomponentonly. For control
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262 TRANSIENT AND STEADY STATE RESPONSES

systemsdt is importantthat steadystateresponsevaluesare as closeaspossible
to desiredones(specfied ones)sothatwe haveto studythe correspondingerrors,
which representhe differencebetweenthe actualand desiredsystemoutputsat
steadystate,and examineconditionsunderwhich theseerrors can be reduced
or even eliminated.

In Section6.1 we find analytically the responseof a second-ordesystem
due to a unit stepinput. The obtainedresultis usedin Section6.2 to define
importantparametershat characterizehe systemtransientresponse Of course,
theseparametersan be exactly definedand determinedonly for second-order
systems.For higher-ordesystemspnly approximationgor thetransientresponse
parameterganbe obtainedby using computersimulation. Severalcasesof real
controlsystemsandthe correspondingATLAB simulationresultsfor thesystem
transientresponsare presentedn Sections6.3 and 6.5. The steadystateerrors
of linear control systemsare definedin Section6.4, and the feedbackelements
which helpto reducethe steadystateerrorsto zeroareidentified. In this section
we also give a simplified version of the basiclinear control problemoriginally
definedin Sectionl.1. Section6.6 present®a summaryof themaincontrolsystem
specficationsand introducesthe conceptof control systemsensitivity function.
In Section6.7 a laboratoryexperimentis formulated.

Chapter Objectives
Thechaptethasthemainobjectiveof introducingandexplainingtheconcepts

that characterizesystemtransientand steadystateresponsesin addition,system
dominantpolesandthe systemsensitivityfunction areintroducedin this chapter.

6.1 Response of Second-Order Systems

Considerthe second-ordefeedbacksystemrepresentedn general by the block
diagramgivenin Figure6.1, where K representshe systemstaticgainand? is
the systemtime constant.It is quite easyto find the closed-loopransferfunction
of this system,that is

Y(s) i
M(s) = = - 6.3
) U(s) s+ ps+5% (6:3)
The closed-looptransferfunction can be written in the following form
Y w?

U(s) 8%+ 2(wns +w?
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where from (6.3) and (6.4) we have

1 9 K
(= m7 Wy = & (6.5)

U < Y9
+5 S(Tst1) .

Figure 6.1: Block diagram of a general second-order system

Quantities¢ andw,, are called, respectivelythe system damping ratio and the
system natural frequency. The systemeigenvalue®btainedfrom (6.4) are given
by

M2 = —Cwn £ jwpv/1—(? = —Cw, £ juwy (6.6)
wherewy is the system damped frequency. The location of the systempolesand
the relation betweendampingratio, naturaland dampedfrequenciesare given
in Figure 6.2.

coP =-¢

Ay X

Figure 6.2: Second-order system eigenvalues in terms of parameters (,w,,wq
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In thefollowing we find the closed-looresponse®f this second-ordesystem
dueto a unit stepinput. Sincethe Laplacetransformof a unit stepis 1/s we have

w2
Y = n 6.7
(5) s(s? 4 2Cwps + w?) (6.7)

Dependingon the value of the dampingratio ( three interestingcasesappear:
(a) the critically dampedcase,( = 1; (b) the over-dampectase,( > 1; and
(c) the under-dampedtase,( < 1. All of them are consideredbelow. These
casesare distinguishedby the natureof the systemeigenvalueslin case(a) the
eigenvaluesare multiple andreal, in (b) they arereal and distinct, andin case
(c) the eigenvaluesare complex conjugate.

(a) Critically Damped Case

For { = 1, we get from (6.6) a double pole at —w,,. The corresponding
output is obtainedfrom

w 1 1 w
Y(s)= ———— =—-— — =
(¢) s(s+wy)? s stwn  (s+wy)?

which after taking the Laplaceinverseproduces
y(t) =1 —e “r' —wate “r (6.8)

The shapeof this responsés given in Figure 6.3a, where the location of the
systempoles(A; = p1, A2 = p2) is also presented.

(b) Over-Damped Case

For the over-dampedaase we havetwo real andasymptoticallystablepoles
at —(w, + wy. The correspondinglosed-loopresponsés easily obtainedfrom

1 ky k
Y(S)_ 3+3+Cwn+wd+3+cwn_wd

as

y(t) = 1+ kye” ((wntwa)t 4 o= (Cwnwa)t (6.9)
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It is representedn Figure 6.3b.
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Figure 6.3: Responses of second-order systems and locations of system poles

(c) Under-Damped Case

This caseis the mostinterestingandimportantone. The systemhasa pair
of complexconjugatepolesso thatin the s-domainwe have
k1 ks k3

Y(s) = — - -
(5) s+5+§wn+jwd+s+Cwn—]wd

(6.10)
Applying the Laplacetransformit is easyto show (see Problem6.1) that the
systemoutputin the time domainis given by
6—(wnt
— i V1= 2Vt —
y(t)y =1+ — sin Kwn 1-¢ >t 9] (6.11)
where from Figure 6.2 we have

cosf = —(, sinf=+/1-(2 tanf= 7'1_20 (6.12)

The responseof this systemis presentedn Figure 6.3c.
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The under-dampedaseis the mostcommonin control systemapplications.
A magnifiedfigure of the systemstep responsefor the under-dampedaseis
presentedn Figure 6.4. It will be usedin the next sectionin orderto define
the transientresponseparameters. Theseparametersare importantfor control
systemanalysisand design.

A y(t)

0.16-

0 LtrJ ty s

= 4

Figure 6.4: Response of an under-damped second-order system

6.2 Transient Response Parameters

The most important transientresponseparametersare denotedin Figure 6.4.
Theseparameterare: responsevershootsettlingtime, peaktime, andrisetime.

The responseovershootcan be obtainedby finding the maximum of the
function y(¢), asgiven by (6.11), with respectto time. This leadsto

“d

Ji-¢

TN e

or

dy(t) Cwy e—Cwnt gin (wat — 8) + e~ (¥nt cog (wgt —0) =0

Cwy, sin (wgt — 0) — wq cos (wqt — ) =0
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which by using relations(6.12) and Figure 6.2 implies
sinwgt =0 (6.13)

It is left asan exerciseto studentgo derive (6.13) (seeProblem6.2). Fromthis
equationwe have

wet =, ¢=0,1,2,... (6.14)

The peak time is obtainedfor : = 1, i.e. as

L (6.15)

Wi wpy/1 — (2
and timesfor other minima and maximaare given by

tp= "= M =234,.. (6.16)

wq wm/l—C27

Since the steadystatevalue of y(t) is y,s(¢) = 1, it follows that the response
overshoot is given by

__gn
08 =y(t,) — yss(t) = 1 + e Cnlr — 1 = e=nlo — ¢ Vic2 (6.17)

Overshoois very often expressedh percentso thatwe candefinethe maximum
percent overshoot as

I
MPOS = 08(%) = e Vi@ 100(%) (6.18)
From Figure 6.4, the expressiorfor the responses percentsettling time can
be obtainedas

efcwnts
y(t,) =1+ —— = 1.05 (6.19)

Vs

which for the standardvaluesof ( leadsto

ty = _Cl In (0.05 1- g2) ~ (6.20)

Wn Cwr

Note that in practice0.5 < ( < 0.8.
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The responserise time is defined as the time required for the unit step
responseto changefrom 0.1 to 0.9 of its steadystate value. The rise time
is inverselyproportionalto the systembandwidth,i.e. the wider bandwidth,the
smallertherisetime. However,designingsystemswith wide bandwidthis costly,
which indicatesthat systemswith very fast responsere expensiveto design.

Example 6.1: Considerthe following second-ordesystem
Y(s) 4
U(s) s*4+2s+4
Using (6.4) and (6.5) we get

w2=4=w,=2rad/s, 2w, =2=(=05
wg=we/1-C2=+3 rad/s
The peaktime is obtainedfrom (6.15) as

= — = = 1825

wi V3
and the settling time, from (6.20), is found to be

3 p—
(wn

The maximum percentovershootis equalto

3s

ts R

¢m

MPOS =e V=100(%) = 16.3%

The step response of this system obtained by the MATLAB function
[y, Xx]=step(numden,t) with t=0:0.1:5 is presentedin Figure
6.5. It canbe seenthat the analytically obtainedresultsagreewith the results
presentedn Figure6.5. From Figure 6.5 we are able to estimatethe rise time,
which in this caseis approximatelyequalto ¢, ~ 0.8s.

Note that the responseise time can be very preciselydeterminedby using
MATLAB (seeProblem6.15). Also, MATLAB can be usedto find accurately
the transientresponsesettlingtime (seeProblem6.14).
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Figure 6.5: System step response for Example 6.1

6.3 Transient Response of High-Order Systems

In the previoussectionwe have beenable to precisely define and determine
parameterghatcharacterizeéhe systentransientresponseThis hasbeenpossible
dueto the fact that the systemunderconsideratiorhasbeenof ordertwo only.

For higher-ordersystemsanalyticalexpressiondor the systemresponseare not

generallyavailable. However,in somecasesof high-ordersystemsoneis able
to determineapproximatelythe transientresponseparameters.

A particularlyimportantis the casein which anasymptoticallystablesystem
hasa pair of complexconjugatepoles(eigenvaluesimuchcloserto theimaginary
axis than the remainingpoles. This situationis representedn Figure6.6. The
systempolesfar to theleft of theimaginaryaxis havelarge negativereal partsso
thattheydecayvery quickly to zero(asa matterof fact, they decayexponentially
with e?!, whereo; arenegativereal partsof the correspondingpoles). Thus,the
systemresponsds dominatedby the pair of complexconjugatepolesclosestto
the imaginary axis since they decayslowest,as they haverelatively small real
parts. Hence,thesepolesare called the dominant system poles.
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Figure 6.6: Complex conjugate dominant system poles

This analysiscan be alsojustified by using the closed-loopsystemtransfer
function. Consider,for example,a systemdescribedy its transferfunction as

Y(s) 12600(s + 1)
U(s)  (s+3)(s+ 10)(s + 60)(s + 70)

Sincethe polesat—60and—70arefar to theleft, their contributionto the system
responses negligible (they decayvery quickly to zeroase=5¢ ande~"%%). The
transferfunction can be formally simplified as follows

12600(s + 1)
(54 3)(s+10)60(Z + 1)70(Z + 1)

- 3(s+1)
= (s 4+ 3)(s+ 10)

M(s) =

(6.21)
= Mi(s)

Example 6.2: In this examplewe use MATLAB to comparethe step
responsef the original and reduced-ordeisystemswhose transfer functions
aregivenin (6.21). The resultsobtainedfor y(¢) andy,(¢) aregivenin Figure
6.7. It can be seenfrom this figure that step responsedor the original and
reduced-ordefapproximate)systemsalmostoverlap.
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Figure 6.7: System step responses for the original
(1) and reduced-order approximate (2) systems

The correspondingresponsesare obtainedby the following sequenceof
MATLAB functions

z=-1;

p=[-3 20 60 —+0];

k=12600;

[ num den] =zp2tf(z, p, k) ;

t =0: 0. 05: 5;

[y, X]=step(num den, t);

zr=-1;

pr=[-3 —10];

kr=3;

[ nunr, denr] =zp2tf(zr, pr, kr);
[yr, xr]=step(nunr,denr,t);
plot(t,y, t,yr,’ - —);

xl abel ("tine t [sec]’);
ylabel (" (1):y(t), (2):yr(t)");
grid;

text(0.71,0.16,° (1));
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text(0.41,0.13, (2)’);

o

Similarly one can neglectthe complexconjugatenon-dominanipoles,asis
demonstratedn the next example.

Example 6.3: Considerthe following transferfunction containingtwo pairs
of complex conjugatepoles

20(s + 2)
(s+1—5)(s+1+7)(s+10—j10)(s + 10 + j10)
andthe correspondingapproximatereduced-ordetransferfunction obtainedby
20(s + 2)

(s 4 2s + 2)(s? + 20s + 200)

20(s + 2) ~ (s+2)
T2 52 | 20s ~10(s2 + 2 2 = MT(S)
(s2 4 2s+ 2)200(200 + + 1) (s 425+ 2)

200
The stepresponse®f the original and approximatereduced-ordesystemsare
presentedn Figure 6.8.

M(s) =

M(s) =

0.12
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Figure 6.8: System step responses for the original (1) and
approximate (2) systems with complex conjugate poles
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It can be seenfrom this figure that a very good approximationfor the step
responseds obtainedby using the approximatereduced-ordemodel.

o

However, the abovetechniqueis rathersupeficial. In addition, for multi-
input multi-outputsystemshis procedurebecomesomputationalljcumbersome.
In that casewe needa more systematiamethod. In the control literatureone is
ableto find severaltechniquesisedfor the systemorderreduction.Oneof them,
the method of singular perturbations (Kokotovic and Khalil, 1986; Kokotovi¢
et al., 1986), is presentecbelow. The method systematicallygeneralizesthe
previously explainedidea of dominantpoles.

The eigenvaluesf certainsystems(having large and small time constants,
or slow and fast systemmodes)are clusteredin two or severalgroups (see
Figure6.9). Accordingto the theory of singularperturbationsijf it is possible
to find an isolatedgroup of poles (eigenvaluesxlosestto the imaginary axis,

then the systemresponsewill be predominantlydeterminedby that group of
eigenvalues.

A Im{s}

» Re{s}

fast modes dominant
slow modes

Figure 6.9: System eigenvalues clustered in two disjoint groups

The statespaceform of suchsystemsis given by

R e R PR ¢
x2] T [tAs tAs]lx2] " [IB2 (6.22)

y = Cix1 + Coxy
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wheree is a small positive parameter.It indicatesthat the time derivativesfor
statevariablesx, are large, so that variablesx, changequickly, in contrastto
variablesx,, which are slow. If the statevariablesx, areasymptoticallystable,
thenthey decayvery quickly, sothatafter the fast dynamicsdisappeasfx; = 0),
we get an approximationfor the fast subsystemas

0= A3X1app + A4X2app + Bgll (623)

From this equationwe are able to find x;,,, (assumingthat the matrix A4
in nonsingular, which is the standardassumptionin the theory of singular
perturbations;Kokotovit et al., 1986) as

X2app = _AZI(ABXthp + B2u) (6.24)

Substitutingthis approximationin (6.22), we get an approximatereduced-order
slow subsystemas

X1app = AsXiapp + Bsu
Yapp = CsX1app + Dsu
(6.25)
A=A —AA'A;, B, =B; - A2A;'B,
C,=C; - CA['A;, D, =-CA;'B,

From the theory of singular perturbationsit is known that x;(¢) is closeto
Xi1app(t) fOr everyt > t, and y,,,(t) is a good approximationfor y(t) for
t > t1 > tp, wheret > t; indicatesthe fact that this approximationbecomes
valid shortly after the fast transientdisappeargKokotovic et al., 1986).
Example 6.4: Considera mathematicaimodelof a singularlyperturbedluid

catalytic crackerconsideredn Arkun and Ramakrishnar{1983). The problem
matricesare given by

-16.11 -0.39 27.2 0 0
0.01 -16.99 0 0 12.47
A= 1511 0 -53.6 —-16.57  T1.78
—53.36 0 0 —-107.2  232.11

2.27 69.1 0 2.273 —102.99
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11.12  -3.61 -21.91 -53.6 69.1
—-12.6 3.36 0 0 0

000 01
01 0 0 0
The eigenvaluesof this systemare
A(A) ={-2.85,-7.78,-74.32, —82.86, —129.08}

which indicatesthat the systemhastwo slow (—2.85and —7.78) and three fast
modes. The small parameter representghe separationof systemeigenvalues
into two disjoint groups. It can be roughly estimatedase ~ 7.78/74.32 = 0.1
(the ratio of the smallestand largest eigenvaluesin the given slow and fast
subsets).We useMATLAB to partition matricesA, B, C asfollows

BT =

C =

eps=0. 1,
Al=A(1:2,1:2);
A2=A(1: 2, 3:5);
A3=A(3:5,1:2)*eps;
Ad=A(3: 5, 3:5) *eps;
B1=B(1: 2, 1: 2);
B2=B(3: 5, 1: 2) *eps;
Cl=C(1:2,1:2);
C2=C(1:2,3:5);

The slow subsystemmatrices,obtainedfrom (6.25), are given by

A — —4.0452  12.4474 _[16.8321 —12.6
] 0.1548  —8.2035]’ | 5.0320 3.36

0 1 0 0

Theeigenvaluesf the slow subsystenmatrixareA\(A;) = {—3.6245,—8.6243}.

This reflectsthe impactof the fast modeson the slow modesso that the original

slow eigenvaluedocatedat —2.85 and —7.78 are now changedto —3.6245and
—8.6243. In Figure 6.10 the outputsof the original (solid lines) and reduced
(dashedines) systemsare presentedn the time interval specifiedoy MATLAB

ast =0: 0. 025: 5. It canbe seenthatthe outputresponsesf thesesystemsare
remarkablyclose to eachother.

C. — [0.0116 0.7046], D, — [0.693 0]
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Figure 6.10: Outputs of the original fifth-order system and reduced
second-order system obtained by the method of singular perturbations

Modelsof manyreal physicallinear control systemghat havethe singularly
perturbedstructure, displaying slow and fast state variables, can be found in
Gajic and Shen (1993).

A MATLAB laboratory experimentinvolving systemorder reductionand
comparisonof correspondingsystemtrajectoriesand outputsof a real physical
control systemby using the methodof singular perturbationsis formulatedin
Section6.7.

6.4 Steady State Errors

The responseof an asymptoticallystablelinear systemis in the long run deter-
minedby its steadystatecomponent.During the initial time intervalthe transient
responsalecaysto zero,accordingto the asymptoticstability requirement6.2),
so thatin the remainingpart of the time interval the systemresponsds repre-
sentedby its steadystatecomponentonly. Control engineersare interestedin
having steadystateresponsess closeas possibleto the desiredonesso that we
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definethe so-calledsteadystateerrors,which representhe differencesat steady
stateof the actualand desiredsystemresponsegoutputs).

Before we proceedto steadystateerror analysis,we introducea simplified
versionof the basiclinear control systemproblemdefinedin Sectionl.1.

Simplified Basic Linear Control Problem

As definedin Sectionl.1thebasiclinearcontrolproblemis still very difficult
to solve. A simplified version of this problem can be formulatedas follows.
Apply to the systeminput a time function equalto the desiredsystemoutput.
This time function is known asthe system’sreference input andis denotedby
r(t). Notethat r(¢) = u(t). Comparethe actualand desiredoutputsby feeding
backthe actualoutputvariable. The differencey(t) — r(t) = e(t) representshe
error signal. Use the error signaltogetherwith simple controllers(if necessary)
to drive the systemunder considerationsuchthat e(¢) is reducedas much as
possible,at leastat steadystate. If a simple controlleris usedin the feedback
loop (Figure6.11)theerrorsignalhasto beslightly redefinedseeformula(6.26).

In the following we usethis simplified basiclinear control problemin order
to identify the structureof controllers(feedbackelements}hat for certaintypes
of referenceinputs (desiredoutputs)producezero steadystateerrors.

Considerthe simplestfeedbackconfigurationof a single-inputsingle-output
systemgiven in Figure 6.11.

Controller - Plant

U(s) = R E(s)
+ % -

Yl
G(s) > ©

H(s)

A

Feedback Element

Figure 6.11: Feedback system and steady state errors

Let theinput signal U (s) = R(s) representhe Laplacetransformof the desired
output (in this feedbackconfigurationthe desiredoutput signal is usedas an
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input signal); thenfor H (s) = 1, we seethatin Figure 6.11 the quantity £(s)
representshe differencebetweerthe desiredoutput £(s) = U(s) andthe actual
outputY'(s). In orderto beableto reducethis errorasmuchaspossiblewe allow
dynamicelementdn the feedbackoop. Thus, H(s) asa function of s hasto be
chosensuchthat for the giventype of referencanput, the error, now defined by

E(s) = R(s)— H(s)Y(s) (6.26)

is eliminatedor reducedto its minimal value at steadystate.
From the block diagramgiven in Figure 6.11 we have

so that the expressiorfor the error is given by

R(s)

E(s) = TG (6.27)

The steadystateerrorcomponentanbe obtainedby usingthefinal valuetheorem
of the Laplacetransformas

: : , sB(s)
€ss = lim e(t) = lim {sE(s)} = lim {m} (6.28)
This expressionwill be usedin orderto determinethe natureof the feedback
elementH (s) suchthat the steadystate error is reducedto zero for different
typesof desiredoutputs. We will particularly considerstep,ramp,and parabolic
functions as desiredsystemoutputs.

Beforewe proceedo the actualsteadystateerror analysiswe introduceone
additional definition.

Definition 6.1 The type of feedback control system is determinedby the
numberof polesof the open-loopfeedbacksystemtransferfunction locatedat
the origin, i.e. it is equalto j, wherej is obtainedfrom

| K(s+z1) - (s+ 2m)
s'(s+p)(s+p2) - (s+pa_y)

Now we considerthe steadystateerrorsfor differentdesiredoutputs,namely
unit step, unit ramp, and unit parabolicoutputs.

G(s)H(s) = (6.29)



TRANSIENT AND STEADY STATE RESPONSES 279

Unit Sep Function as Desired Output

Assumingthat our goalis thatthe systemoutputfollows ascloseaspossible
the unit stepfunction,i.e. U(s) = R(s) = 1/s, we getfrom (6.28)

, s 1 1 !
=i e )~ e e 6%

where K, is known asthe position constant and from (6.30) is given by
K, = lir% {H(s)G(s)} (6.31)

It can be seenfrom (6.30) that the steadystateerror for the unit stepreference
is reducedto zerofor K, = oo. Examiningclosely (6.31), taking into account
(6.29), we seethat this conditionis satisfiedfor j > 1.

Thus, we can concludethat the feedbacktype systemof order at leastone
allows the systemoutputat steadystateto track the unit stepfunction perfectly.

Unit Ramp Function as Desired Output
In this casethe steadystateerror is obtainedas

, , s | | |
€ss = lim {s£(s)} = limy { T (500 5_2} T (0] K,
o (6.32)
where
K, = lim {sH(5)G(s)) (6.33)

is known as the velocity constant. It can be easily concludedfrom (6.29) and
(6.33)that K, = oo, i.e. ess = 0 for 7 > 2. Thus,systemshavingtwo andmore
pureintegrators(1/s terms)in the feedbackioop will be ableto perfectly track
the unit ramp function as a desiredsystemoutput.

Unit Parabolic Function as Desired Output

For a unit parabolicfunction we have R(s) = 2/s* so that from (6.28)

S 2 2 2
wmlimd 21 _ 2 |
¢ SE%{HH(S)G(S) 33} T ETOTO) S R

wherethe so-calledacceleration constant, K, is definedby

K, =lim {s*H(s)G(s)} (6.35)
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From (6.29) and (6.35), we concludethat K, = oo for j > 3, i.e. the feedback
loop musthavethreepureintegratorsan orderto reducethe correspondingteady
state error to zero.

Example 6.5: The steadystateerrorsfor a systemthat hasthe open-loop
transferfunction as
20(s + 1)
H(s)G(s) = —————
(s)G(s) s(s+2)(s+5)
are
K,=00 = e,;5=0 (step)
K,=2 = ez =0.5 (ramp)
K,=0 = ez =00 (parabolic)
Sincethe open-looptransferfunction of this systemhasoneintegratorthe output
of the closed-loopsystemcan perfectly track only the unit step.

<

Example 6.6: Considerthe second-ordesystemwhoseopen-looptransfer
function is given by

__ (s+3)
B e

The position constantfor this systemis K, = 1.5 so that the corresponding
steadystateerror is

1 1

= — = :0.4
1+ K, 1415

eSS

The unit stepresponsef this systemis presentedn Figure6.12,from which it
canbe clearly seenthat the steadystateoutputis equalto 0.6; hencethe steady
stateerror is equalto 1 — 0.6 = 0.4.

<

Note that the transientanalysisand the study of steadystateerrorscan be
performedfor discrete-timdinear systemsn exactlythe sameway aswasused
for continuous-timesystems. The steadystateerrorsfor discrete-timesystems
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are obtainedby using the final value theoremof the Z-transformand following
the sameprocedureas in Section6.4.

0 I I I I I I I I I
0 0.5 1 15 2 25 3 3.5 4 4.5 5

time t [sec]

Figure 6.12: System step response for Example 6.6

6.5 Response of High-Order Systems by MATLAB

For high-ordersystemsanalyticalexpression$or systemstepresponsearequite
complex. However,we are still able to determineapproximatelythe response
parametersn many cases.In this section,we plot the unit stepresponseof a
high-ordercontrol systemby usingMATLAB anddetermineapproximatelyfrom
the graphobtainedsomeof transientresponsgarametersandthe corresponding
steadystate error.

Considerthe mathematicaimodel of a synchronougnachineconnectedo
aninfinite bus. The matrix A of this seventh-ordesystemis givenin Problem
3.28. The remainingmatricesare chosenas

B=[0 00 0 0 0 2]
cC=[1111111], D=0

For a systemrepresentedn the statespaceform, the stepresponsés obtained
by using the MATLAB function [y, x] =step(A, B, C D, 1,t), wherel
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indicatesthat the stepsignalis appliedto the first systeminput andt represents
time. The stepresponseof this systemis givenin Figures6.13and6.14.

1.4

1.2

0.2F b

0 I I I I I I I I I
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

time t [sec]

Figure 6.13: Step response of a synchronous machine for ¢ € [0, 5]

Figure6.13is obtainedfor theinitial timeintervalof¢ € [0, 5]. It showstheactual
responseshape,but it is hardto draw conclusionsaboutthe transientresponse
parameterdgrom this figure. However,if we plot the systemstep responsdor
time interval ¢ € [0,40], then a responseshapevery similar to that in Figure
6.4 is obtained. It is pretty straightforwardto read from Figure 6.14 that the
peaktime is ¢, ~ 55, the overshotis approximatelyequalto 0.4, the rise time
is ¢, = 2s, andthe settling time is roughly equalto 12s. By using MATLAB,
it is obtainedthat y,; — 1.0226 so that the steadystateerroris ess — 0.0226.
This canbe obtainedeitherby finding y(t) for somet long enoughor by using
the final value theoremof the Laplacetransformas

Yss = l% {sY(s)} = %1_{% {sM(s)U(s)} = lim {sM(s)%} = M(0) (6.36)

s—0

where M (s) is the systemclosed-looptransferfunction, which can be obtained
by using MATLAB as[ num den] =ss2tf (A, B, C, D, 1). Then, for this



TRANSIENT AND STEADY STATE RESPONSES 283

particularexampleof ordersevenwe haveyss=nun( 1, 8) / den( 1, 8) . Note
thatnun( 1, 8) =5048. 8 andden( 1, 8) =4937. 2.

1.4

1.2

0.8

y@®

0.6

0.4F b

0.2+ : . -

0 I I I I I I I
0 5 10 15 20 25 30 35 40

time t [sec]

Figure 6.14: Step response of a synchronous machine for ¢ € [0,40]

6.6 Control System Performance Specifications

Control systemsshould satisfy certain specificationssuch that systemsunder
consideratiorhave the desiredbehaviorfor both transientand steadystatere-
sponseslf the desiredspecificationsare not met, controllersshouldbe designed
and placedeitherin the forward pathor in the feedbackloop suchthat the de-
sired specficationsare obtained. The desiredspecificationdnclude the required
values(or upperand/orlower limits) of alreadydefinedquantitiessuchasphase
and gain mamgins, settling time, rise time, peaktime, maximum percentover-
shoot, and steadystate errors. Additional specfications can be definedin the
frequencydomainlike control systemfrequencybandwidth,resonantrequency,
and resonancepeak,which will be presentedn Chapter9.

Of course,it is impossibleto meetall the specificationsmentionedabove.
Sometimessomerequirementsare contradictoryand sometimessome of them
are not affordable. Thus, control engineershaveto compromisewhile trying to
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satisfy all of imposedcontrol systemrequirements.Fortunately,we are ableto

identify the mostimportantones. First of all, systems must be stable; hencethe
main goal of controller designis to stabilizethe systemunderconsiderationjn

otherwords, the systemphaseandgain stability maigins shouldbe handledwith

increasectare. Secondly systems should have limited overshoot and settling time
andthe steady state errors should be kept within admissible bounds. In the most
of casesonly thesespecificationswill be takeninto accountwhile designing
controllersin Chapters8 and 9.

In additionto the abovespecificationgontrol systemsshouldbe insensitive
to variation of systemparametersand components. Linear models are very
often obtainedby performinglinearizationof nonlinearmodels,i.e. the linear
models are in many casesjust approximationsof nonlinear systemsat given
operatingpoints. Thatis why it is requiredthat controllersusedfor control of
suchsystemsbe robust,i.e. they should producesatisfactoryresultsfor broad
families of linear systemghat are closeto linearizedsystemsat given operating
points. The importanceof control systemsensitivity to parameterchangeshas
beenrecognizedsincethe beginningof moderncontrol theory (Tomovi¢, 1963;
Kokotovit andRutman,1965; Tomovic andVukobratove, 1972). Controlsystem
robustnesiasbeenthe trend of the eightiesand nineties(Morari and Zafiriou,
1989; Chiangand Safonov,1992; Grimble, 1994; Greenand Limebeer,1995).
Studying thesecontrol systemspecifications(reducedsensitivity and increased
robustnessin detailis beyondthe scopeof this book. Here,we justintroducethe
basicsystemsensitivity resultand definethe control systemsensitivity function.

Considerthefeedbackcontrolsystemgivenin Figure6.11. Theplanttransfer
function G(s) is obtainedthroughmathematicamodelingeither analytically or
experimentallyand is assumedo be known. However,dueto plant parameter
changese.g. dueto componentsgingor parameteuncertaintiesthe actualplant
transferfunctionis in fact G, (s) = G(s) + AG(s), whereAG(s) representshe
absoluteerror of the plant transferfunction, so that the correspondingelative
erroris AG(s)/G(s).

The closed-looptransferfunction for the systemin Figure 6.11is given by

(6.37)
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and the actual closed-loopsystemtransferfunction is

__ Guls)
Ma(s) = TG () H(s) (6.38)
The correspondingabsolutetransferfunction error is obtainedas
(6.39)
= M(s) 1 Ga(s) — G(s)
L+ Ga(s)H(s)  G(s)
This leadsto
AM(s) ! AG(s) _ . AG(s)
M(s) 1+ Ga(s)H(s) G(s) Sa(s) o0s) (6.40)
where 1
Sals) (6.41)

14+ Gu(s)H(s)
representshe so-calledcontrol system sensitivity function. Notethatthe sensitiv-
ity functiondependn the complexfrequencys. It follows from formula (6.40)
thatthe magnitudeof the sensitivity function shouldbe chosento be assmall as
possibleover the frequencyrangeof interest. Sincefrom (6.41) |S,(s)| < 1, it
follows that the closed-looprelative transferfunction error is reducedcompared
to the open-looprelative plant transferfunction error. In conclusion, feedback
alone reduces system sensitivity to system parameter variations.

Finally, let us point out that feedbackalso decreasesystemsensitivity to
externaldisturbances.This problemhasbeenalreadytacitly studiedin Section
2.2—seethe block diagrampresentedn Figure 2.3 andformula (2.18).

6.7 MATLAB Laboratory Experiment

Part 1. Considera generalsecond-ordessystemgiven in (6.3). Choose
valuesfor parametersk’ andT’ suchthat all three casesappear(over-damped,
under-dampedand critically damped). Using MATLAB, plot the unit step
responsedor all cases. Find the transientresponseparameterdor the under-
dampedcase.
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Part 2. Considerthesecond-ordesystemasgivenby (6.3)with 7" = 1. Take
severalvaluesfor the staticgain K suchthatl = K7 < K3 < K3 < K4 = 50
and plot the correspondingunit step responses. Draw conclusionsabout the
impactof K on the maximumpercentovershootand the steadystateerrors.

Part 3. Use the methodof dominantcomplex conjugatepolesin orderto
approximatethe stepresponseor the secondoutput of the F-8 aircraft, given
in Section3.5.2, by an equivalentsecond-ordesystem. Hint: Find the fourth-
order transferfunction for the secondoutput and reduceit to the second-order
transferfunction by following the procedureof Example6.3. Note thatthe same
reductiontechniquehasto be appliedto the transferfunction zeros. In that
respecteliminatethe pair of complexconjugatezeros.

Part 4. UseMATLARB in orderto find approximatelythe transientresponse
parameterandthe steadystateerror for the synchronousnachineconsideredn
Section6.5, this time with the matrix C equalto

c=[0 101 1 1 1]

Hint: Uset =0: 0. 5; 30 while plotting the stepresponse Find the exactvalue
for yss by using formula (6.36).

Part 5! Use the methodof singular perturbationsin order to reducethe
fifth-order model of a voltage regulatorconsideredn Kokotovic (1972)to an
equivalentsecond-ordeslow model. The voltage regulatormatricesare given

by

-0.2 0.5 0 0 0 0

0 -0.5 1.6 0 0 0

A= 0 0 —-14.28 8.71 0 |, B=|0
0 0 0 -25 75 0

0 0 0 0 —10 30

C=[1 0 0 0 0], D=0
Use MATLAB to partition this systemas a singularly perturbedsystemhaving
two slowandthreefastmodeswith A1=A( 1: 2, 1: 2) andsoon. Takee = 0.05.
Showthat the stepresponse®f the original andreduced-ordesystemsarevery
closeto eachotherby plotting them on the samegraph.

1 This partis optional.
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6.9 Problems

6.1 Findexpressionfor constantg; andk, in (6.10)andderiveformula(6.11).
6.2 Derive formula (6.13).
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6.3

6.4

6.5

6.6

6.7

TRANSIENT AND STEADY STATE RESPONSES

Find the transientresponseparameterdor the following second-ordesys-
tems

(©) 10
C =
U(s) s*+4+6s+8
Considerthe second-ordesystemthat hasa zeroin its transferfunction,
that is

Y(s)  5(s+1)
Ul(s) 824 25+2

Usethe Laplacetransformto obtainits stepresponse.Find the transient
responsgparameter@ndthe steadystateerror for a unit step. Comparethe
stepresponse®f this systemand the systemconsideredn Problem6.3a.
Plot the correspondingesponsedy using MATLAB.

Determinethe steadystateerrorsfor unit step,unit ramp,andunit parabolic
inputsof a unity feedbackcontrol systemhavingthe planttransferfunction

50(s + 1)

@) = AT DT 5T 10)

Comparethe steadystateerrorsfor unit feedbackcontrol systemsrepre-
sentedby

10 5

“O=Gry PP aeinEsT D

assuminghattheinputsignal(desiredoutput)is givenby 2% —3t—2, ¢ > 0.
For a linear systemwith a unit feedbackrepresentedby

10

=G neEn

calculatesteadystateerrors, pick time, 5 percentsettling time, and maxi-
mum percentovershoot.
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6.8 Find the valuesfor the staticgain K andthe time constantl’ suchthatthe
second-ordesystemrepresentedy

K

H(s)G(s) = m,

H(s)=1
has prespecifiedvaluesfor the maximum percentovershootand the peak
time.

6.9 Solve Problem6.8 by requiring that the peak time and settling time be
prespecified.

6.10 Find the closed-loopsystemtransferfunction(s)for the F-8 aircraft from
Section3.5.2 by using MATLAB, and calculatethe steadystate error(s)
dueto a unit stepinput by using formula (6.36). Note that thereare two
outputsin this problem.

6.11 RepeatProblem6.10for the ninth-ordermodel of a power systemhaving
two inputsandfour outputs. This modelis givenin Section5.8, Part3.

6.12 RepeatProblem6.10 for the fifth-order distillation column consideredn
Problem5.19 with the following output matrices

1000 0 0
C_[U 1 00]’ D‘[o 0]

6.13 Generalizehe order-reductiomprocedureby the methodof singularpertur-
bations,presentedn Section6.3, to the casewhenthe outputequationhas
the matrix D different from zero.

6.14 Write a MATLAB programfor finding the transientresponsesettlingtime.
Hint: Seethe MATLAB programpresentedn Example8.8.

6.15 Write a MATLAB programfor finding the transientresponserise time.
Hint: First solve Problem6.14.



