Chapter Three

State Space Approach

The state space approach has been introduced in Section 1.3. Due to its
fundamental importance for control systems, the state space technique will be
considered thoroughly in this chapter. Both continuous- and discrete-time linear
time invariant systems will be presented. It has already been pointed out that
the state space technigue represents the modern approach to control system
theory and its applications. The state space approach is very convenient for
representation of high-order dimensional and complex systems, and extremely
efficient for numerical calculations since many efficient and reliable numerical
algorithms developed in mathematics, especially within the area of numerical
linear algebra, can be used directly. In addition, the state space form is the
basis for introducing system controllability and observability concepts and many
modern control theory techniques.

The state space model of a continuous-time linear system is represented by
a system ofn linear differential equations. In matrix form, it is given by

%X(t) = %(1) = Ax(t) + Bu(t), x(0) = x, (3.1)

y(t) = Cx(t) + Du(t) (3.2)

wherex € R, u € R, andy ¢ RP are, respectively, vectors of system
states, control inputs, and system outputs. The maiix" describes the
internal behavior of the system, while matricB'*", CP*", andD?*" represent
connections between thexternal worldand the system. If there are no direct
paths between inputs and outputs, which is often the case, the rMifiX is
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96 STATE SPACE APPROACH

zero. It is assumed in this book that all matrices in (3.1) and (3.2) are time
invariant. Studying linear control systems with time varying coefficient matrices
requires knowledge of some advanced topics in mathematics (see for example
Chen, 1984; see also Section 10.1).

The state space model for linear discrete-time control systems has exactly the
same form as (3.1) and (3.2) with differential equations replaced by difference
equations, that is

x(k+1) = Ayx(k) + Byu(k), x(0)=x, (3.3)

y(k) = Cax(k) + Dqu(k) (3.4)

All vectors and matrices defined in (3.3) and (3.4) have the same dimensions as
corresponding ones given in (3.1) and (3.2). In this chapter, we present and derive
in detail the main state space concepts for continuous-time linear control systems
and then give the corresponding interpretations in the discrete-time domain.

The chapter is organized as follows. In Section 3.1 several systematic
methods for obtaining the state space form from differential equations and transfer
functions are developed. The time response of linear systems given in the state
form is considered in Section 3.2. The corresponding results for discrete-time
systems, and the procedure for discretization of continuous-time systems leading
to discrete-time models, are given in Section 3.3. The concepts of the system
characteristic equation, eigenvalues, and eigenvectors and their use in control
system theory are presented in Section 3.4. At the end of the chapter, in Section
3.5, three MATLAB laboratory experiments are outlined.

Chapter Objectives

The dynamical systems considered in this book are either described by
differential/difference equations or given in the form of system transfer functions.
One of the goals is to present procedures for obtaining the state space forms either
from differential/difference equations or from transfer functions. In that respect
students will be exposed to four standard state space forms, known as canonical
forms: the phase variable form or controller form, the observer form, the modal
form, and the Jordan form.

Another important objective is to show students how to analyze linear
systems given in the state space form, i.e. how to find responses (state variables
and outputs) of the corresponding state space models to any input signal (control
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input). A working knowledge of undergraduate linear algebra and the basic
theory of differential equations is helpful for complete understanding of this
chapter. Some useful results on linear algebra are given in Appendix C. Students
without a strong background in these topics may consult any undergraduate text,
(for example, Fraleigh and Beauregard, 1990; Boyce and DiPrima, 1992).

3.1 State Space Models

In this section we study state space models of continuous-time linear systems.
The corresponding results for discrete-time systems, obtained via duality with the
continuous-time models, are given in Section 3.3.

The state space model of a continuous-time dynamic system can be derived
either from the system model given in the time domain by a differential equation
or from its transfer function representation. Both cases will be considered in this
section. Four state space forms—the phase variable form (controller form), the
observer form, the modal form, and the Jordan form—which are often used in
modern control theory and practice, are presented.

3.1.1 The State Space Model and Differential Equations

Consider a generalth-order model of a dynamic system represented bythn
order differential equation

d™y(t d"ly(t dy(t
dy( ) + an_liilg ) e a1—y( ) + apy(?)
tr din dt (35)
L dmu(t) d"u(t) da(t) '
=b, dir bn_1 W 4+ -4 by i + bo LL(t)

At this point we assume that all initial conditions for the above differential
equation, i.e. y(07),dy(07)/dt,...,d""1y(07)/dt"~!, are equal to zero. We
will show later how to take into account the effect of initial conditions.

In order to derive a systematic procedure that transforms a differential
equation of ordem to a state space form representing a system &fst-order
differential equations, we first start with a simplified version of (3.5), namely we
study the case when no derivatives with respect to the input are present

d"y(1) d"y(t)

dy(1)
P T s p e B + aoy(t) = u(t) (3.6)

dt
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Introduce the following (easy to remember) change of variables

o1(t) = y(t)
oty = LI 3.7)
_d ()

'Ln(t) dtn—1

which after taking derivatives leads to

day(t) . dy(t)
a T g Tl
dua(t) . d?y(t)
a g Tl
des(t) . d>y(t)
a T g — )
: (3.8)
den(t) . d"y(1)
T
dy(t)  dy(1) d"y(t)
= —apy(t) — wm TR o R U S o + u(t)
= —apr1(t) —arwo(l) — - - — agws(t) — - — ap_r @, (1) + u(t)
The state space form of (3.8) is given by
Fi 1 0 10 e 0 1T w7 0
i 0O 0 1 0 - 0 (1) 0
N : : . : : N
: (1)
fn 0 0 0 1 | |ea()]| 0
| Tn | L—ao —a1 —az - 0 —anp—ad [ a,(t) L1
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with the corresponding output equation obtained from (3.7) as

1(1)
a(1)
gty =[1 0 -+ 0] (3.10)
.’L'n_l(t)
n(1)
The state space form (3.9) and (3.10) is known in the literature aphbse
variable canonical form
In order to extend this technique to the general case defined by (3.5), which
includes derivatives with respect to the input, we form an auxiliary differential
equationof (3.5) having the form of (3.6) as

dn dn—l d
for which the change of variables (3.7) is applicable
wl(t) - f(t)
d2
ra(t) = di(f) (3.12)
a0

wnll) =

and then apply the superposition principle to (3.5) and (3.11). Sifigeis the
response of (3.11), then by the superposition property the response of (3.5) is
given by

d*¢(1) d"&(1)

y(t) = bo&(t) + b di(tt) + by e + 4 bnW (3.13)

Equations (3.12) produce the state space equations in the form already given
by (3.9). The output equation can be obtained by eliminatif(t)/d¢™ from
(3.13), by using (3.11), that is

d"§(1)
dtn

=u(t) = p_r,(t) — - — ayaa(t) — agu(t)
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This leads to the output equation

1(1)
(1)
y(t) = [(bp — agb,) (b1 —a1by,) -+ (b1 — @p_1by)] : + b, u(t)
Ln(t
) (3.14)
It is interesting to point out that fdr,, = 0, which is almost always the case, the
output equation also has an easy-to-remember form given by

y(t) =[bo b1 -+ by_1] “: (3.15)
wn(t)

Thus, in summary, for a given dynamic system modeled by differential equation
(3.5), one is able to write immediately its state space form, given by (3.9) and
(3.15), just by identifying coefficients; andb;, : = 0,1,2,...,n — 1, and using
them to form the corresponding entries in matri¢esand C.

Example 3.1: Consider a dynamical system represented by the following
differential equation

y(b) _I_ 6y(5) — 2y(4) _I_ y(z) — 5y(1) _I_ 3y = 7u(3) _I_ u(l) _I_ 4u

where () stands for theith derivative, i.e. y) = diy/dt*. According to
(3.9) and (3.14), the state space model of the above system is described by the
following matrices

5 B eni el an Bl e B
c oo =R o <

oo oo
—_ o oo C

G
\
=
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3.1.2 State Space Variables from Transfer Functions

In this section, we present two methods, known as direct and parallel program-
ming techniques, which can be used for obtaining state space models from system
transfer functions. For simplicity, like in the previous subsection, we consider
only single-input single-output systems.

The resulting state space models may or may not contain all the modes
of the original transfer function, where by transfer function modes we mean
poles of the original transfer function (before zero-pole cancellation, if any, takes
place). If some zeros and poles in the transfer function are cancelled, then the
resulting state space model will be of reduced order and the corresponding modes
will not appear in the state space model. This problem of system reducibility
will be addressed in detail in Chapter 5 after we have introduced the system
controllability and observability concepts.

In the following, we first use direct programming techniques to derive the
state space forms known as the controller canonical form and the observer

canonical form; then, by the method of parallel programing, the state space
forms known as modal canonical form and Jordan canonical form are obtained.

The Direct Programming Technique and Controller Canonical Form

This technique is convenient in the case when the plant transfer function is
given in a nonfactorized polynomial form

Y(é’) _ b, s" +bn—15n_1 + "'+b15+b0

3.16
U(s) S+ 18"+t ars +oag ( )

For this system an auxiliary variablé(s) is introduced such that the transfer
function is split as

1
= — (3.17a)
ST F Uy 8T TS ag

S

S

R

(
(
(

R Y |

S

G =0,5" 4+ by_18" V-4 bis+ b (3.17b)

=

The block diagram for this decomposition is given in Figure 3.1.
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uU(s) V(s) Y(s)
R V(s)/U(s) Y(s)/V(s) —

Figure 3.1: Block diagram representation for (3.17)

Equation (3.17a) has the same structure as (3.6), after the Laplace transforma-
tion is applied, which directly produces the state space system equation identical
to (3.9). It remains to find matrices for the output equation (3.2). Equation
(3.17b) can be rewritten as

Y(8) = bus"V(8) + b1 8"V (8) 4+ -+ bisV (s) + bV (s) (3.18)

indicating thaty(t) is just a superposition af(¢) and its derivatives. Note that
(3.17) may be considered as a differential equation in the operator form for zero
initial conditions, wheres = d/dt. In that casel (s), Y (s), andlU (s) are simply
replaced withu(t), y(t), andwu(t), respectively.

The common procedure for obtaining state space models from transfer
functions is performed with help of the so-called transfer funcsiomulation
diagrams In the case of continuous-time systems, the simulation diagrams
are elementary analog computers that solve differential equations describing
systems dynamics. They are composed of integrators, adders, subtracters, and
multipliers, which are physically realized by using operational amplifiers. In
addition, function generators are used to generate input signals. The number
of integrators in a simulation diagram is equal to the order of the differential
equation under consideration. It is relatively easy to draw (design) a simulation
diagram. There are many ways to draw a simulation diagram for a given dynamic
system,and there are also many ways to obtain the state space form from the
given simulation diagram.

The simulation diagram for the system (3.17) can be obtained by direct
programming technique as follows. Takéntegrators in cascade and denote their
inputs, respectively, byo(")(¢), v*=1(1), ..., v (1), v(t). Use formula (3.18) to
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constructy(t), i.e. multiply the corresponding input$’)(¢) to integrators by the
corresponding coefficients; and add them using an adder (see the top half of
Figure 3.2, wheré /s represents the integrator block). From (3.17a) we have that

o™ (1) = w(t) — a1 0TI (@) — - — apo(t) — apu(?)

which can be physically realized by using the corresponding feedback loops in the
simulation diagram and adding them as shown in the bottom half of Figure 3.2.

—» b,
b,
u Xn X Xp | X
5 rl/SXn'”121/821
v v v
“@n1
_al
-a() <7

Figure 3.2: Simulation diagram for the direct
programming technique (controller canonical form)

A systematic procedure to obtain the state space form from a simulation
diagram isto choose the outputs of integrators as state variabléssing this
convention, the state space model for the simulation diagram presented in Figure
3.2 is obtained in a straightforward way by reading and recording information
from the simulation diagram, which leads to
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r 0 1 e 0 7 107
0 1 0 0 0
o= L0 x| e @19)
0 0 0 0 1 0
L—dp — a1 — a3 ter s —lp—1 4 L1
and
y(t) = [(bo — (Lobn) (bl — albn) Tt (bn—l — un_lbn)]x(t) + bnu(t)

(3.20)

This form of the system model is called tleentroller canonical form It
is identical to the one obtained in the previous section—equations (3.9) and
(3.14). Controller canonical form plays an important role in control theory since
it represents the so-called controllable system. System controllability is one of the
main concepts of modern control theory. It will be studied in detail in Chapter 5.

It is important to point out that there are many state space forms for a given
dynamical system, and that all of them are related by linear transformations.
More about this fact, together with the development of other important state space
canonical forms, can be found in Kailath (1980; see also similarity transformation
in Section 3.4).

Note that the MATLAB functiont f 2ss produces the state space form for
a given transfer function, in fact, it produces the controller canonical form.

Example 3.2: The transfer function of the flexible beam from Section 2.6
is given by

1.65s* — 0.331s% — 57652 + 90.6s + 19080
s+ 0.99655 4+ 4635* + 97.853 + 1213152 4+ 8.11s
Using the direct programming technique with formulas (3.19) and (3.20), the
state space controller canonical form is given by

G(s) =

[0 1 0 0 0 0 7 [07]

0 0 1 0 0 0 0
. 0 0 0 1 0 0 x4 0 u

0 0 0 0 1 0 0

0 0 0 0 0 1 0

10 —&811 —12131 —-97.8 —463 —0.996 ] 1]
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and
:[19080 90.6 —-576 —0.331 1.65 O]X

Direct Programming Technique and Observer Canonical Form

In addition to controller canonical fornmbservercanonical formis related
to another important concept of modern control theory: system observability.
Observer canonical form has a very simple structure and represents an observable
system. The concept of linear system observability will be considered thoroughly
in Chapter 5.

Observer canonical form can be derived as follows. Equation (3.16) is written
in the form

s"TU ot ags + oag)

Y
($)(s" + an ‘ (3.21)
= ()(be, + 018" 4 bys + bo)
and expressed as
1 n—1
Y(s):—7<an_15 -I--"-|-6L15‘|‘“0)Y(5)
6,1 (3.22)
U (8) (b8 4 bumas™™ - by + o)
leading to
1 1 1

Y(s) = —;an,lY(s) — 5—2an_2Y(5) — arY(s) — Sinao)/(s)

sn—1

FOuU(5) + b0 1 U() + Spbaall(s) -+ —rbrl(s) + —bol/(5)

(3.23)

This relationship can be implemented by using a simulation diagram composed

of n integrators in a cascade, and letting the corresponding signals to pass

through the specified number of integrators. For example, terms contdifing

should pass through only one integrator, signals,y(z) andb,,_su(t) should

pass through two integrators, and so on. Finally, sigrakgt) and bou(t)

should be integrated-times, i.e. they must pass through alintegrators. The

corresponding simulation diagram is given in Figure 3.3.
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u(t)

Xy X1 ¥ X Xp  Xn1
1/s lUsl— ... —>»]

Figure 3.3: Simulation diagram for observer canonical form

Defining the state variables as the outputs of integrators, and recording
relationships among state variables and the system output, we get from the above
figure

y(t) = 2, (t) + byu(t) (3.24)

@1(t) = —aoy(t) + bou(t) = —aown(t) + (bo — woby )u(t)
da(t) = —ary(t) + bra(t) + «1(t) = @1(t) — aywn(t) + (b — arby)u(t)
@s(t) = —agy(t) + bau(t) + wa(t) = wa(t) — agwn(t) + (b2 — azb,)u(t)

an(t) - *an—ly(t) + bn—lu(t) + wn—l(t)
— wn—l(t) - an—lwn(t) + (bn—l - an—lbn)u(t)
(3.25)
The matrix form of observer canonical form is easily obtained from (3.24) and
(3.25) as



STATE SPACE APPROACH 107

0 0 ... ... 0 —ay T [ by — agh,
10 ... ... 0 -—a by — aib,
U 1 ) : — U b — A bn

=1 olxw+ | T ult) (3.26)
: o 0 —dap_ :
_U U - 0 1 —lp—1 _b”,1 - anflbn i

and
g(t) =10 --- 0 1]x(t)+ byu(t) (3.27)

Example 3.3: The observer canonical form for the flexible beam from
Example 3.2 is given by

000 00 0 0 1 [19080
1000 0 -811 90.6
Colo1 0 0 0 12131 576
=100 10 0 —97.8 | % -0331]"
00 0 1 0 463 1.65
0000 1 —09%] | o |

and
y=[0 0 0 0 0 1]x

<

Observer canonical form is very useful for computer simulation of linear
dynamical systems since it allows the effect of the system initial conditions to be
taken into account. Thus, this form represents an observable system, in the sense
to be defined in Chapter 5, which means that all state variables have an impact on
the system output, and vice versa, that from the system output and state equations
one is able to reconstruct the state variables at any time instant, and of course at
zero, and thus, determing (0), x2(0),...,2,(0) in terms of the original initial
conditionsy(0~ ), dy(07)/dt,...,d"1y(07)/dt"~. For more details see Section
5.5 for a subtopic on the observability role in analog computer simulation.

Parallel Programming Technique

For this technique we distinguish two cases: distinct real roots and multiple
real roots of the system transfer function denominator.
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Distinct Real Roots

This state space form is very convenient for applications. Derivation of
this type of the model starts with the transfer function in the partial fraction
expansion form. Let us assume, without loss of generality, that the polynomial
in the numerator has degree of < =, then

Y(ﬁ) _ Pm(s)
U(s) ~ (st p)(s+p)-(s+pa) (3.28)
k1 k2 kn

+ +oo
<5‘|'[)1 !S‘I'[)Z 'S—l_plb

Here py, po, ..., p, aredistinct realroots (poles) of the transfer function denom-
inator.

The simulation diagram of such a form is shown in Figure 3.4.

—> X Us il » kK
i P2 J
ue % Us|—2 ) ko 4>
Ti P2 J
*n Xn K,

S

Figure 3.4: The simulation diagram for the parallel
programming technique (modal canonical form)
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The state space model derived from this simulation diagram is given by

—m 0 | 1
0 —p 0 1
(1) = o x| )
0 : (3.29)
0 0 0 —pn 1
)=k ks o R x(D)

This form is known in the literature as thmodal canonical formalso known
as uncoupled form).

Example 3.4: Find the state space model of a system described by the
transfer function
Y(s) (s+5)(s+4)
U(s) ~ (s+ 1)(s +2)(s +3)
using both direct and parallel programming techniques.
The nonfactorized transfer function is

Y (s) s2 4+ 95+ 20

U(s) 3 +6s2+11s+6

and the state space form obtained by using (3.19) and (3.20) of the direct
programming technique is

i A ]
l

-6 11 —6J [1J
y=120 9 1]x
Note that the MATLAB functiont f 2ss produces

[716 7(}1 06-|§—|- [[1J-|u

S )

y=1[1 9 20]x
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which only indicates a permutation in the state space variables, that is

0 0 1
x=|0 1 0|x
1 0 0
Employing the partial fraction expansion (which can be obtained by the

MATLAB function r esi due), the transfer function is written as

Y(s) (s+5)(s+4) 66 n 1
U(s)_(s—l—l)(s—l—2)(5—|—3)_5—|—1 s+2 s+3

The state space model, directly written using (3.29), is

1 0 0 1
x=10 =2 0 |x+|1]|wu
0 0 -3 1

y=16 -6 1]x
<
Note that the parallel programming technique presented is valid only for the
case of real distinct roots. If complex conjugate roots appear they should be
combined in pairs corresponding to the second-order transfer functions, which
can be independently implemented as demonstrated in the next example.

Example 3.5: Let a transfer function containing a pair of complex conjugate
roots be given by

4 4 2 3

G‘:
Sy i lruy w1

We first group the complex conjugate poles in a second-order transfer function,
that is

8s + 8 n 2 n 3
$24+25+2  s4+5 s4+10

G(s) =

Then, distinct real poles are implemented like in the case of parallel programming.
A second-order transfer function, corresponding to the pair of complex conjugate
poles, is implemented using direct programming, and added in parallel to the first-
order transfer functions corresponding to the real poles. The simulation diagram
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is given in Figure 3.5, where the controller canonical form is used to represent
a second-order transfer function corresponding to the complex conjugate poles.
From this simulation diagram we have

1 = —dr1+u

Ty = —10a9 + u

T3 = @4

Ty = —2w3 — 24 + u

y = 2w+ 3wz + 8wz + Buy
so that the required state space form is

-5 0 0 0 1
P U U I N Y
10 0 0 1 0
0 0 -2 =2 1
y=12 3 8 8x
ﬁ “H :
5 J
u®) % X y(®)
> D> l/sJ 3 4>
-10
> 8
a Us [ 41 8, Us o 8
-2 e«
-2

Figure 3.5: Simulation diagram for a system with complex conjugate poles

<
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Multiple Real Roots

When the transfer function has multiple real poles, it is not possible to
represent the system in uncoupled form. Assume that a reappolethe transfer
function has multiplicity» and that the other poles are real and distinct, that is

Yis) _ N(s)

U(‘S) (‘5‘|’P1)T(6‘|'[)r+1)(<5‘|'[)n)

The partial fraction form of the above expression is

Y(s) k11 P k1, kry1 Ky,
U(s)  s+m (s+m) (s+mpm)  s+ps s+ pn

The simulation diagram for such a system is shown in Figure 3.6.

u(t)

Figure 3.6: The simulation diagram for the Jordan canonical form

Taking for the state variables the outputs of integrators, the state space model
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is obtained as follows

1 0 -0 .- 0 0 Y (e
0 —p 1 0 0 0 R |
0 0 —p, 1 0
0 0 —p 1 0 0
A=1y 0 —p 0 0
0 0 0 —-ps1 0 0
0 0 0o -
) : 0
Lo 0 0 0 0 —p,.
(3.30)
B=[0 0 -~ -~ 0 1 1 - - 1%
C=lk, kipox - - kg ki ke kepw o0 k], D=0

This form of the system model is known as terdan canonical form
The complete analysis of the Jordan canonical form requires a lot of space and
time. However, understanding the Jordan form is crucial for correct interpretation
of system stability, hence in the following chapter, the Jordan form will be
completely explained.

Example 3.6: Find the state space model from the transfer function using
the Jordan canonical form

2+ 65+ 8

Gs)= —————
(s +1)*(s +3)
This transfer function can be expanded as
1.25 1.5 0.25
G(s) = + 7 — :
s+ 1 (5 + 1) s+ 3
so that the required state space model is

-1 1 0 0
x=10 -1 0 |x+|1]|wu
0 0 -3 1

y=[1.6 1.25 —0.25]x
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3.2 Time Response from the State Equation

The solution of the state space equations (3.1) and (3.2) can be obtained either in
the time domain by solving the corresponding matrix differential equation directly
or in the frequency domain by exploiting the power of the Laplace transform.
Both methods will be presented in this section.

3.2.1 Time Domain Solution

For the purpose of solving the state equation (3.1), let us first suppose that the
system is in the scalar form

&= ax+ bu (3.32)

with a known initial conditionz(0) = . It is very well known from the
elementary theory of differential equations that the solution of (3.31) is

t
w(t) = e*twg + /e“(t_T)bu(T)dT (3.32)
0

The exponential term“’ can be expressed using the Taylor series expansion
aboutty = 0 as

at 1 242 1 343 - 1 7

e :1—|—at—|—gat —|—3—!th —|—---:Z_—'(at) (3.33)

=0

-~

Analogously, in the following we prove that the solution of a genertal
order matrix state space differential equation (3.1) is given by

x(t) = eAx(0) + / A Bu(r)dr (3.34)

0

For simplicity, we first consider the homogeneous system without control input,
that is

x = Ax, x(0) = x, (3.35)
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By analogy with the scalar case, we expect the solution of this differential
equation to be

x(t) = eA'x(0) (3.36)

We shall prove that this is indeed a solution if (3.36) satisfies differential
equation (3.35), whertéhe matrix exponential is defined by using the Taylor series
expansion as

I 1 S R
At 242 343 . 140
2 _I+At+—2!At —|——3!At +---_§ EAt (3.37)
=0

The proof is simple and is obtained by taking the derivative of the right-hand
side of (3.37), that is

deAt d 1
= —(I+At+ —=A%* 4.
dt dt( TALT S + )
—A+3A2t+3A3t2+--- =A I—|—iAt—|— lA%%r---
B 2! 3! N 1! 2!

= Aert = ¢ATA
Now, substitution of (3.36) into differential equation (3.35) yields
d _ d a

X — — = = At =

X=_ox= e x(0) = Ae™'x(0) = Ax(?)

so that matrix differential equation (3.35) is satisfied, and herfcg= eA'x(0)
is its solution.

The matrixe®? is known as thestate transition matrixbecause it relates the
system state at time to that at time zero, and is denoted by

P(t) = A (3.38)

The state transition matrix as a time function depends only on the maAtrix
Therefore®(t) completely describes the internal behavior of the system, when
the external influence (control input?)) is absent. The system transition matrix
plays a fundamental role in the theory of linear dynamical systems. In the
following, we state and verify the main properties of this matrix, which is
represented in the symbolic form ky*’ and so far defined only by (3.37).
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Properties of the State Transition Matrix
It can be easily verified, by taking the derivative of

that the state transition matrix satisfies the linear homogeneous state equation
(3.1) with the initial condition equal to an identity matrix, that is

WO _ aew. ew)=1 (3.39)

The main properties of the matri(¢), which follow from (3.37) and (3.38),
are as follows:

(@) ¢(0) =1

(b) 71(t) = ¢(—1) = ®(t) is nonsingular for every ¢
(C) (,D(tz — tg) = (,D(tg — tl)Q(tl — to)

d) o(t)' = &(it), fori € N

The proofs are straightforward. Property (a) is obtained when 0 is
substituted into the series expansionedf = I + At + ---.

Property (b) holds, since
(CAt)—leAt —1
which after multiplication from the right by ¢ implies
(eAt)_leo = e At = o7 (1) = o(—1)
and (c) follows from
€D(t2 _ to) _ 6A(zSQ—tD) _ 6A(tQ—tl-}—tfz&U)
= AT AlL) — (1) — 1) (1 — to)
Property (d) is proved by using the fact that
O(1) = (A1) = AW~ oir)

In addition to properties (a), (b), (c), and (d), we have already established
one additional property, namely the derivative property, as
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(€)

d d
—®(1) = Ad(t —eA = ATA = Aeh
T (t) ()@dte e e

The state transition matri®(¢) can be found by using several methods. Two
of them are given in this chapter—formulas (3.37) and (3.49). The third one,
very popular in linear algebra, is based on the Cayley—Hamilton theorem and is
given in Appendix C.

In the case when the control vectaft) is present in the system (forced
response)

x =Ax+ Bu, x(0)=x,

we look for the solution of the state space equation in the form

x(t) = A (1) (3.40)
Then
x(1) = AeAH(1) + A (1) = Ax + A (3.41)
It follows from (3.1) and (3.41) that
¢Af(1) = Bu (3.42)
From (3.42) we have
f(1) = (¢A) "' Bu=¢"4'Bu (3.43)

Integrating this equation, bearing in mind that)) = eA'Of(O) = £(0), we get
t
f(t) —£(0) = /C_ATBU(T)dT (3.44)
0
Substitution of the last expression in (3.40) gives the required solution

t

x(t) = eAx(0) + / AT Bu(r)dr (3.45)

or

x(t) = ¢(¢)x(0) + / ¢(¢t — 7)Bu(r)dr (3.46)
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When the initial state of the system is known at titperather than at time = 0,
the solution of the state equation is similarly obtained as

t

x(t) = ®(t — to)x(to) + / ¢(t — 7)Bu(r)dr

= AU=)x (1) + /CA(t_T)Bu(T)dT

ty

(3.47)

This can be easily verified by repeating steps (3.40)—(3.45) x(ith) = x, and
x(tg) = eAtef(tp).

Example 3.7: For the system given in Example 3.4 find the state transition
matrix ¢(¢). Evaluate®(1) usingthe MATLAB function expm Assumingthat
the initial state of the system is zero, find the state response to a unit step. Check
the solution obtained by using the MATLAB functicat ep.

At the present time we are able to find the state transition matrix (matrix
exponential) by using formula (3.37), which deals with an infinite series, and
hence is not very convenient for calculations. Better ways to 4t are the
method based on the Cayley—Hamilton theorem (see Appendix C) and the formula
based on the Laplace transform, see formula (3.49). However, in this problem, if
we start with the uncoupled (modal) state space form of the system considered in
Example 3.4, we can avoid using any of the above methods in order to find the
state transition matrix. Namelyor diagonal matrices onlyit is easy to show that

-1 0 0

0 —2 0 |t et 0 0
O(t) = e 0 0 3] _ [ -|

Using the MATLAB function for evaluating the matrix exponential as
expm A*1), we get

[e—l 0 U'| [0.3679 0 0 ]
o(l)=10 e2 0 ]=1] 0 01353 0
[0 0 e—3J [ 0 0 0.0498J
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The state response to a unit step is computed from (3.46) as

L L fem(t=7) 0 0 1
x(t) = /Sb(t — 7)Bu(r)dr = / 0 e=2t=7) 0 1| -1ldr
0 0 0 0 e 3= ] 1
t e—(t—7) 1 — et
= e=20=7) | dr = 0.5(1 — e‘zt)
e=3(=7) 0.333(1 — e™%)

The step responses of system states, obtained by using MATLAB statements
[y, x] =step(A B, C, D) andpl ot (x), with

-1 0 0 1
A=|0 -2 0|,B=|1|,C=[6 -6 1],D=0
0o 0 =3 1
are shown in Figure 3.7.
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Figure 3.7: The state responses for Example 3.7
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3.2.2 Solution Using the Laplace Transform

The time trajectory of the state vect(t) can be also found using the Laplace
transform method. The main properties of the Laplace transform and common
transform pairs are given in Appendix A.

The Laplace transform applied to the state equation (3.1) gives
sX(s) = x(07) = AX(s) + BU(s)
or
X(s) = (sI - A)"'x(07) + (sI - A)"'BU(s) (3.48)

Let us assume that(0) = x(0~). Comparing equations (3.46) and (3.48), it
is easy to see that the teral — A)™" is the Laplace transform of the state
transition matrix, that is

P(s) = (s1 - A)! adj(sI — A) = L{®(1)} (3.49)

1
~ det(sI - A)
The time form of the state vectai(?) is obtained by applying the inverse Laplace
transform to
X(s) = ®(s)x(0) + ¢(s)BU(s) (3.50)
Note that the second term on the right-hand side corresponds in the time domain
to the convolution integral, so that we have

x(t) = eAx(0) + / AU Bu(r)dr (3.51)

0

Once the state vectox(?) is determined, the output vectg(t) of the system
is simply obtained by substitution of(¢) into equation (3.2), that is

y(t) = Ce(t)x(0)+ C / ¢(¢t — 7)Bu(7)dT + Du(t) (3.52)

or, in the complex domain

Y(s) = C®(s)x(0) + [CP(s)B + DJU(s) (3.53)
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3.2.3 State Space Model and Transfer Function

The matrix that establishes a relationship between the output VE¢tarand the
input vectorU(s), for the zero initial conditionsx(0) = 0, is called thesystem
matrix transfer function From (3.53) it is given by

G(s)=C(s1 - A)'B+D (3.54)

Note that (3.54) represents the open-loop system matrix transfer function.
Example 3.8: Find the transfer function for the system given in Example 3.4.
It is the easiest to use modal (uncoupled) canonical form, which leads to

s+1 0 0 1°'M1
G(s) = [6 61% 0 s+2 0 ] P]
0

0 s+ 3 1
Sil (1J 0 1
=6 -6 1]| 0 5 (1) 1
0 0 4511
6 6 1 (s+5)(s+4)

s+1 5—|—2+5—|—3 N (s+ 1)(s+2)(s+3)
If we start with controller canonical form we will get, after some algebra,

s+6 —1 0770
G(s)=[20 9 1][11 $ 1] H

6 0 s !
s +6s+1l s+6 170
=20 9 1]534-652:-115"‘6{ __bbb j(ﬁj—b)b ;2} {ﬂ
s2 4+ 9s 4 20

B+ 6524 11546
Note that the MATLAB functiorss2t f can be used to solve the above problem.

<
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3.3 Discrete-Time Models

Discrete-time systems are either inherently discrete (e.g. models of bank ac-
counts, national economy growth models, population growth models, digital
words) or they are obtained as a result of sampling (discretization) of continuous-
time systems. In such kinds of systems, inputs, state space variables, and outputs
have the discrete form and the system models can be represented in the form
of transition tables.

The mathematical model of a discrete-time system can be written in terms
of a recursive formula by using linear matrix difference equations as

x[(k+ 1)1 = Agx(k1) + Bau(k1l) (3.55)
y(k1') = Cyx(K1') + Dgu(k1)
Here'l’ represents the sampling interval, which may be omitted for brevity. Even
more, in the case of inherent discrete systems, there is no need to introduce the
notion of the sampling interval’ so that these systems are described by (3.55)
with 7' = 1.

Similarly to continuous-time systems, discrete state space equations can
be derived either from difference equations (Subsection 3.3.1) or from discrete
transfer functions using simulation diagrams (Subsection 3.3.2). In Subsection
3.3.3 we show how to discretize continuous-time linear systems and obtain
discrete-time ones. In the rest of the section we parallel most of the results
obtained in previous sections for continuous-time systems.

3.3.1 Difference Equations and State Space Form

An nth-order difference equation is given by

g(k+ 1)+ an_ry(k+n— 1)+ -+ ary(k + 1) + aoy(k)

(3.56)
=bu(k+n)+bpqu(k+n—1)+ -4 byu(k + 1)+ bou(k)

This equation expresses all values in terms of discrete-time

The corresponding state space equation can be derived by using the same
techniques as in the continuous-time case. For example, for phase variable
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canonical form (controller canonical form) in discrete-time, we have

w1k +1) o 1 0 - 0 w1 (k) 0
wo(k+1) 0 1 .. 0 (k) 0
: =1 : : : : : + || ulk)
1 (k+1) 0 0 0 - 1| fen(k)

to(k+1) —ag —ai —az - —lp—i Ln(k) 1
w1 (k)
o o (k)

y(k) = [(bo - aobn) (bl - a1bn) T (bn—l - an—lbn)] .
(k)

+ bpu(k)

(3.57)
Note that the transformation equations, dual to the continuous-time ones
(3.11)—(3.13), are given in the discrete-time domain by

Ek+n)+an—18(k+n—1)+ - +a1f(k+1)+aof(k) =uk) (3.58)

M(lf) - f(k)
wo(k) =&k +1)
ws(k) =&k + 2) (3.59)

eo(k)=E6Fk+n—1)
y(k) = bof(k) + 01&(k + 1) + bo€(k + 2) + - - + bu&(k + ) (3.60)

Eliminating £(k + ») from (3.60) by using (3.58) and (3.59), the output equation
given in (3.57) is obtained.

3.3.2 Discrete Transfer Function and State Space M odel

The derivation of state space equations from discrete transfer functions, based
on simulation diagrams, is very similar to the continuous-time case. The only
difference is that in simulation diagrams the integration blbtk is replaced by

the unit delay element~!. The state variables are selected as outputs of these
delay elementsWe shall illustrate this method by an example.
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Example 3.9: Find two state space forms for the transfer function

Y(2) z41.1

U(z) (2 09)(z+0.7)(z —0.7)

We solve this problem by using both direct (a) and parallel (b) programming
techniques.

() The transfer function can be rewritten as

Y(z) z4 1.1

U(z) 2% —0.922 — 0.49z + 0.441

The simulation diagram for this transfer function is shown in Figure 3.8.

u(k) xakr 1) Xe(k+1) xalkerd)

-1 -1 1 1.1
17 w2 [’ [

A \
0.9 |«

y(k)

Y

0.49 [«

-0.441

A

Figure 3.8: Simulation diagram for direct programming
in discrete-time domain (controller canonical form)

The state space model is obtained from this simulation diagram by using the
outputsof delay elements as state variables. It is given by

0 1 0 0
x(k+1)= 0 0 1 [ x(k)+ |0 | u(k)
—-0.441 0.49 0.9 1

y(k)=[11 1 0]x(k)
Note that controller canonical form could have been obtained without drawing
the simulation diagram. We know that this form is identical to phase variable
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canonical form, which is represented by (3.57). Identifying the corresponding
coefficients in the original transfer function, the desired state space form is
obtained directly from (3.57). We have used the above method in order to
demonstrate at the same time the procedure of drawing simulation diagrams in
the discrete-time domain.

(b) Employing the partial fraction expansion (with help of the MATLAB
function r esi due), we get

Y(z) 625 01786  —6.4286

U(z) 2109 BT —Y

Since the poles of the transfer function are real and distinct we get the modal
canonical form as

0.9 0 0 1
x(k+1)=10 =07 0 |x(k)+ |1]|uk)
0 0 0.7

g(k) =1[6.25 0.1786 —6.4286 |x(k)

3.3.3 Discretization of Continuous-Time Systems

Real physical dynamic systems are continuous in nature. In this section, we
show how to obtain discrete-time state space models from continuous-time system
models. Assume that the plant is linear, continuous, and time invariantrwith
inputs andy-outputs (see Figure 3.9). Inputs are sampled by using the zero-order
hold (ZOH) device. This device samples inputs at discrete-time instdn{see
Figure 3.10b) and the values obtained for veai¢kl') are held until(k + 1)7".

The corresponding signal is given in Figure 3.10c.
The state space model of such a plant is
X(t) = Ax(t) + Bm(¢
X(1) = Ax(1) + Bm(?) @60
y(t) = Cx(t) + Dm(1)

These equations define states and outputs during the sampling interval
EI'<t < (k+1)I. Input signalsm;(t),: = 1,...,r, are defined by

mi(t) = m(k1) = w(k1), KI'<t<(k+1)I, k=0,1,2,... (3.62)
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U my Y1
————7——> zoH —
ung?—» Zon |- x=Ax+Bu |32

y =Cx

u ' Yp

——————>| zoH ™ —>

Figure 3.9: Sampling in a multivariable controlled plant
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Figure 3.10: Transformation of a continuous-time
input signal by the zero-order hold element

In the following, we show how to perform discretization of a continuous-
time state space model (3.61) and obtain a discrete-time state space model having
the form of (3.55) together with the corresponding expressions for matrices
A;,By,Cy, and D,.
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Consider formula (3.45) withh = 7'

T
x(1) = ATx(0) + /CA(T_T)BH(O)dT
0

T T
= ATx(0) + AT / eATdrBu(0) = ¢(1)x(0) + / &1 — 7)dTBu(0)

(3.63)
which can be written in the form

x(1') = A;x(0)+ B4u(0) (3.64)
Comparing (3.63) and (3.64) we can find expressionsAfgrand B,;. They are
given by

Ag=AT = o(1)

r r r (3.65)
B, = AT / e AdrB = /eA(T_T)dT -B = /eAgdU -B
0 0 0
Note thatA, and B, are obtained for the time interval frothto I’. However,
it can easily be shown that due to system time invariance the same expressions
for A; and B, are obtained for any time interval. Namely, steps (3.63)—(3.65)
can be repeated for succeeding time interls37, ..., (K + 1)1 with initial
conditions taken, respectively, &61'), x(21), ..., x(k1’). Therefore, for the time
instantt = (k4 1)1" and forty, = k', we have from (3.47)
(k+1)T
x[(k+ 1)1 =@[(E+ 1)1 —Kl'x(KL)+ / ¢[(k+ 1)1 — 7]drBu(k1l')
kT
= Agx(k1) + Bgu(k1')
(3.66)
Fromthe above equation we see that the matridgsand B, are given by

Ag=O[(k+ 1)1 =kl =&(1) = AT

(k1T 7 7 (3.67)

B, = / [k + 1)1 — 7]drB = /cp(a)daB = /eAgdaB
0

kT 0
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The last equality is obtained by using change of variables as(k + 1)1' — 7.

Since (3.65) and (3.67) are identical, we conclude that for a time invariant
continuous-time linear system, the discretization procedure yields a time invariant
discrete-time linear system whose matrickg and B, depend only omA, B,

and the sampling interval’.

In a similar manner the output equation (3.61) at k1’ is given by
y(k1') = Cx(k1') + Du(k1) (3.68)

Comparing this equation with the general output equation of linear discrete-time
systems (3.55), we conclude that

C,=C, D,=D (3.69)

In the literature one can find several methods for discretization of continuous-
time linear systems. The discretization technique presented in this section is
known as theintegral approximation method

In the case of discrete-time linear systems obtained by sampling continuous-
time linear systems, the matri&,, given by (3.65), can be determined from
the infinite series

1o, =1
Ad:eAT:1+A1‘+2—,A21‘2+-- Z—, i (3.70)
! vl

It can be also obtained either by using formula (3.49) or the method based on
the Cayley—Hamilton theorem and setting- 7' in ®(¢) = ¢“f. Also, in order
to evaluatee®” we can use MATLAB functiorexpm( A*T) .

To find B,, the second expression in (3.65) is integrated to give (see
Appendix C—matrix integrals)

By =er(—e A+ AT )B=(A,-1)A"'B (3.71)

which is valid under the assumption thatis invertible. If A is singular,B,
can be determined from

i 00 il '
B, = (Z L pi- 1>B = (Z (il-l- 1)!A2)B (3.72)

=1 =0
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which is obtained by using (3.37) in (3.67) and performing the corresponding
integration. Note that the above sum converges quite quickly so that only a few
terms give quite an accurate expression By.

Example 3.10: Find the discrete-time state space model of a continuous-
time system

y=1[1 0)x
The sampling period' is equal to0.1.
According to (3.65) and (3.69), we have from (3.49)

20T — 2T =T _ =27 0.9909 0.0861]

A= ®(1) = [26—” —2¢7T 2¢72T e—T] - [0.1722 0.7326

L4 e2T) - e_T] _ [0.0045]

_ _ -1 _
Bi=(As-1)AT'B [ T — 2T 0.0861

Cy=[1 0], Dy;=0
The same result is obtained by using the MATLAB function for discretization of

a continuous state space model[a&d, Bd] =c2d( A B, T) .
<

3.3.4 Solution of the Discrete-Time State Equation

The objective of this section is to find the solution of the difference state equation
(3.55) for the given initial state(() and the control signak(k) at the sampling
instants’, 21, ..., k'l'. For simplicity we assumé&’ = 1.

From the state equatior(k + 1) = Ayz(k) + Byu(k), for k£ = 0,1, ...,
N — 1, it follows

x(1) = A;x(0) + B4u(0)

x(2) = Ayx(1) + Byu(l) = Ax(0) + A;B4u(0) + Byu(l)

x(3) = Ayx(2) + Byu(2) = A%x(0) + A3B4u(0) + AyB,u(1) + Byu(2)
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N-1 , (3.73)
X(NV) = Agx(N = 1)+ Bgu(N — 1) = AYx(0) + > A~ "'Byu(i)

=0
Using the notion of thealiscrete-timestate transition matrixdefined by

d4(k) = Ak (3.74)
we get
N-1
X(NV) = @4(N)x(0) + > @a(N — i — 1)Bgu(i) (3.75)

=0
Note that the discrete-time state transition matrix relates the state of an input-

free system at initial timeX = 0) to the state of the system at any other time
k > 0, that is

x(k) = ®4(k)x(0) = Alx(0) (3.76)
It is easy to verify that the discrete-time state transition matrix has the
following properties
(8) 24(0) = AY = T « x(0) = 4(0)x(0)
(b) @alks — ko) = @a(ky — k1)@a(ky — ko) = Al ™" Al ~r = Afh
(©) @4(k) = @4(ik) < (Af)" = AY
(d) @y(k+1) = AgPq(k), ¢4(0) =1

The last property follows from
x(k+1)=Ax(k) = ®;(k+ 1D)x(0) = AyPy(k)x(0)

It is important to point out that the discrete-time state transition matrix may
be singular, which follows from the fact tha”* is nonsingular if and only if
the matrix A ; is nonsingular. In the case of inherent discrete-time systems, the
matrix A; may be singular in general. However, Af; is obtained through the
discretization procedure of a continuous-time linear system, like in (3.65), then

(Ad)_l _ <6AT)—1 _ AT

so that the discrete-time state transition matrix is nonsingular in this case.
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Remark 1: If the initial value of the state vector is net(0) but x(k),
then the solution (3.75) is

N-1
(ko + N) = @4(N )x(ko) + > @4(N — i — 1)Bgu(ko + i) (3.77)

=0

The output of the system at sampling instant N is obtained by substi-
tuting x(k) from (3.75) into the output equation, producing

N-1
y(N) = Cy0y(N)x(0) + Cy E ®(N — i 1)Byu(i)+ Dyu(N) (3.78)

Note that for/" # 1, equations (3.75) and (3.78) are modified as

N-1
X(NT) = Qo(NT)x(0) + Y @4[(N — i — 1)1|Byu(il) (3.79)

=0

y(NT) = Cay(N1)x(0) + Cy E O[(N — i — 1)1 Bgu(il’) + Dyu(NT)
(3.80)

Remark 2: The discrete-time state transition matrix defined A can
be evaluated efficiently for large values bfby using a method based on the
Cayley—Hamilton theorem and described in Appendix C. It can be also evaluated
by using theZ -transformmethod as given in formula (3.85), see Subsection 3.3.5.

Example 3.11: For the system given in Example 3.10, use MATLAB to
find the unit step and impulse responses assuming that the initial condition is
x(0) =0 0",

The required time responses can be obtained directly by using MAT-
LAB statements[y, x] =dst ep( Ad, Bd, Cd, Dd) (for step response) and
[y, x] =di nmpul se( Ad, Bd, Cd, Dd) (for impulse response) with the discrete-
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time model matrices obtained in the last example. The corresponding state and
output responses are presented in Figure 3.11.

0.1 T

0.05f|"

-0.05
0 50 100 0 50 100

(a) (b)
Figure 3.11: (a) Step responses; (b) impulse responses

The same problem could have been solved analytically as follows. Since
the initial condition is zero and/(k) = 1 for £ > 0, we get from (3.73) the
state response as

N-1
X(N)=> AJ7'By, N=1.2,..
=0
The output response, obtained from (3.78), is given by

y(N)=Cx(N), N =1,2,..

However, at this point, for largé/ one is faced with the problem of efficiently
calculating the powers of matriA,;. This can be facilitated analytically by
using either the Cayley—Hamilton theorem (see Appendix C) oiZtiieansform
methodto be presented in the next subsection.

By the Cayley—Hamilton method, we have foRa 2 matrix that

Af = ool + oAy, k=234, ...

with o and a; satisfying

/\]f = (g + (11/\1
/\§ = + (ll/\g



STATE SPACE APPROACH 133

where A\; and A, are distinct eigenvalues ok;. System eigenvalues will be
considered in Section 3.4.
<

3.3.5 Solution of the Discrete State Equation by
the Z-transform

Applying the Z-transform (see Appendix B) to the state space equation of a
discrete-time system

x(k+1)= Ayx(k) + Byu(k) (3.81)
we get
zX(z) — 2x(0) = AyX(z) + B,U(2) (3.82)
The complex state vectaX(z) can be expressed as
X(z) = (21 - Ag) T2x(0) + (21 - Ay)"'ByU(2) (3.83)
The inversez-transform of the last equation givesk), that is
x(k) = 27 [(s1— Ag) 2] w(0) + 271 (51 - A)TIBaU(z)] (3.84)
Comparing equations (3.75) and (3.84) we conclude that
o (k) = 27! {(ZI - Ad)—lz} = ALk =1,2,3,... (3.85)

Let us repeat and emphasize that the discrete state transition riafriy of
a general discrete-time invariant linear system can be obtained either by using
(3.85) or the Cayley—Hamilton method given in Appendix C.

The inverse transform of the second term on the right-hand side of (3.84)
is obtained directly by the application of the discrete convolution theorem (see
Appendix B), leading to

k—1
27 (- A)TBUG) = Y @alk— 1 i)Byu(i) (3.86)

=0
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Combining (3.84) and (3.86) we get the required solution of the discrete-time
state space equation as

k—1
x(k) = ®4(k)x(0) + > ®4(k — i — 1)Bgu(i) (3.87)

=0
The complex form of the output vectaf(z) is obtained if theZ-transform
is applied to the output equation
y(k) = Cax(k) + Dgu(k)
and X(z) is substituted from (3.83), leading to
Y(z) = Cy(zl — Ay) 12x(0) + |Cy(zI — Ay) "By + Dyg|U(2)

From the above expression, for the zero initial condition, ixé0) = 0, the
discrete matrix transfer functiors given by

Gy(z) = Cy(z1 - Ay)'By+ Dy (3.88)

3.3.6 Response Between Sampling Instants
An important feature of the state variable method is that it can be modified to
determine the output between sampling instants.td.et k1" andt = (k + A)7/,
where() < A < 1. Equation (3.47) gives
(k+A)T
x[(k+ A)1] = AATx(kT) + / AlEFT=rIBy(1)dr (3.89)
k1’
Replacing (k + A)!' — 7 by 8 and assuming thau(7) is constant during
El' < 7 < (k+A)I, we get
AT
x[(k + A1) = A2 x (k1) + / A dBBu(kl)
0
= Ag(AT)X(KT) 4+ Ba(AT )u(kT)

(3.90)

where
A (A1) = AAT (3.91)
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and
AT
By(AT) = / eAdsB (3.92)

0

Therefore, the matrixA,(A’l’) is obtained by replacing’ by Al' in A,.
Similarly, B4(A1') is obtained by replacind’ by A7’ in By.

3.3.7 Euler’s Approximation

Discretization of a continuous-time linear model, as presented in Subsection 3.3.3,
by the integral approximation method, gives a desired discrete-time linear model.
However, in the case of high-order systems, computation of the state transition
matrix is very involved, so that in those cases the matridgsand B, are
calculated approximately by using some simpler methods. The simplest such a
method, known as Euler’s approximation, is just one of several methods used for
numerical solution of differential equations.

The objective of numerical integration is to find a discrete-time counterpart
to a continuous-time model

(1) = Ax(t) + Bm(t)

in the form of a difference equation. The equation obtained, given by a recursive
formula, is then easily solved by a digital computer. The integration of the
above equation gives

t

x(t) = / [Ax(7)+ Bm(7)|dr

— 00

For simplicity, the main idea of the Euler method is explained for a scalar
case. Consider the first-order systém- «x+bu. The integration is analogous to
the problem of finding the area, within the imposed integration limits, between
the curve defined byf(t) = ax(t) + bu(t) and the time axis. This area is
approximately equal to the sum of the rectangles in Figure 3.12.
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A X=ax+hbu

—_

(k)T KT (k+D)T "t

Figure 3.12: Euler’s integration method

If the area is calculated according to Figure 3.12, then from the last expres-
sion fort = (k4 1)1' we get

kT (k+1)T
x[(k+ 1)1 = / [AX(7T) + Bm(7)]dT + / [Ax(7) + Bm(7)|dr
% kT

= x(k1) + T'Ax(K1) + TBm(k1')

or

x[(k+ 1)1 =14+ TA)x(kl')+ 1TBm(k1l) (3.93)
From the last equation, we conclude that for the Euler approximation the state
and input matrices are given by

A;=1417-A, B,=7-B (3.94)

It can be observed from (3.70), (3.72), and (3.94) that (3.94) produces only
thefirst two terms of the series expansion given in (3.70) and only the first term
of the series expansion given in (3.72). Thus, the Euler approximation is less
accurate than the integral approximation considered in Subsection 3.3.3, and for
Euler's approximation the sampling interval must be chosen sufficiently small
in order to get satisfactory results.

In general, for more accurate computation of the discrete-time model one can
use any known method for numerical solution of differential equations, e.g. the
fourth-orderRunge—Kutta method or the Adams—Moulton method (Gear, 1971).



STATE SPACE APPROACH 137

3.4 The System Characteristic Equation and

Eigenvalues
The characteristic equation is very important in the study of both linear time
invariant continuous and discrete systems. No matter what model type is consid-

ered (ordinarynth-order differential equation, state space or transfer function),
the characteristic equation always has the same form.

If we start with a differential:th-order system model in the operator form

(" + apeap" ™ ap +ao)y(t)
= (bnp™ 4 b1 p™ ™ - bap + bo)u(t)
wherethe operatorp is defined as

i dZ - &
p = TR 1=1,2,....n—1
and i < n, then thecharacteristicequation according to the mathematical
theory of linear differential equations (Boyce and DiPrima, 1992), is defined by

St a8 e ags Fag =0 (3.95)

Note that the operatagy is replaced by the complex variableplaying the role
of a derivative in the Laplace transform context.

In the state space variable approach we have seen from (3.54) that

G(s)=C(s1-A)'B+D = Cladj(sI - A)]B+ D

1

|sI — A
B 1

s A

The characteristic equation here is defined by

{Cladj(sI —~ A)|B + |sI - A|D}

s~ Al =0 (3.96)

A third form of the characteristic equation is obtained in the context of the
transfer function approach. The transfer function of a single-input single-output
system is

- bmé‘m + bm—lsm_l + -+ b15 + bO
T s A" -t ars +ag

G(s) (3.97)
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The characteristic equation in this case is obtained by equating the denominator
of this expression to zero. Note that for multivariable systems, the characteristic
polynomial (obtained from the corresponding characteristic equation) appears in
denominators of all entries of the matrix transfer function.

No matter what form of the system model is considered, the characteristic
equation is always the same. This is obvious from (3.95) and (3.97), but is not
so clear from (3.96). It is left as an exercise to the reader to show that (3.95)
and (3.96) are identical (Problem 3.30).

The eigenvaluesare defined in linear algebra as scalaks, satisfying
(Fraleigh and Beauregard, 1990)

Av = A\v (3.98)

where the vectorsr # 0 are called thesigenvectors This system ofn linear
algebraic equations\(is fixed) has a solutiov # 0 if and only if

IAL-A[=0 (3.99)

Obviously, (3.96) and (3.99) have the same form. Since (3.96) = (3.95), it follows
that the last equation is the characteristic equation, and hence the eigenvalues are
the zeros of the characteristic equation. For the characteristic equation of order
n, the number of eigenvalues is equalito Thus, the roots of the characteristic
equation in the state space context are the eigenvalues of the matrbhese
roots in the transfer function context are called $gstem polesaccording to the
mathematical tools for analysis of these systems—the complex variable methods.

Similarity Transformation

We have pointed out before that a system modeled by the state space
technique may have many state space forms. Here, we establish a relationship
among those state space forms by using a linear transformation known as the
similarity transformation.

For a given system

x = Ax+ Bu, x(0)=x,
y = Cx + Du
we can introduce a new state vecfoiby a linear coordinate transformation as

follows
x = Px
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whereP is some nonsingularx » matrix. A new state space model is obtained as
X = Ax+Bu, x(0)=x,
i i (3.100)
y = Cx+ Du

where

A=P!'AP, B=P 'B, C=CP, D =D, %(0)=P'x(0) (3.101)
This transformation is known in the literature as #umilarity transformation.lt
plays an important role in linear control system theory and practice.

Very important features of this transformation are that under similarity
transformation both the system eigenvalues and the system transfer function are
invariant.

Eigenvalue Invariance

A new state space model obtained by the similarity transformation does not
change internal structure of the model, that is, the eigenvalues of the system
remain the same. This can be shown as follows

sL— A| = [s1—PTIAP| = [P~ (sI - A)P|
= [P7Y[sI — AJ|P| = |s1 — A]

Note that in this proof the following properties of the matrix determinant have
been used

(3.102)

det(MlMQM;g) = detMl X detM2 XdetMg

1
detM™! =
detM

see Appendix C.

Transfer Function Invariance

Another important feature of the similarity transformation is that the transfer
function remains the same for both models, which can be shown as follows

A - ~N—1 . - _
G(s)=C(s1-A) B+D=CP(s1-P'AP)'P'B+D
— CP[P'(sI- A)P] '"P'B+D (3.103)
= CPP '(sI- A)'PP'B+D
= C(sI - A) "B+ D = G(s)
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Note that we have used in (3.103) the matrix inversion property (Appendix C)
(M; M, M3)~" = Mz 'M;'M[!

The above result is quite logical—the system preserves its input—output behavior
no matter how it is mathematically described.

Modal Transformation

One of the most interesting similarity transformations is the one that puts
matrix A into diagonal form. Assume th& = V = [vy,v3,...,Vv,], Wherev;
are the eigenvectors. We then have

VLAV = A = A = diag(A1, Ay ..y Ay) (3.104)

It is easy to show that the elememts : = 1,...,n, on the matrix diagonal of
A are the roots of the characteristic equatjph— A| = |sI — A| = 0, i.e. they
are the eigenvalues. This can be shown in a straightforward way

|sI — A| = det{diag(s — A1,5s — Ag,..., 8 — A,)}
The state transformation (3.104) is known as thedal transformation
Note that the pure diagonal state space form defined in (3.104) can be
obtained only in the following three cases.

1. The system matrix has distinct eigenvalues, namely: Ay # --- £ A,,.

2.  The system matrix is symmetric (see Appendix C).

3. The system minimal polynomial does not contain multiple eigenvalues.
For the definition of the minimal polynomial and the corresponding pure
diagonal Jordan form, see Subsection 4.2.4.

In the above three cases we say that the system matrix is diagonalizable.
Remark: Relation (3.104) may be represented in another form, that is
V3IA=AV!
or
WTA = AWT

where
wi=v! = wiv=l
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In this case thdeft eigenvectorsw;, : = 1,2,...,n, can be computed from
WZTA = /\ZWZT = ATWZ' = A\ W;

whereW = [wy,wy,...,w,]. Since|AL - A| = [AL- AT
an eigenvalue ofA”.

There are numerous program packages available to compute both the eigen-
values and eigenvectors of a matrix. In MATLAB this is done by using the
function ei g.

, then \; is also

3.4.1 Multiple Eigenvalues

If the matrix A has multiple eigenvalues, it is possible to transform it into a
block diagonal form by using the transformation

J=VlAV (3.105)

where the matrixV is composed of: linearly independent, so-callegeneralized
eigenvectorandJ is known as the Jordan canonical form. This block diagonal
form contains simple Jordan blocks on the diagonal. Simple Jordan blocks have
the given eigenvalue on the main diagonal, ones above the main diagonal with
all other elements equal to zero. For example, a simple Jordan block of order
four is given by

N1 00
0 A 1 0
Jild =14 A1
0 0 0 N\

Let the eigenvalue\; have multiplicity of order3 in addition to two real
and distinct eigenvalues\; # As; then aJ matrix of order5 x 5 may contain
the following three simple Jordan blocks

Ar 10 0 0
0 A 1 0 0
J=10 0 A 0 0
0 0 0 A O
0 0 0 0 As
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However, other choices are also possible. For example, we may have the
following distribution of simple Jordan blocks

A1 0 0 0 Ar 00 0 0
0 A 0 0 0 0 A 0 0 0
J=10 0 XA 0 0 or =10 0 XA 0 0
0 0 0 XA 0 0 0 0 A 0
0 0 0 0 A 0 0 0 0 Az

The study of the Jordan form is quite complex. Much more about the Jordan
form will be presented in Chapter 4, where we study system stability.

3.4.2 Modal Decomposition

Diagonalization of matrixA using transformatiork = Vx makes the system
x = Ax + Bu diagonal, that is

x=Ax+ (VIB)u=Ax+ (W'B)u, %(0)=x%,
In such a case the homogeneous equaticn Ax, x(0) = x,, becomes
x = A%, %(0)=V~'x(0)=V~'x,

or

This system is represented layindependent differential equations. The modal
response to the initial condition is

x(t) = eMx, = MVTIx, = MW,
or
Fi(t) = &4(0)eM = (WZ'TXO)C/\’t
The response(t) is a combination of the modal components

x(t) = VX(t) = Vervix, = VertwTx,

= (foo)eAltvl + (ngo)eAthQ 4+ 4 (ngo)eA”tvn

(3.106)



STATE SPACE APPROACH 143

This equation represents the modal decompositior(of and it shows that the
total response consists of a sum of responses of all individual modes. Note that
wlx, are scalars.

It is customary to call the reciprocals of the systemtime constantsand
denote them byr;, that is

1=1,2,...,n

This has physical meaning since the system dynamics is determined by its time
constants and these do appear in the system response in the fdfim

The transient response of the system may be influenced differently by
different modes, depending of the eigenvallesSome modes may decay faster
than the others. Some modes might be dominant in the system response. These
cases will be illustrated in Chapter 6.

Remark: A similarity transformationA = V~!'AV can be used for the
state transition matrix calculation. Recall

x(t) = eM%(0), %x(1) = Vx(t), %(0) = Vx(0)
and
x(t) = V71eMVx(0) = ¢(1)x(0)

Hence,
o(t) = M = VMV = wlehy

or, in the complex domain
®(s) = VI(sI-A)7'V

=V diag{s — M,s5— Mgy 5— A}V

—V_ldiag{ ! ! . ! }V

s—MA s—N s — A,

Remark: The presented theory about the system characteristic equation,
eigenvalues, eigenvectors, similarity and modal transformations can be applied
directly to discrete-time linear systems with,; replacingA.
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3.5 State Space MATLAB Laboratory Experiments

In this section we present three MATLAB laboratory experiments on the state
space method in control systems. These experiments can be used either as sup-
plements for lectures or independently in the corresponding control system lab-
oratory. Most of the required MATLAB functions have been already introduced

in the examples done in this chapter. Students should also consult Appendix
D, where a shortened MATLAB manual is given. It is advisable that before
using any MATLAB function, the students check all its options by typied p
function nane.

3.5.1 Experiment 1—The Inverted Pendulum

Part 1. The linearized equations of the inverted pendulum, obtained by
assuming that the pendulum mass is concentrated at its center of gravity (Kwak-
ernaak and Sivan, 1972; Kamen, 1990) are given by

(J +mL?)6(t) — mgLO(t) + mLd(t) = 0
(3.107)

(M +m)d(t) + mLO(t) = u(t)
where6(t) is the angle of the pendulum from the vertical positidft) is the
position of the cartu(?) is the force applied to the car/ is the mass of the
cart,m is the mass of the pendulum,is the gravitational constant, andis the
moment of inertia about the center of mass. Assuming that normalized values are
givenby) =1,1L=1,¢g=981, M =1, m = 0.1, derive the state space form

(1) = Ax(t) + Bu(t)

where
x(t) = [6(t) 6(1) d(t) d(n)]"
and A*** and B**! are the corresponding matrices.
Part 2. Using MATLAB determine the following:

(a) The eigenvalues, eigenvectors, and characteristic polynomial of nagatrix

(b) The state transition matrix at the time instant 1.

(c) The unit impulse response (takét) andd(t) as the output variables) for
0 < ¢ <1 with the step sizeAt = 0.1 and draw the system response using
the MATLAB function pl ot .
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(d) The unit step response for < ¢t < 1 and At = 0.1. Draw the system
response.

(e) The unit ramp response for< ¢ < 1 and At = 0.1 and draw the system
response. Compare the response diagrams obtained in (c), (d), and (e).

(f) The state response resulting from the initial statg) = [-1 1 1 1r
and the inputu(?) = sin(¢) for 0 <t <5 and At = 0.1.

(g) The inverse of the state transition mat(ie(”)_1 for t = 5.

(h) The statex(t) at time? = 5 assuming thak(10) = [10 0 5 2]’ and
u(t) = 0 by using the result from (g).

(i) Find the system transfer function.

Part 3. Discretize the continuous-time system given in (3.107) with
17" = 0.02 and find the discrete space model

x(k+1)=Ayx(k) + Byu(k)
Assuming that the output equation of the discrete system is given by

100 0
y(k)‘[oolo

find the system (output) response for< £ < 50 due to initial conditions
xo=[-1 1 -1 1]7 and unit step input (note that %) should be generated
as a column vector of 50 elements equal to 1).
Part 4. Consider the continuous-time system given by
d’y(t) dy(t)
1 = u(t A1
e +0 0 u(t) (3.108)
(a) Discretize this system with = 1 by using the Euler approximation.
(b) Find the response of the obtained discrete systerh forl . 2,3, ...,20, when
u(t) = sin(0.1xt) and y(0) = g¢(0) = 0.

x(k) = Cyx(k)

(c) Find discrete transfer function, characteristic equation, eigenvalues, and

eigenvectors.

Part 5. Discretize the state space form of (3.108) obtained by using
MATLAB function c2d with 7" = 1. Find the discrete system response for
the initial condition and the input function defined in Part 4b. Compare the
results obtained in Parts 4 and 5. Comment on the results obtained.
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3.5.2 Experiment 2—Response of Continuous Systems

Part 1. Consider a continuous-time linear system represented by its transfer

function
$+ 5

$2 4+ Hhs+6

(a) Find the impulse response by using the MATLAB functiorpul se. In this
case you have to udey, x] =i mpul se( num den) , wherenumandden
are row vectors that contain the polynomial coefficients in descending powers
of s. Plot both state space variable and output responses (use fupctor).

(b) Find the step response by using the functdrep and plot both the state
response and the output response.

(c) Find the zero-state response due to an input giverf(by = e3¢, ¢ > 0.
Note that you have to use the functibrsi mand specify input at every
time instant of interest. That can be obtainedtls0: 0. 1: 5 (definest
at0,0.1,0.2,...,4.9,5) and byf = exp(-3*t). Check that the results
obtained in (c) agree with analytical resultstat 1.

(d) Obtain the state space form for this system by using the funttidzss.
Repeat parts (a), (b), and (c) for the corresponding state space representation.
Use the following MATLAB instructions

[y, x]=inmulse(A B CD1);
[y,x]=step(A B, CD1);
[y,x]=lsim{A B CDf,t);

respectively, withf and¢ defined in (c). Compare the results obtained.

G(s) =

Part 2. Consider the continuous-time linear system represented by

Jy=e 10, y(0T) =2, §0)=1
(a) Find the complete system response by using the MATLAB functishm
Compare the simulation results obtained with analytical results. Hint: Use
[y, x]=lsimA B, CD,f,t,X0);
with ¢ = 0:0.1:5. Note that the initial condition for the state vec®, has

to be found. This can be obtained by playing algebra with the state and
output equations and setting= 0.
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(b) Find the zeros and poles of this system by using the fundtic2zp.

(c) Find the system response due to initial conditions specified in Part 2a and
the impulse delta function as an input. Since you are not able to specify the
system input in time (the delta function has no time structure), you cannot use
thel si mfunction. Instead use thieni t i al function (zero-input response).
The required response is obtained analytically as follows

x(t) = ¢*(x(0) + B)

where A and B stand for the system and input matrices in the state space.
Thus, the new initial condition is given by(0) + B.

(d) Justify the answer obtained in (c). Solve the same problem analytically by
using the Laplace transform. Plot results from (c) and compare with results
obtained in (d). Can you draw any conclusion for this “nonstandard” problem
from the point of view of the system initial conditions at= 0*. (The
standard problem requires that for the impulse response all initial conditions
are set to zero.)

Part 3. Given the following dynamical system represented in the state space
form by (Gajic and Shen, 1993)

—0.01357  —32.2  —46.3 0 —0.433
A | 000012 0 1.214 0 | 0.1394
T 1-0.0001212 0 —1.214 1|7 7T 01394
0.00057 0 —9.1  —0.6696 —0.1577
_ (0001 _ 02x1
C_L 0 0 0]’ b=0

This is a real mathematical model of an F-8 aircraft (Teneketzis and Sandell,
1977). Using MATLAB, determine the following quantities.

(&) The eigenvalues, eigenvectors, and characteristic polynomial.  Take
p=pol y(A) and verify thatr oot s(p) produces also the eigenvalues
of matrix A.

(b) The state transition matrix at the time instant 1. Use theex pmfunction.

(c) The unit impulse response and plot output variables. Hint: Use

i npul se(A, B, C D);
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(d) The unit step response and plot the corresponding output variables.

(e) Let the initial system state bg0) = [-1 1 0.5 1]7. Find the response
due to an input given byf(¢) = sin(¢), 0 < t < 1000. Hint: Take
t =0: 10: 1000 and find the corresponding values f@tt) by using the
functionsi n in the form f = si n(¢). Then use thé si mfunction.

(H Find the system transfer functions. Note that you have one input and two
outputs which implies two transfer functions. Hint: Use the functsi2t f .

(g) Find the inverse of the state transition matfid!) ™" = ¢=Af at? = 2.

Part 4. Consider a linear continuous-time dynamical system represented by
its transfer function

(s+1)(s+3)s+b)(s+7)

) = A DG+ D + 6+ ) + 10)

(&) Input the system zeros and poles as column vectors. Note that in this case
the static gaink = 1. Use the functiorzp2ss( z, p, k) in order to get the
state space matrices.

(b) Find the eigenvalues and eigenvectors of ma#ftix

(c) Verify that the transformatior = Px, whereP is the matrix whose columns
are the eigenvectors of matriA, produces in the new coordinates the
diagonal system matrid = P~!AP with diagonal elements equal to the
eigenvalues of matriA.

(d) Find the remaining state space matrices in the new coordinates. Find the
transfer function in the new coordinates and compare it with the original
one.

(e) Compare the unit step responses of the original and transformed systems.

3.5.3 Experiment 3—Response of Discrete Systems

Part 1. Consider a discrete-time linear system represented by its transfer

function
Z

GG =
(8) Find the impulse response by using the MATLAB functainmpul se. In
this case you have to uge/, x] =di npul se( num den) , wherenumand
den are row vectors which contain the polynomial coefficients in descending
powers ofs. Plot both state and output responses (use fungiloot ).
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(b)
()

(d)

(@)

(b)
()

(d)

Find the step response by using the funciist ep and plot both the state
and output responses.
Find the system (output) response due to a unit step funcfidgn,= h(%),
and initial conditions specified by(—1) = 0, y(—2) = 1. Note that you
have to use the functiosl si mand to specify input at every time instant of
interest. That can be obtained ky0: 1: 20 (definesk at0, 1,2, ..., 19, 20)
and byf (k) =1. Check analytically that the results obtained in (c) agree
with the analytical results fok = 10.
Obtain the state space form for this system by using the funttidiss.
Repeat parts (a), (b), and (c). Use the following MATLAB statements
[y, x]=di mpul se(A B, C D 1);
[y, x]=dstep(A B, C D 1);
[y,x]=dlsimA B CD,f,k);
respectivelywith f andk defined in (c). Compare the results obtained.

Part 2. Consider the discrete-time linear system represented by
. 5 1 ,
y(k+2)+ 6!/(’“ +1)+ gy(k) = flk+1)

FR) = (08) u(k),  y(-1)=2, y(-2)=3
Find the system response by using the MATLAB functibrsi m Hint: Use
[y, x]=dl si (A B,C, D f, X0); with k=0: 1: 10.

Note that the initial condition has to be found. This can be obtained by
playing algebra with the state space and output equations. Compare the
simulation results obtained with analytical results.

Find the zeros and poles of this system by using the fundtid?e p.

Find the system response due to initial conditions specified in Part 2a and
with the impulse delta function as an input. Use thesi mfunction.

Solve the same problem analytically by using theransform. Plot results
from (c) and compare with results obtained in (d).

Part 3. Given a dynamical system represented in the continuous-time state

space form in Section 3.5.2, Experiment 2, Part 3.

(@)

Discretize the continuous-time system by using the MATLAB funct@d.
Assume that the sampling period’ls = 1.
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(b) Find the eigenvalues, eigenvectors, and characteristic polynomial of the
obtained discrete-time system.

(c) Find the state transition matrix at time instant 5.

(d) Find the unit impulse response and plot output variables. Hint: Use

di mpul se(A B, C, D);

(e) Find the unit step response and plot the corresponding output variables.

(f) Assume that the initial system statex:$0) = [-1 0 1 ~0.5]". Find
the response due to an input given ) = sink, 0 < k < 1000. Hint:
Takek=0: 10: 1000 and find the corresponding values fffk) by using
the functionsi n in the form f = si n(k). Then use thal si mfunction.
Compare the obtained discrete-time results with the continuous-time results
for the same system studied in Section 3.5.2, Experiment 2.

(g) Find the system transfer functions. Note that you have one input and two
outputs which implies two transfer functions. The matriCeandD arenot
changed due to discretization procedure. Hint: Use the funstai?t f .
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3.7 Problems

3.1 An antenna control problem (Dressler and Tabak, 1971) is represented by
the open-loop transfer function

K(s+1)
s2(s+6)(s + 11.5)(s% + 85 + 256)

Find state space matrices for the following forms:

G(s) =

(a) Controller canonical form.
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(b) Observer canonical form.

3.2 Arobotic manipulator called the acrobot has the following linearized model
(Spong, 1995)

0 0 10 0

0 0 0 1 0
A= 1249 —1254 0 0’ B —2.98
—14.49 2936 0 0 0.98

Assume that the output matrices are given by

C=[1 0 1 0], D=0

Use MATLAB in order to find the following quantities:

(a) Eigenvalues and characteristic polynomial.
(b) Modal canonical form.

(c) Open-loop transfer function.

(d) Controller and observer canonical forms.

3.3 Consider the harmonic oscillator in the state space form
=Ll BBl )=

(a) Find the state transition matrix.

(b) Find the system response due to a unit step input.

(c) Verify the answer obtained by using the MATLAB functiogas2zp
andl sim

3.4 Given the matrix

0 1
S

Find ¢A* by the Cayley—Hamilton and the Laplace transform methods.
3.5 For the system

Gt) + 29(¢) + y(t) = 6a(t) + u(t)
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(a) Draw the simulation block diagram. Use any method.
(b) Find the system impulse response by the MATLAB functiom
pul se.

3.6 Given a discrete system(k + 1) = Ax(k), where

1 2
A=
b il

Find its response due to the initial condition givenoy0) =[1 1]7.
3.7 Given a linear time invariant continuous system

(1) = Ax(t) + mu(t)

IEAG L / J1 =2
x(1) = [wzu)] - [0] u(t) = {0 0<t<2
Assuming that the state transition matrix has a known (given) form as
$11(t — o) 0 ]
Ot —tp) =
( 0) [¢21(t —1o)  ¢2a(t —1o)

find the system response for any> 0.

with

3.8 Find the impulse response of the system
G+2§+ 10y =i — 34+ bu
Find the system transfer function and the state space form.

3.9 Find the system response for- 1 due to its initial condition at = 1

dz_(tt) + 4y(t) + 3/;{/(7’)d7’ =0, y(l)=2

3.10 Find the response of the discrete system
y(k+2)+y(k) = (—1)", y(0) =1, y(1) =0
Verify the answer by the MATLAB functiord! si m
3.11 A continuous-time system is represented by
y+4y+3y=u
(a) Find the transfer function and the impulse response.
(b) Compute the responsgt) for y(07) = —2, y(07) = 1 and u(?)
equal to a unit step function.
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3.12 Given a linear continuous-time system with

A= [02 13],B_ [01],)((0)— [Ol],C_I,D_O

(a) Find the state transition matrix.

(b) Find the system transfer function.

(c) Find the system response due to a unit step input.
(d) Verify the answers obtained by using MATLAB.

3.13 A discrete system is given by
y(k+1) = 0.5y(k) = 2u(k + 1) + u(k)
Compute the impulse response. Verify the result by the MATLAB function

di npul se.
3.14 Discretize the following system by using the Euler approximation

g+ 29+ 3sin(y(t)) = u(t), y(0) =1, y(0) =2

3.15 Given a time invariant linear system with the impulse response equal to
e~*. Find the response of this system due to an impgt — 1)+ 3h(t — 2),
where¢(t) is the impulse delta function antt) is a unit step function.
What MATLAB functions can be used to solve this problem?

3.16 A linear discrete system is represented by

A= [02 13],B_ H,x(o)_ [01],0_[0 1, D=0

(a) Find its state transition matrix.

(b) Find the transfer function.

(c) Find the system response dueud:) = k£ assuming that:1(0) = 1
and z,(0) = 3.

3.17 Find the response of the system given by

G+20+y=1t+u, u(t)=2e" y0)=1,40)=1
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3.18 Given a second-order linear system at rest (initial conditions are zero)
i+ 26wng + wiy = wyu(t)

Find its unit step response fgr < 1.
3.19 Find the response of the discrete system

y(k+2) = 6y(k+ 1) +8y(k) =3k +2, y(0)=1,y(1)=1
3.20 Find the response of the continuous system
§+39 10y =2a+5u, y(0)=19(0)= -1, u(t)=t

3.21 Discretize the systeny = w by using both the Euler and the integral
approximations. Compare the discrete systems obtained.

3.22 Given a linear continuous system

(1) = Ax(1)

2 1
el
Find the similarity transformation such that this system has the diagonal
form in the new coordinates.

with

3.23 Find the state transition matrix of a continuous system with
0 -1
S
Use the Taylor series expansion method.
3.24 Find the response of a discrete system represented by

gk +2) +29(k) + 1= (-1, y(0)=y(1) =1

3.25 Find the transition matrix in the complex domain for the system represented
by

1 0 0
A=10 0 0
1 0 0
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3.26 Consider a fifth-order industrial reactor (Arkun and Ramakrishnan, 1983;
Petkovskiet al., 1991) represented by

—-16.11 —-0.39  27.2 0 0
0.01 —16.99 0 0 12.47
A= 1511 0 —53.6 —16.57  TL.78
—53.36 0 0 —-107.2 23211
2.27 60.1 0 2273 —102.99

B - 1112 —2.61 2191 535 69.1]7
T 126 3.36 0 0 0

000 0 1
C_[Ulloo]

Using MATLAB, find the following:
(a) The system transfer function.

(b) The impulse response.
(c) The response due to inputs(t) = e~* + sin () anduy(t) = 0.

3.27 Discretize the system given in Problem 3.26 by the MATLAB funct@d
with 1" = 0.1 and repeat the steps (a), (b), and (c) from Problem 3.26.

3.28 The model of a synchronous machine connected to an infinite bus (Koko-
tovic et al, 1980; Grodt and Gaji¢, 1988) has the system matrix

[—0.58 0 0 —0.27 0 0.2 0
0 -1 0 0 0 1 0
0 0 -5 2.1 0 0 0
A= 0 0 0 0 337 0 0
—-0.14 0 0.14 —-0.2 —0.28 0 0
0 0 0 0 0 0.08 2
L—-17.2 66.7 —11.6 409 0 —066.7 —16.7]

(a) Find the eigenvalues, eigenvectors, and similarity transformation that
puts this system into a diagonal form.

(b) Discretize this system withi’ = 1.

(c) Find the response of the discrete system obtained in part (b) due
to the initial conditionx(0) =[1 1 1 1 1 1 1]° and draw
the corresponding response for the time intetvad &£ < 10. Use
MATLAB.
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3.29 A linearized mathematical model of an aircraft considered in Litkouhi

(1983) and Gajic and Shen (1991) has the form

—0.015 —0.0805 —0.0011666 0

A 0 0 0 0.03333
T —2.28 0 —0.84 1
0.6 0 —4.8 —0.49
—0.0000916  0.0007416
0 0
B = —0.11 0
—8.7 0

Obtain the following (using MATLAB):

(a) Discretize this model withl’ = 1.
(b) Find its response due to a unit ramp input.
(c) Find the system transfer function and the system poles.

3.30 Show by induction that the characteristic equation (3.96) of a system in the

phase variable canonical form is indeed given by (3.95).

3.31 Write a MATLAB program to obtain the system’s modal form for Example
3.4. Using that program, check the corresponding results in Examples 3.4

and 3.9.



