

Example 2.1 A Conceptual Example

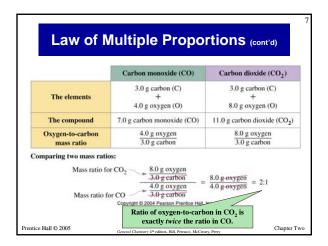
Jan Baptista van Helmont (1579–1644) first measured the mass of a young willow tree and, separately, the mass of a bucket of soil and then planted the tree in the bucket. After five years, he found that the tree had gained 75 kg in mass even though the soil had lost only 0.057 kg. He had added only water to the bucket, and so he concluded that all the mass gained by the tree had come from the water. Explain and criticize his conclusion.

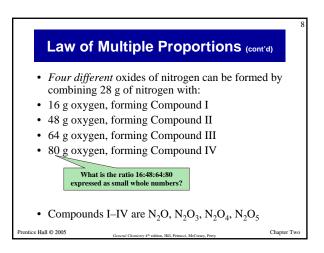
Prentice Hall © 2005

Chapter Two

Law of Multiple Proportions

When two or more different compounds of the same two elements are compared, the *masses* of one element that combine with a fixed mass of the second element are in the ratio of small *whole* numbers.


Example 2.2


The mass ratio of oxygen to magnesium in the compound magnesium oxide is 0.6583:1. What mass of magnesium oxide will form when 2.000 g of magnesium is completely converted to magnesium oxide by burning in pure oxygen gas?

Prentice Hall © 2005

Chapter Two

Prentice Hall © 2005

Dalton's Atomic Theory Proposed in 1803 to explain the law of conservation of mass, law of definite proportions, and law of multiple proportions.

- Matter is composed of *atoms*: tiny, indivisible particles.
- All atoms of a given element are the same.
- Atoms of one element differ from atoms of other elements.
- Compounds are formed when atoms of different elements unite in fixed proportions.
- A *chemical reaction* involves rearrangement of atoms. No atoms are created, destroyed, or broken apart.

Chapter Two

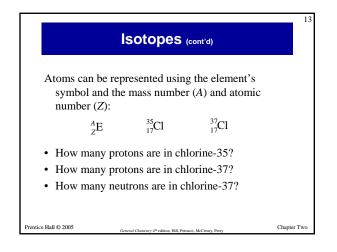
11

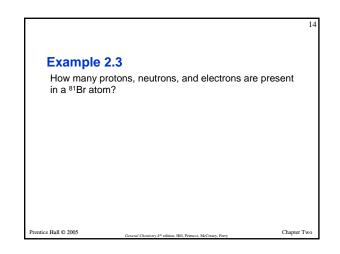
Subatomic Particles

- Protons and neutrons are located at the center of an atom (at the **nucleus**).
- Electrons are dispersed around the nucleus.

Table 2.1 Subatomic Particles

Prentice Hall © 2005


Particle	Symbol	Approximate Relative Mass	Relative Charge	Location in Atom
Proton	p ⁺	1	1+	Inside nucleus
Neutron	n	1	0	Inside nucleus
Electron	e ⁻	0.000545	1-	Outside nucleus
	1	Copyright © 2004 Pearson Pre	ntice Hall, Inc.	
entice Hall © 2005	5	General Chemistry 4th edition. Hill, Pet	mori McCreary Perry	Chapter Tv


Isotopes

- Atoms that have the same number of protons but different numbers of neutrons are called isotopes.
- The **atomic number** (*Z*) is the number of protons in the nucleus of a given atom of a given element.
- The mass number (*A*) is an integral number that is the sum of the numbers of protons and neutrons in an atom.
- The number of neutrons = A Z.

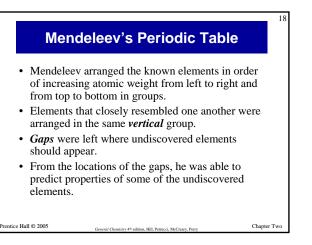
Prentice Hall © 2005

12

Atomic Mass

- Atoms are very tiny, so a tiny unit is needed to express the mass of an atom or molecule.
- One **atomic mass unit** (amu, or u) = 1/12 the mass of a C-12 atom.
- 1 amu = 1.66054×10^{-24} g

Prentice Hall © 2005

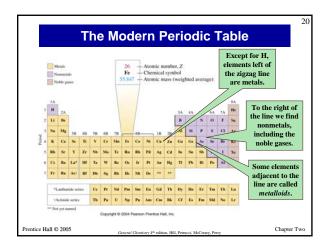

Prentice Hall © 2005

• The mass of an atom is not *exactly* the sum of the masses of the protons + neutrons + electrons (we will see why in Chapter 19).

Atomic Mass (cont'd) • The atomic mass given on the *periodic table*

Chapter Two

Isotope	Percent Abundance	Fractional Abundance
Carbon-12	98.892%	0.98892
Carbon-13	1.108%	0.01108
Use the da	2.4 ata cited above to deter tomic mass of carbon.	mine the weighted
Use the da average a	ata cited above to deter	0



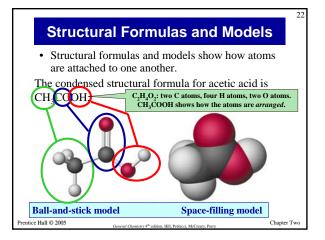
- Question: do all isotopes of an element have the same mass? Why or why not?
- is the weighted average of the masses of the naturally occurring isotopes of that element.

rentice Hall © 2005

Chapter Two

Germanium: Prediction vs. Observation				
Table 2.2 Properties of Germanium: Predicted and Observed Predicted: Observed: Property Eka-silicon*(1871)				
72	72.6			
5.5	5.47			
Dirty gray	Grayish white			
	GeO2:4.703			
	GeCl ₄ :86 °C			
EsCl ₄ : 1.9	GeCl ₄ : 1.887			
nt).	ilicon means "first comes silico			
	Germanium: Predicted and Predicted: Eka-silicon ^a (1871) 72 5.5			

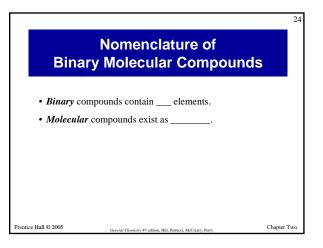
Molecules and Formulas


21

23

Chapter Two

- A *molecule* is a group of two or more atoms held together by *covalent bonds*.
- A *molecular formula* gives the number of each kind of atom in a molecule.
- An *empirical formula* simply gives the (whole number) *ratio* of atoms of elements in a compound.


Compound	Molecular formula	Empirical formula
Hydrogen peroxide	H ₂ O ₂	НО
Octane	C ₈ H ₁₈	????

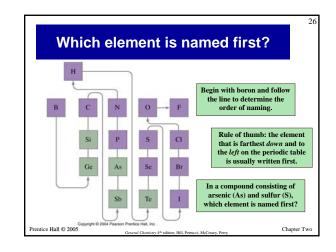
Nomenclature

- ... is the method for naming compounds and writing formulas for compounds.
- We *could* have a specific name for each compound—but we would have to memorize each one!
 - Can you imagine having to memorize the names of half a million different inorganic compounds? Twenty million organic compounds??
- Instead we have a *systematic* method conventions and rules—for naming compounds and writing formulas.

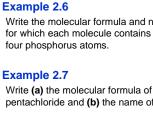
Prentice Hall © 2005

Naming Binary Molecular Compounds

- The name consists of two words.
- First word: name of the element that appears first in the formula.
- Second word: stem of the name of the second element, ending with -ide.
- Names are further modified by adding prefixes to denote the numbers of atoms of each element in the molecule.

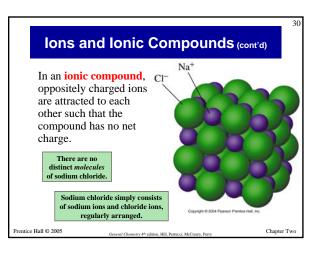

Chapter Two

29


Chapter Two

entice Hall © 2005

Prentice Hall © 2005



Number of Atoms	Prefix	Examples ^a
1	mono	NO nitrogen monoxide
2	di	NO2 nitrogen dioxide
3	tri	N2O3 dinitrogen trioxide
4	tetra	N2O4 dinitrogen tetroxide
5	penta	N2O5 dinitrogen pentoxide
6	hexa	SF ₆ sulfur hexafluoride
7	hepta	IF7 iodine heptafluoride
8	octa	P4O8 tetraphosphorus octoxide
9	nona	P ₄ S ₉ tetraphosphorus nonasulfide
10	deca	As ₄ O ₁₀ tetraarsenic decoxide

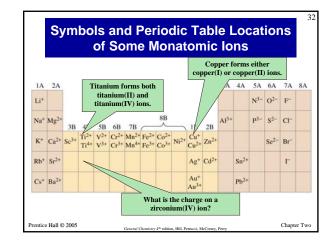
Ions and Ionic Compounds

- An atom that either gains or loses electron(s) is an ion.
- There is no change in the number of protons or neutrons in the nucleus of the atom.
- **Cation** has a *positive* charge from *loss* of electron(s).
- Anion has a *negative* charge from *gain* of electron(s).

Write the molecular formula and name of a compound for which each molecule contains six oxygen atoms and 28

Chapter Two

Example 2.7


Write (a) the molecular formula of phosphorus pentachloride and (b) the name of S_2F_{10} .

Prentice Hall © 2005

Monatomic Ions

- Group IA metals form ions of 1+ charge.
- Group IIA metals form ions of 2+ charge.
- Aluminum, a group IIIA metal, forms ions with a 3+ charge.
- *Nonmetal* ions of groups V, VI, and VII usually have charges of 3–, 2–, and 1–, respectively.
- Group B metal ions (transition metal ions) often have more than one possible charge. A Roman numeral is used to indicate the actual charge.
- A few transition elements have only one common ion (Ag, Zn, Cd), and a Roman numeral is not often used.

Prentice Hall © 2005

Formulas and Names of Binary Ionic Compounds

- Binary ionic compounds are made up of monatomic cations and anions.
- · These combinations must be electrically neutral.
- The **formula unit** is the simplest collection of cations
- and anions that represents an electrically neutral unit. *Formula unit* is to *ion* as ______ is to *atom*.
- To *write a formula*, combine the proper number of each ion to form a neutral unit.
- To *name* a binary ionic compound, name the cation, then the anion.
- · Monatomic anion names end in -ide.

Prentice Hall © 2005

Prentice Hall © 2005

Chapter Two

Chapter Two

32

Example 2.8 Determine the form

Determine the formula for (a) calcium chloride and (b) magnesium oxide.

34

Chapter Two

24

Example 2.9

rentice Hall © 2005

What are the names of (a) MgS and (b) CrCl₃?

35

Po	lyat	omi	С	lons	
	iyat				2

- A polyatomic ion is a charged group of covalently bonded atoms.
- There are many more polyatomic anions than there are polyatomic cations.
- You should (eventually!) commit to memory much of Table 2.4
- hypo- and per- are sometimes seen as prefixes in oxygen-containing polyatomic ions (oxoanions).
- *-ite* and *-ate* are commonly found as suffixes in oxygen-containing polyatomic ions.

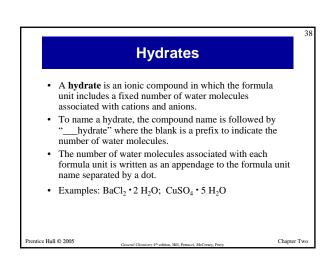
Table 2.4 Some Common Polyatomic Name	Formula	Typical Compound
Cation		About composition
Ammonium ion	NH."	NH_CI
Anions	1.00.0	inder
Acetate ion	"C3H3O2"	NaC-H ₂ O ₂
Carbonate ion	CO32-	Li-CO ₃
Hydrogen carbonate ion (or hicarbonate ion) ^b	HCO ₁	NaHCO
Hypochlorite ion	C10	Ca(ClO):
Chlorite ion	C10,-	NaClO ₁
Chlorate ion	C101	NaClO ₁
Perchlorate ion	C10,	KClO ₄
Chromate ion	Cr0.2-	K-CrO ₄
Dichromate ion	Cr2O72-	(NH ₄)-Cr-O ₇
Cyanate ion	OCN T	KOCN
Thiocyanate ion ^e	SCN	KSCN
Cyanide ion	CN ⁻	KCN
Hydroxide ion	OH-	NaOH
Nitrite ion	NO ₁	NaNO-
Nitrate ion	NO ₁ ⁻	NaNO ₁
Oxalate ion	C:0,2-	CaC ₂ O ₄
Permanganate ion	MnO ₄	KMnO ₄
Phosphate ion	PO,3-	Na ₃ PO ₄
Hydrogen phosphate ion	HPO ₄ ²⁻	Na ₃ HPO ₄
Dihydrogen phosphate ion	H-PO4	NaH-PO,
Sulfite ion	SO12-	Na ₂ SO ₁
Hydrogen sulfite ion (or bisulfite ion) ^b	HSO ₃	NaHSO ₁
Sulfate ion	SO4 ³	Na-SO ₄
Hydrogen sulfate ion (or bisulfate ion) ^b	HSO ₄	NaHSO
Thiosulfate ion ⁶	S2032-	Na ₂ S ₂ O ₃
refix "di-," which means two (assailly used to represent a	doubting of a simpler	ans that the ion contains a replaceable H arom. This should not be confused with the unity. ⁴ The prefix "this-" means that a suffer atom has replaced an oxygen atom, sarson Prentice Hall, Inc.
entice Hall © 2005	ieneral Chemistry 4th	edition. Hill. Petrucci. McCreary. Perry Chapter

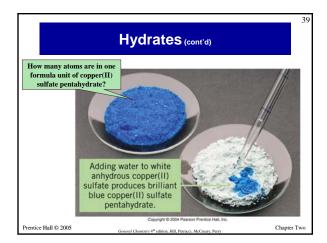
Example 2.10

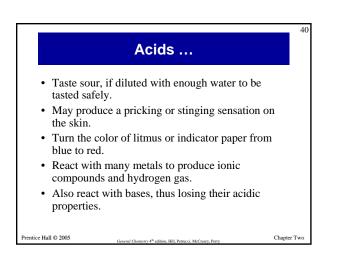
Write the formula for (**a**) sodium sulfite and (**b**) ammonium sulfate.

Example 2.11

rentice Hall © 2005


What is the name of (a) NaCN and (b) $Mg(CIO_4)_2$?


37


Chapter Two

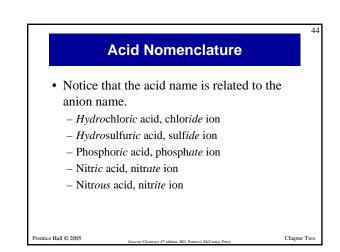
41

Chapter Two

Bases ...

- Taste bitter, if diluted with enough water to be tasted safely.
- Feel slippery or soapy on the skin.
- Turn the color of litmus or indicator paper from red to blue.
- React with acids, thus losing their basic properties.

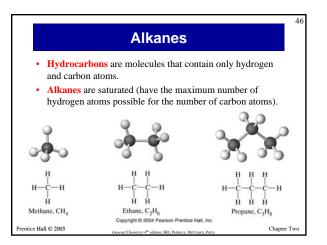
Prentice Hall © 2005

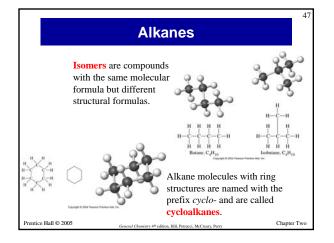

Acids and Bases: The Arrhenius Concept

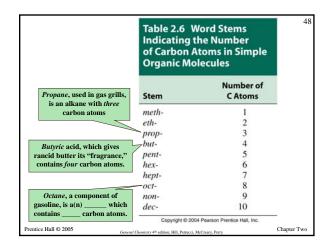
- There are several definitions which may be used to describe acids and bases.
- An Arrhenius acid is a compound that ionizes in water to form a solution of H⁺ ions and anions.
- An Arrhenius base is a compound that ionizes in water to form solutions of OH⁻ and cations.
- **Neutralization** is the process of an acid reacting with a base to form water and a salt.
- A salt is the combination of the cation from a base and the anion from an acid.

Prentice Hall © 2005

42

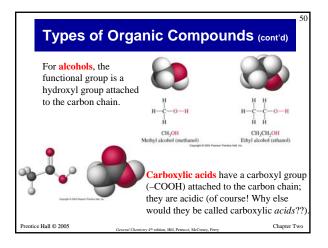

		Sodium Salt		
Formula of Acid	Name of Acid	Formula	Name	
HCI	Hydrochloric acid	NaCl	Sodium chloride	
HCIO	Hypochlorous acid	NaClO	Sodium hypochlorite	
HClO ₂	Chlorous acid	NaClO ₂	Sodium chlorite	
HClO ₃	Chloric acid	NaClO ₃	Sodium chlorate	
HClO ₄	Perchloric acid	NaClO ₄	Sodium perchlorate	
H ₂ S	Hydrosulfuric acid	Na ₂ S	Sodium sulfide	
H ₂ SO ₃ ^a	Sulfurous acid	Na ₂ SO ₃	Sodium sulfite	
H ₂ SO ₄ ^a	Sulfuric acid	Na ₂ SO ₄	Sodium sulfate	
HNO ₂	Nitrous acid	NaNO ₂	Sodium nitrite	
HNO ₃	Nitric acid	NaNO ₃	Sodium nitrate	
H ₃ PO ₄ ^a	Phosphoric acid	Na ₃ PO ₄	Sodium phosphate	
H ₂ CO ₃ ^a	Carbonic acid	Na ₂ CO ₃	Sodium carbonate	




Organic Compounds

- Organic chemistry is the study of carbon and its compounds.
- Carbon compounds can have an almost unlimited diversity, because carbon atoms can bond to one another, and to other atoms, to form chains and rings.
- Carbon compounds containing one or more of the elements H, O, N, or S are especially common.
- Many organic compounds have common names as well as systematic names.

Prentice Hall © 2005



Types of Organic Compounds

- Many organic compounds contain a functional group.
- A *functional group* is an atom or group of atoms attached to the hydrocarbon chain, which confers particular physical and/or chemical properties upon the compound.
- Compounds with the same functional group often undergo similar reactions.
- A list of common functional groups is found in Table D.1.

Prentice Hall © 2005

Cumulative Example

Show that the following experiment is consistent with the law of conservation of mass (within the limits of experimental error): A 10.00-g sample of calcium carbonate was dissolved in 100.0 mL of hydrochloric acid solution (d = 1.148 g/mL). The products were 120.40 g of solution (a mixture of hydrochloric acid and calcium chloride) and 2.22 L of carbon dioxide gas (d = 0.0019769 g/mL).

Prentice Hall © 2005

Chapter Two

49

Chapter Two

51