

3.1 Measurements and Their Uncertainty

Connecting to Your World

On January 4, 2004, the Mars Exploration Rover Spirit landed on Mars. Each day of its mission, Spirit recorded measurements for analysis. In the chemistry laboratory, you must strive for accuracy and
 precision in your measurements.

Slide
2 of 48

3.1 Measurements and Their > Using and Expressing Uncertainty Measurements

Using and Expressing Measurements
-
How do measurements relate to science?

3.1 Measurements and Their > Using and Expressing Uncertainty Measurements

A measurement is a quantity that has both a number and a unit.

Measurements are fundamental to the experimental sciences. For that reason, it is important to be able to make measurements and to decide whether a measurement is correct.

3.1 Measurements and Their > Using and Expressing
 Uncertainty Measurements

In scientific notation, a given number is written as the product of two numbers: a coefficient and 10 raised to a power.

The number of stars in a galaxy is an example of an estimate that should be expressed in scientific
 notation. precision?
3.1 Measurements and Their > Accuracy, Precision, and Error Uncertainty

Accuracy and Precision

- Accuracy is a measure of how close a measurement comes to the actual or true value of whatever is measured.
- Precision is a measure of how close a series of measurements are to one another.
3.1 Measurements and Their > Accuracy, Precision, and Error Uncertainty

To evaluate the accuracy of a measurement, the measured value must be compared to the correct value. To evaluate the precision of a measurement, you must compare the values of two or more repeated measurements.
of 48

3.1

Measurements and Their > Accuracy, Precision, and Error Uncertainty

Determining Error

- The accepted value is the correct value based on reliable references.
- The experimental value is the value measured in the lab.
- The difference between the experimental value and the accepted value is called the error.

Error $=$ experimental value - accepted value

3.1 Measurements and Their > Accuracy, Precision, and Error Uncertainty

The percent error is the absolute value of the error divided by the accepted value, multiplied by 100%.

$$
\text { Percent error }=\frac{\mid \text { error } \mid}{\text { accepted value }} \times 100 \%
$$

3.1 Measurements and Their > Accuracy, Precision, and Error Uncertainty

$$
\begin{aligned}
\text { Percent error } & =\frac{\left|99.1^{\circ} \mathrm{C}-100.0^{\circ} \mathrm{C}\right|}{100.0^{\circ} \mathrm{C}} \times 100 \% \\
& =\frac{0.9^{\circ} \mathrm{Z}}{100.0^{\circ} \mathrm{Z}} \times 100 \% \\
& =0.009 \times 100 \% \\
& =0.9 \%
\end{aligned}
$$

3.1 Measurements and Their > Accuracy, Precision, and Error Uncertainty

Just because a measuring device works, you cannot assume it is accurate. The scale below has not been properly zeroed, so the reading obtained for the person's weight is inaccurate.

3.1 Measurements and Their > Significant Figures in Measurements Uncertainty

Significant Figures in Measurements

Why must measurements be reported to the correct number of significant figures?

3.1 Measurements and Their > Significant Figures in Measurements Uncertainty

Suppose you estimate a weight that is between 2.4 lb and 2.5 lb to be 2.46 lb . The first two digits (2 and 4) are known. The last digit (6) is an estimate and involves some uncertainty. All three digits convey useful information, however, and are called significant figures.

The significant figures in a measurement include all of the digits that are known, plus a last digit that is estimated.

15 of 48
3.1 Measurements and Their > Significant Figures in Measurements Uncertainty

Measurements must always be reported to the correct number of significant figures because calculated answers often depend on the number of significant figures in the values used in the calculation.
3.1 Measurements and Their > Significant Figures in Measurements Uncertainty

Rules for determining whether a digit in a measured
value is significant:

1 Every nonzero digit in a reported measurement is assumed to be significant. The measurements 24.7 meters, 0.743 meter, and 714 meters each express a measure of length to three significant figures.

2 Zeros appearing between nonzero digits are significant. The measurements 7003 meters, 40.79 meters, and 1.503 meters each have four significant figures.

3 Leftmost zeros appearing in front of nonzero digits are not significant. They act as placeholders. The measurements 0.0071 meter, 0.42 meter, and 0.000099 meter each have only two significant figures. The zeros to the left are not significant. By writing the measurements in scientific notation, you can eliminate such placeholding zeros: in this case, 7.1×10^{-3} meter, 4.2×10^{-1} meter, and 9.9×10^{-5} meter.

4 Zeros at the end of a number and to the right of a decimal point are always significant. The measurements 43.00 meters, 1.010 meters, and 9.000 meters each have four significant figures.

Animation 2

See how the precision of a calculated result depends on the sensitivity of the measuring instruments.
3.1 Measurements and Their > Significant Figures in Measurements Uncertainty

a Measured length $=0.6 \mathrm{~m}$

(b) Measured length $=0.61 \mathrm{~m}$

C Measured length $=0.607 \mathrm{~m}$

Slide

CONCEPTUAL PROBLEM 3.1

Counting Significant Figures in Measurements

How many significant figures are in each measurement?
a. 123 m
b. $40,506 \mathrm{~mm}$
c. $9.8000 \times 10^{4} \mathrm{~m}$
d. 22 meter sticks
e. 0.07080 m
f. $98,000 \mathrm{~m}$

CONCEPTUAL PROBLEM 3.1

1) Analyze Identify the relevant concepts.

The location of each zero in the measurement and the location of the decimal point determine which of the rules apply for determining significant figures.

CONCEPTUAL PROBLEM 3.1

2 Solve Apply the concepts to this problem.
All nonzero digits are significant (rule 1). Use rules 2 through 6 to determine if the zeros are significant.
a. three (rule 1)
b. five (rule 2)
c. five (rule 4)
d. unlimited (rule 6)
e. four (rules 2, 3, 4)
f. two (rule 5)

Practice Problems for Conceptual Problem 3.1
2. How many significant figures are in each measurement?
a. 143 grams
b. 0.074 meter
c. 8.750×10^{-2} gram
d. 1.072 meter

ChemASAP click to start

Problem Solving 3.2 Solve Problem 2 with the help of an interactive guided tutorial.
3.1 Measurements and Their > Significant Figures in Calculations Uncertainty

Significant Figures in Calculations

How does the precision of a calculated answer compare to the precision of the measurements used to obtain it?

25 of 48
3.1

Measurements and Their > Significant Figures in Calculations Uncertainty

In general, a calculated answer cannot be more precise than the least precise measurement from which it was calculated.

The calculated value must be rounded to make it consistent with the measurements from which it was calculated.
3.1 Measurements and Their > Significant Figures in Calculations

Rounding
To round a number, you must first decide how many significant figures your answer should have. The answer depends on the given measurements and on the mathematical process used to arrive at the answer.

SAMPLE PROBLEM 3.1

Rounding Measurements

Round off each measurement to the number of significant figures shown in parentheses. Write the answers in scientific notation.
a. 314.721 meters (four)
b. 0.001775 meter (two)
c. 8792 meters (two)

SAMPLE PROBLEM 3.1

Analyze Identify the relevant concepts.

Round off each measurement to the number of significant figures indicated. Then apply the rules for expressing numbers in scientific notation.

SAMPLE PROBLEM 3.1

Solve Apply the concepts to this problem.

Count from the left and apply the rule to the digit immediately to the right of the digit to which you are rounding. The arrow points to the digit immediately following the last significant digit.
a. 314.721 meters
\uparrow
2 is less than 5 , so you do not round up.
314.7 meters $=3.147 \times 10^{2}$ meters
b. 0.001775 meter \uparrow
7 is greater than 5 , so round up. 0.0018 meter $=1.8 \times 10^{-3}$ meter
c. 8792 meters
\uparrow
9 is greater than 5 , so round up 8800 meters $=8.8 \times 10^{3}$ meters

SAMPLE PROBLEM 3.1

Evaluate Do the results make sense?

The rules for rounding and for writing numbers in scientific notation have been correctly applied.

Practice Problems for Sample Problem 3.1

3. Round each measurement to
three significant figures. Write
your answers in scientific
notation.
a. 87.073 meters
b. 4.3621×10^{8} meters
c. 0.01552 meter
d. 9009 meters
e. 1.7777×10^{-3} meter
f. 629.55 meters

3.1 Measurements and Their $>$ Significant Figures in Calculations Uncertainty

Addition and Subtraction

The answer to an addition or subtraction calculation should be rounded to the same number of decimal places (not digits) as the measurement with the least number of decimal places.

SAMPLE PROBLEM 3.2

Significant Figures in Addition

Calculate the sum of the three measurements. Give the answer to the correct number of significant figures.
12.52 meters +349.0 meters +8.24 meters

| PEARSON
 Prentice
 Hall
 © Copyright Pearson Prentice Hall | 34 of 48 |
| :---: | :---: | :---: |

SAMPLE PROBLEM 3.2

Analyze Identify the relevant concepts.
Calculate the sum and then analyze each measurement to determine the number of decimal places required in the answer.

SAMPLE PROBLEM 3.2

Solve Apply the concepts to this problem.

Align the decimal points and add the numbers. Round the answer to match the measurement with the least number of decimal places.

12.52	meters
349.0	meters
$+\quad 8.24$	meters
369.76	meters

The second measurement (349.0 meters) has the least number of digits (one) to the right of the decimal point. Thus the answer must be rounded to one digit after the decimal point. The answer is rounded to 369.8 meters, or 3.698×10^{2} meters.

SAMPLE PROBLEM 3.2

Evaluate Does the result make sense?

The mathematical operation has been correctly carried out and the resulting answer is reported to the correct number of decimal places.
6. Find the total mass of three diamonds that have masses of 14.2 grams, 8.73 grams, and 0.912 gram.
3.1 Measurements and Their $>$ Significant Figures in Calculations
Uncertainty

Multiplication and Division

- In calculations involving multiplication and division, you need to round the answer to the same number of significant figures as the measurement with the least number of significant figures.
- The position of the decimal point has nothing to do with the rounding process when multiplying and dividing measurements.

SAMPLE PROBLEM 3.3

Significant Figures in Multiplication and Division
Perform the following operations. Give the answers to the correct number of significant figures.
a. 7.55 meters $\times 0.34$ meter
b. 2.10 meters $\times 0.70$ meter
c. 2.4526 meters $\div 8.4$

40 of 48

SAMPLE PROBLEM 3.3

Analyze Identify the relevant concepts.

Perform the required math operation and then analyze each of the original numbers to determine the correct number of significant figures required in the answer.

SAMPLE PROBLEM 3.3

Solve Apply the concepts to this problem.

Round the answers to match the measurement with the least number of significant figures.
a. 7.55 meters $\times 0.34$ meter $=2.567(\text { meter })^{2}=2.6$ meters 2 (0.34 meter has two significant figures)
b. 2.10 meters $\times 0.70$ meter $=1.47(\text { meter })^{2}=1.5$ meters 2 (0.70 meter has two significant figures)
c. 2.4526 meters $\div 8.4=0.291976$ meter $=0.29$ meter (8.4 has two significant figures)

SAMPLE PROBLEM 3.3

Evaluate Do the results make sense?
The mathematical operations have been performed correctly, and the resulting answers are reported to the correct number of places.

Practice Problems for Sample Problem 3.3
8. Calculate the volume of a warehouse that has inside dimensions of 22.4 meters by
11.3 meters by 5.2 meters.
(Volume $=l \times w \times h$)

