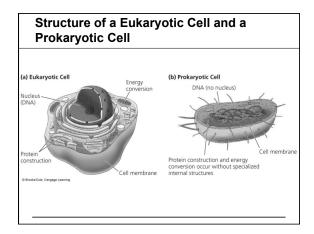
Ecosystems: What Are They and How Do They Work?

Chapter 3

3-1 What Is Ecology?

• Concept 3-1 Ecology is the study of how organisms interact with one another and with their physical environment of matter and energy.


```
Parts of the earth's air, water, and soil where life is found
 Biosphere
Ecosystem
Community
 Population
                                           A group of individuals of the same species 
living in a particular place
                                           An individual living being
  Organism
           Cell
   Molecule
                                           Smallest unit of a chemical element that 
exhibits its chemical properties
         Atom
```

A community of different species interacting with one another and with their nonliving environment of matter and energy Populations of different species living in a particular place, and potentially interacting with each other

The fundamental structural and functional unit of life

Chemical combination of two or more atoms of the same or different elements

Fig. 3-3, p. 52

Species Make Up the Encyclopedia of Life

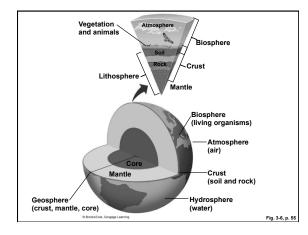
Species

- 1.75 Million species identified
- Insects make up most of the known species
- Perhaps 10–14 million species not yet identified

Ecologists Study Connections in Nature

Ecology

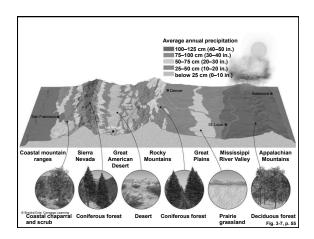
- Levels of organization (Fig. 3-3)
 Population


 - Genetic diversity
 - Community
 - Ecosystem
 - Biosphere

3-2 What Keeps Us and Other Organisms Alive?

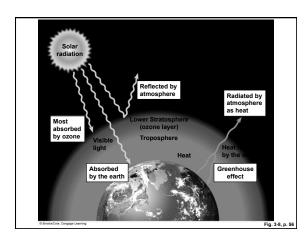
 Concept 3-2 Life is sustained by the flow of energy from the sun through the biosphere, the cycling of nutrients within the biosphere, and gravity.

The Earth's Life-Support System Has Four Major Components


- Atmosphere
 - Troposphere
 - Stratosphere
- Hydrosphere
- Geosphere
- Biosphere

Life Exists on Land and in Water

- Biomes (Fig. 3-7)
- Aquatic life zones
 - Freshwater life zones
 Lakes and streams
 - Marine life zones
 - Coral reefs
 - Estuaries
 - Deep ocean



Three Factors Sustain Life on Earth

- One-way flow of high-quality energy beginning with the sun (Laws of Thermodynamics)
- Cycling of matter or nutrients (Conservation of matter)
- Gravity

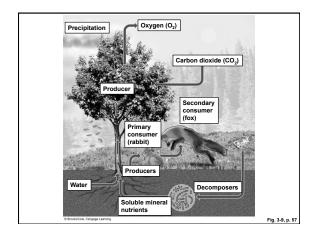
What Happens to Solar Energy Reaching the Earth?

- UV, visible, and IR energy
- Radiation
 - Absorbed by ozone
 - Absorbed by the earth
 - · Reflected by the earth
 - Radiated by the atmosphere as heat
- Natural greenhouse effect (Fig. 3-8)

Active to Ea	e Figure: Energy flow from the Sun th
	► PLAY

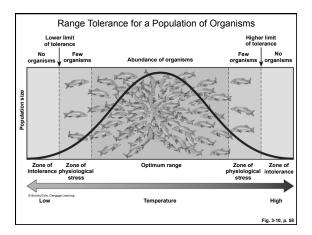
3-3 What Are the Major Components of an Ecosystem?

- Concept 3-3A Ecosystems contain living (biotic) and nonliving (abiotic) components.
- Concept 3-3B Some organisms produce the nutrients they need, others get their nutrients by consuming other organisms, and some recycle nutrients back to producers by decomposing the wastes and remains of organisms.


Ecosystems Have Living and Nonliving Components

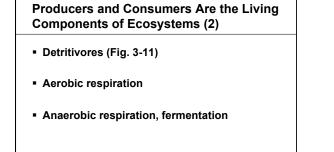
Abiotic

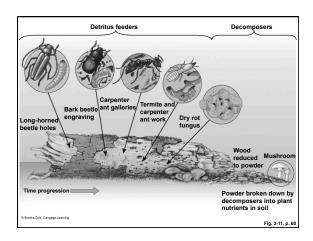
- Water
- Air
- Nutrients
- Rocks
- Heat
- Solar energy


Biotic

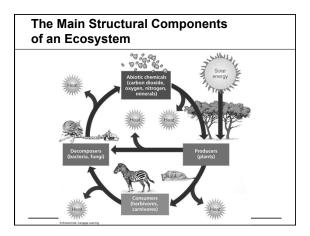
· Living and once living

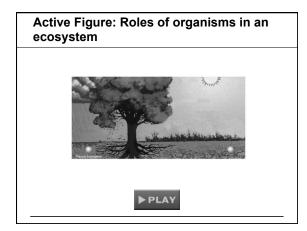
Several Abiotic Factors Can Limit Population Growth


- Limiting factor principle
 - Too much or too little of any abiotic factor can limit or prevent growth of a population, even if all other factors are at or near the optimal range of tolerance

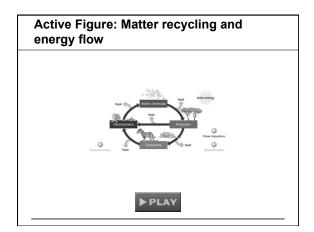


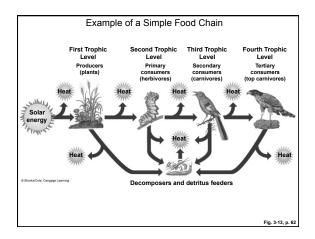
Producers and Consumers Are the Living Components of Ecosystems (1)

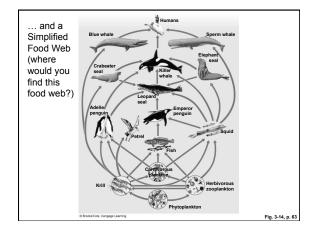

- Producers, autotrophs
 - Photosynthesis
 - · Chemosynthesis
- Consumers, heterotrophs
 - Primary
 - Secondary
 - Third and higher level
- Decomposers



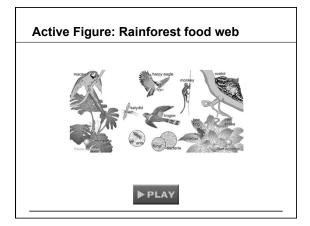
Energy Flow and Nutrient Cycling Sustain Ecosystems and the Biosphere

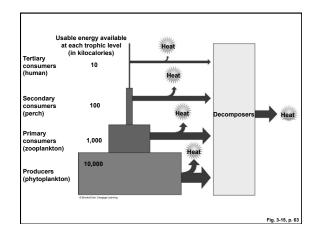

- One-way energy flow (Laws of thermodynamics)
- Nutrient cycling of key materials (Conservation of matter)



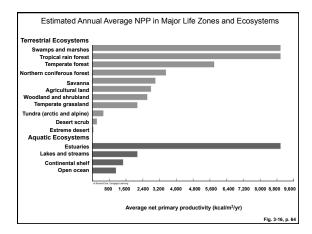


3-4 What Happens to Energy in an Ecosystem?


- **Concept 3-4A** Energy flows through ecosystems in food chains and webs.
- Concept 3-4B As energy flows through ecosystems in food chains and webs, the amount of chemical energy available to organisms at each succeeding feeding level decreases.



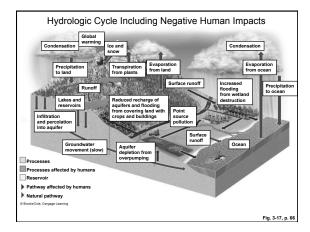
Usable Energy Decreases with Each Link in a Food Chain or Web

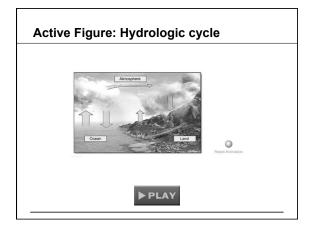

- Biomass
- Ecological efficiency
- Pyramid of energy flow

Some Ecosystems Produce Plant Matter Faster Than Others Do

- Gross primary productivity (GPP) is the rate at which producers convert solar energy into chemical energy as biomass found in their tissue
- Net primary productivity (NPP) is the GPP minus energy used for respiration
 - · Ecosystems and life zones differ in their NPP

3-5 What Happens to Matter in an Ecosystem?

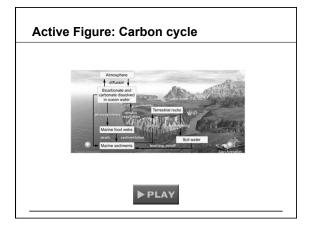

 Concept 3-5 Matter, in the form of nutrients, cycles within and among ecosystems and the biosphere, and human activities are altering these chemical cycles.


Nutrients Cycle in the Biosphere

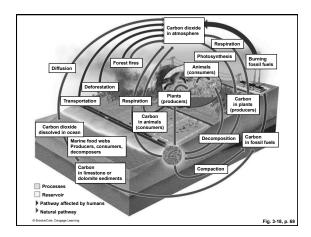
- Biogeochemical cycles, nutrient cycles
 - Hydrologic
 - Carbon
 - Nitrogen
 - Phosphorus
 - Sulfur
- Connect past, present , and future forms of life

Water Cycles through the Biosphere

- Natural renewal of water quality: three major processes
 - Evaporation
 - Precipitation
 - Transpiration
- Alteration of the hydrologic cycle by humans
 - Withdrawal of large amounts of freshwater at rates faster than nature can replace it
 - Clearing vegetation
 - · Increased flooding when wetlands are drained

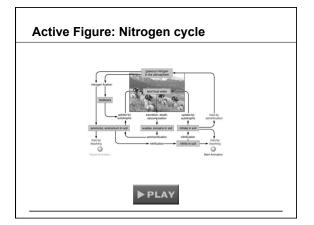


Science Focus: Water's Unique Properties

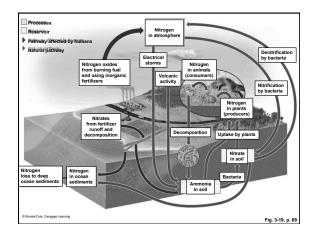

- Properties of water due to hydrogen bonds between water molecules:
 - Exists as a liquid over a large range of temperature
 - · Changes temperature slowly
 - High boiling point: 100°C
 - Adhesion and cohesion
 - Expands as it freezes
 - Solvent
 - Filters out harmful UV

Carbon Cycle Depends on Photosynthesis and Respiration

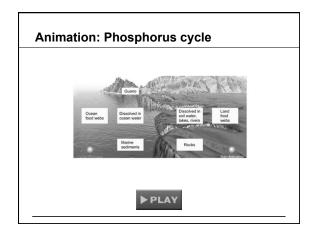
- Link between photosynthesis in producers and respiration in producers, consumers, and decomposers
- Additional CO₂ added to the atmosphere
 Tree clearing
 - Burning of fossil fuels

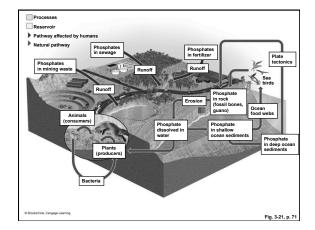


Nitrogen Cycles through the Biosphere: Bacteria in Action (1)

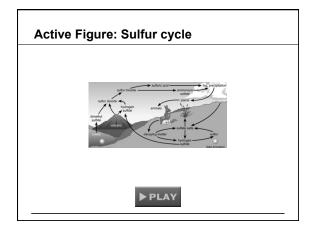

- Nitrogen fixed (combined with hydrogen)
 Lightning
 - Nitrogen-fixing bacteria
- Nitrification (combined with oxygen)
- Denitrification

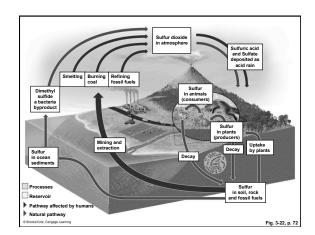
Nitrogen Cycles through the Biosphere: Bacteria in Action (2)

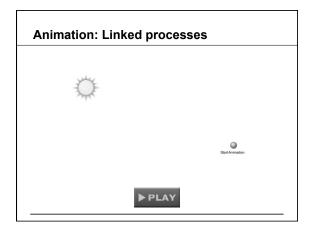

- Human intervention in the nitrogen cycle
 - Additional NO (nitric oxide from burning fossil fuels) and N_2O (nitrous oxide from agriculture)
 - Destruction of forest, grasslands, and wetlands
 - Add excess nitrates to bodies of water
 - Remove nitrogen from topsoil (with crop harvest)



Phosphorus Cycles through the Biosphere


- Cycles through water, the earth's crust, and living organisms
- May be limiting factor for plant growth
- Impact of human activities
 - Clearing forests
 - Removing large amounts of phosphate from the earth to make fertilizers




Sulfur Cycles through the Biosphere

- Sulfur found in organisms, ocean sediments, soil, rocks, and fossil fuels
- SO₂ (sulfur dioxide) in the atmosphere
- H_2SO_4 (sulfuric acid) and SO_4^{2-}
- Human activities affect the sulfur cycle
 - Burn sulfur-containing coal and oil
 - Refine sulfur-containing petroleum
 - Convert sulfur-containing metallic mineral ores

3-6 How Do Scientists Study Ecosystems?

 Concept 3-6 Scientists use field research, laboratory research, and mathematical and other models to learn about ecosystems.

Some Scientists Study Nature Directly

- Field research: "muddy-boots biology"
- New technologies available
 - Remote sensors
 - Geographic information system (GIS) software
 - · Digital satellite imaging
- 2005, Global Earth Observation System of Systems (GEOSS)

Some Scientists Study Ecosystems in the Laboratory

- Simplified systems carried out in
 - Culture tubes and bottles
 - Aquaria tanks
 - Greenhouses
 - Indoor and outdoor chambers
- Supported by field research

Some Scientists Use Models to Simulate Ecosystems

- Computer simulations and projections
- Field and laboratory research needed for baseline data