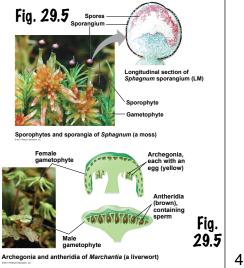
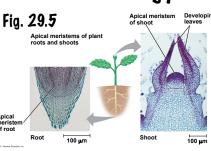

Chapters 29 & 30: Plant Diversity

AP Biology 2013


1

Important Plant Terminology

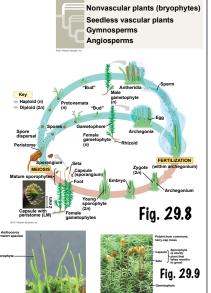

- * Sporophyte produces spores in organs called sporangia
 - **Diploid cells called** * sporocytes undergo meiosis to generate haploid spores
- Gametes are produced within * organs called gametangia
 - Female gametangia are * called archegonia (produce eggs and are site of fertilization)
 - Male gametangia are * called antheridia (produce and release sprem)

Important Plant Terminology

Apical meriste of root

- Apical Meristems where plants exhibit continual arowth
 - Cells here can * differentiate into various tissues
- Cuticle waxy coating of the epidermis
- Mycorrhizae symbiotic ж association between plants and fungi that helps plants obtain nutrients
- Plants are grouped based on presence of vascular tissue

- Seed an embryo surrounded by a protective coat
- * Seed plants form a clade that can be divided into the clades gymnosperm and angiosperm


5

- Bryophytes Nonvascular plants Represented by three phyla of small herbaceous (nonwoody) plants
- Liverworts phylum * Hepatophyta

*

*

- Hornworts phylum * Anthocerophyta
- Mosses phylum Bryophyta
- Sequence of bryophyte evolution is * not clear, but mosses are most closely related to vascular plants
- In all three phyla, gametophytes * are larger and longer-living than sporophytes

Importance of Mosses

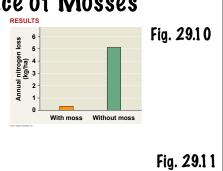
- Capable of inhabiting diverse * and extreme environments (although most common in moist forests and wetlands)
- * Help retain nitrogen in soil
- Sphagnum (peat moss) forms * deposits of partially decayed organic material called peat which can be used for fuel
 - **Reservoir** for organic * carbon

*

*

*

*

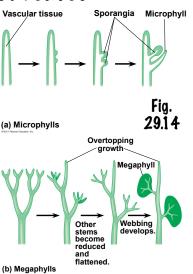

*

*

and some seedless vascular

plants are heterosporous

Overharvesting or water * level drop could cause stored CO_2 to be released into the atmosphere


7

8

9

Nonvascular plants (bryophytes) **Seedless Vascular Plants** Seedless vascular plants Gymnosperms Angiosperms * Pate back to 420 million vears ago Vascular tissue allowed the plants to grow tall Key Diploid (2n) Have flagellated sperm * (require moist environments) Early tiny plants had * gonium Egg independent, branching sporophytes but lacked ERTILIZATION the other derived traits of vascular plants Fig. Sporophytes are the 29.13 * larger generation; gametophytes are tiny plants that grown on or below the soil surface

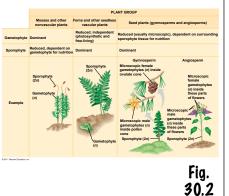
Evolution of Leaves Vascular tissue Leaves - organs that increase surface area of vascular plants (capture more solar energy) Two types: Microphylls - with a single vein (perhaps evolved from outgrowths of stems) (a) Microphylls Megaphylls - highly branched Overtopping vascular system (perhaps arowth evolved from webbing of flattened branches) Sporophylls - modified leaves with sporangia Most seedless vascular plants are homosporous. Seed plants

Seedless Vascular Plant Phyla

- Lycophyta club mosses, spike mosses, and quillworts
 - * Small herbaceous plants
- Pterophyta ferns, horsetails, and whisk ferns
 - Ferns most diverse group
- These phyla formed the first forests during the Carboniferous period
 - Caused major global cooling
 - * Eventually became coal

Seeds Bearing Plants

nudum, a whisk


- Changed the course of plant evolution
- Plants could become dormant
- Reduced gametophytes are protected in ovules and pollen grains
 - Pevelop within the walls of spores and retained within the tissue of the parent sporophyte
- Heterospory

*

*

*

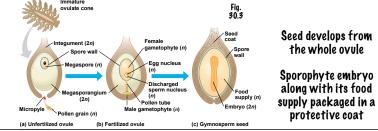
Ovules and Pollen

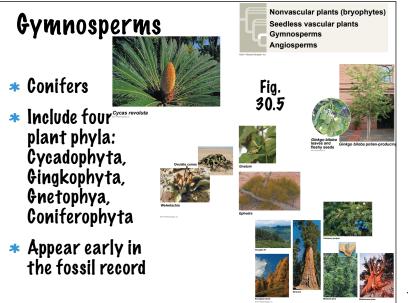
Diphasiastr

setum ar

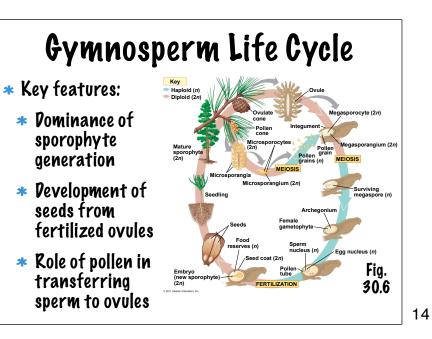
Fig. 29.1 5

10




11

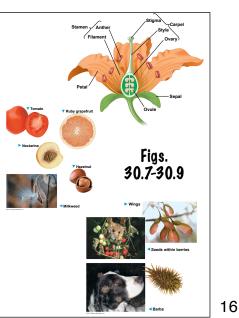
12


that give rise to female gametophytes) Ovule consists of a megasporangium, megaspore, and protective integuments Seed plants evolved from plants that had microsporangia (produce microspores that give rise to male gametophytes - contained in pollen) Pollen grain germination involves pollen tube that discharges two sperm into the female gametophyte within the ovule Pollination - transfer of pollen to the part of the seed plant that contains the ovules

Heterospory Seed plants evolved from plants that had megasporangia (produce megaspores

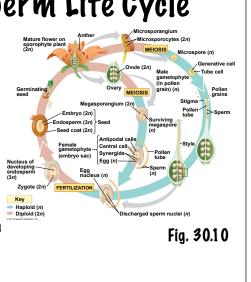
Angiosperms

- * Flowering plants
- Seed plants that produce reproductive structures called flowers and fruits
 - * Key adaptation of angiosperms
 - Flower is a specialized structure for sexual reproduction
- Most widespread and diverse of all plants

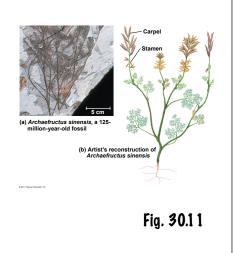

Nonvascular plants (bryophytes)

Seedless vascular plants

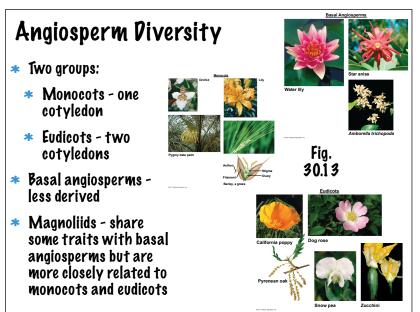
Gymnosperms


Flower and Fruits

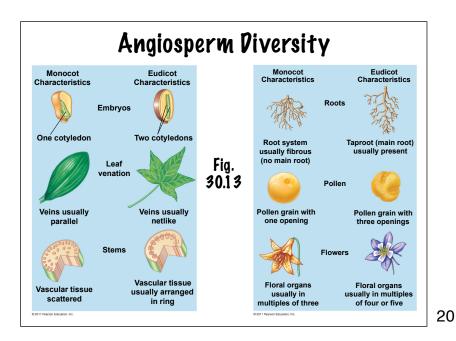
- Specialized shoot with modified leaves
 - * Sepals enclose the flower
 - Petals brightly colored to attract pollinators
 - Stamens which produce pollen
 - Carpels which produce ovules
- Fruits consist of a mature ovary and can be dispersed by wind, water, or animals

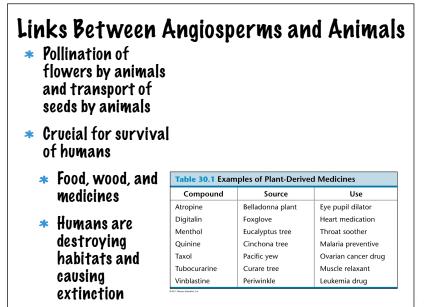

Angiosperm Life Cycle

- Pouble fertilization occurs when a pollen tube discharges two sperm into the female gametophyte within an ovule
- One sperm fertilizes the egg; the other combines with two nuclei in the center cell of the female gametophyte and initiates development of a food-storing endosperm
- Endosperm nourishes the developing embryo



Angiosperm Evolution


- Originated at least 140 million years ago
- Primitive fossils of 125 million-year-old angiosperms display both derived and primitive characteristics
- Thought that ancestors had separate pollen producing and ovule producing structures before they were combined into a single flower



17

