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Abstract

Cell cycle progression is tightly interlinked with cellular metabolism. The availability of
sufficient metabolic nutrients and intracellular energy status control the ability of cells to
enter and progress through cell cycle. While the cell cycle machinery was found to regulate
the concentration of key metabolic enzymes, an understanding of how the actual rate of
metabolic reactions and pathway (i.e. metabolic flux) change throughout the cell cycle is
still fundamentally missing. Here, we developed a temporal-fluxomics approach to derive a
comprehensive and quantitative view of alterations in metabolic fluxes throughout the
mammalian cell cycle. This is achieved by combining pulse-chase LC-MS based isotope
tracing in synchronized cell populations with computational deconvolution and metabolic
flux modelling. Specifically, we synchronized Hela cells and applied high-throughput LC-MS
based targeted metabolomics analysis to synchronized cell populations throughout two
complete cell cycles. As cell synchronization is gradually lost with time due to inherent non-
genetic cell-to-cell variability, the distribution of cell cycle phases in the synchronized cell
population becomes similar to that of non-synchronized cells with time. To account for the
loss of synchrony and to precisely quantify oscillations in metabolite levels, we employed
“computational synchronization”. Inferring the dynamics of metabolite concentrations
throughout the cell cycle (rather than that of metabolite abundances) further required
estimates of the dynamics of cell volume throughout the cell cycle. Finally, a variant of
Kinetic Flux Profiling (KFP) was employed to infer metabolic flux dynamics throughput the

cell cycle.

Applied to Hela cells, we derived a first comprehensive and quantitative view of metabolic
flux oscillations at a high temporal resolution in central metabolism throughout the cell
cycle of human cells, showing complementary oscillations between glucose and glutamine-

derived flux in the TCA cycle throughout the cell cycle: oxidation of glucose-derived flux



peaks in late G1 phase while oxidative and reductive glutamine metabolism dominates S
phase. These complementary flux oscillations maintain a constant production rate of
reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift
from glucose to glutamine oxidation in S phase plays an important role in cell cycle
progression and cell proliferation. After treating Hela cells with the PDK inhibitor DCA, the
oscillations in glucose flux into TCA cycle were eliminated, suggesting that cell cycle specific

regulation of PDH activity may be involved in regulating these flux oscillations.

Understanding the metabolic adaptation of cells to tumorigenic mutations is a central goal
of cancer metabolic research. Considering that tumorigenic mutations typically alter cell
cycle progression, flux alterations observed at a cell population level may merely reflect a
change in the distribution of cell-cycle phases in the population (due to cells in different
phases having different metabolic fluxes). Hence, the presented temporal-fluxomics
approach will enable to revisit our understanding of oncogene-induced metabolic
alterations, disentangling population level artifacts from directly regulated flux alterations

with important tumorigenic role and revealing potential targets for therapy.
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1. Introduction

1.1 Cancer Metabolism

Cancer is a major global health problem: ~1.7 million new cases are projected to occur in
2018 worldwide *. While major research advancements have been made in cancer research,
extensive variation in survival between cancer types still exists 4. Although cancer death
rates have decreased in recent decades, for some cancers, death rates have remained
stubbornly constant, or even have risen . Recently, there is a major resurgence of interest
in the field of cancer metabolism due to several advancements in this field ®7: (i) The
metabolic rewiring in cancer cells spans many pathways and goes much beyond the sole
induction of aerobic glycolysis; (ii) tumor suppressors and oncogenes within growth-factor
signaling pathways directly regulate the activity of a variety of metabolic pathways; and (iii)
oncogenic mutations found in several metabolic enzymes in specific cancers. Research in
this field has demonstrated that metabolic alterations in cancer cells are a potential

therapeutic target for a variety of cancers 811,

1.1.1. The metabolic rewiring in cancer cells
Cancer adapts its metabolism to support abnormal demand for the growth even under
oxygen or nutrient-depleted conditions. Furthermore, it maintains its viability and
homeostasis to counteract the metabolic alteration during tumorigenesist?2. While normal
cells would not be able to withstand cancer environment, cancer cells are reprogrammed
to survive and promote proliferation through its adapted metabolism. The hallmarks of
rewired cancer metabolism are summarized on the basis of the review written by Pavlova

& Thompson, in 20162 (Table 1).

Table 1: The hallmarks of rewired cancer metabolism'2. Cancer cell alters its pathway to

support the high energy and biomass demand even under nutrient and oxygen depleted



condition. This rewired cancer metabolism can be categorized as following 6 specific

changes: 1. Deregulated uptake of glucose and amino acids, 2. Use of opportunistic modes of

nutrient acquisition, 3. Use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH

production, 4. Increased demand for nitrogen (Cancer cell optimize de novo biosynthesis of arginine

and does not rely on the exogenous Arginine influx), 5. Alterations in metabolite-driven gene

regulation, 6. Metabolic interactions with the microenvironment

metabolic changes

Known cancer-
associated

Description of alteration

Effect of alteration

References

1.

Deregulated
uptake of

glucose and
amino acids

Increased glucose
consumption
(physiological for normal
tissue under hypoxia,
Warbug effect)

Support carbon demand

Support reducing power (NADH,

FADH,)

6,13

Increased glutamine
consumption

Support carbon demand
Support nitrogen demand

Facilitate the AA import as LAT1
substrates (leucine, isoleucine,
valine, methionine, tyrosine,
tryptophan and phenylalanine)

13,14

Use of
opportunistic
modes of
nutrient
acquisition

Macropinocytosis
stimulated by Ras- and c-
Src-driven actin
cytoskeleton remodeling.

Recover free amino acids through
the lysosomal degradation of

extracellular proteins

The engulfment and
digestion of entire living
cells via a process known
as entosis

A mutant KRAS allele are more
likely to perpetrate entosis than to
be consumed in this process

16,17

Import “ready-made”
unsaturated fatty acids

Supplement for the missing

unsaturated fatty acid species
induced by hypoxia (biosynthetic
reactions that require molecular
oxygen as an electron acceptor are

suppressed under hypoxia)

18

Use of
glycolysis/TCA
cycle
intermediates
for
biosynthesis

Rate-limiting enzymes
within branching
pathways of glycolysis are
frequently upregulated in
tumors

(0]
(0]

(0]
0)

Increase the production of
Cytosolic acetyl-CoA

One-carbon-carrying folate cycle

units

S-adenosylmethionine (SAM)

Fructose-6-phosphate

19,20,13




and NADPH

0 Dihydroxyacetone phosphate

production (DHAP)
0 3-phosphoglycerate
Elevated utilization of PPP e  Support NADPH and ribose-5- 21,22,23
phosphate biosynthesis
Increase lactate e Support NAD+ to sustain glycolysis 13
production and avoid flooding the
mitochondria with a supply of
excess NADH
Increased Increased glutamine e Support purine and pyrimidine 13
demand for consumption production
nitrogen e Support non-essential amino acid
(Cancer cell production
optimize de Increased biosynthesis of e  Support nitrogen in conditions of 24
novo biosynthe asparagine from glutamine deprivation
sis of arginine aspartate, catalyzed by
and does not asparagine synthase
rely on the [tumorigenesis strategy] e Accumulate ornithine, which is 25,26
exogenous Suppression of the then utilized in the production of
Arginine influx) arginine synthesis in the polyamines (polyamines have been
urea cycle by shown to inhibit apoptosis and
argininosuccinate lyase promote tumor growth and
(ASL) and invasion)
argininosuccinate
synthase (ASS1)
Alterations in Increased cytosolic acetyl- e  Acetylate histones and enhance 13,26
metabolite- CoA gene expression level
driven gene e Activate Akt pathway and promote
regulation protein synthesis and cell
proliferation
alterations in SAM and e Regulate cytosine methylationon 27,28
NAD+ levels DNA and
e Regulate adenosine methylation on
mRNA
e Regulate sirtuins which catalyze the
removal of acetyl marks from
histone and non-histone proteins
Elevated intracellular e Inhibit dioxygenase and increase 13,29,30

levels of fumarate and
succinate, or elevated 2-
HG (competitive inhibitor
of a-ketoglutarate
dependent dioxygenases)

DNA methylation

Elevate HIF1o (a TET family of DNA
demethylases, Jumonji C family of

histone demethylases, mRNA
demethylases FTO and ALKBHS5,




and a family of prolyl hydroxylase
(PHD) enzymes)

Metabolic a. Increased extracellular e Attenuate dendritic and T cell 30,31, 32,33
interactions lactate level activation and monocyte migration

with the e Promote immunosuppression via

microenviron the polarization of resident

ment macrophages

e Promote angiogenesis and increase
tumor invasiveness

o Acidify the cellular micro
environment (lactate secretion is
coupled to the co-transport of H+)

b. Overexpressed e Trigger amino acid deprivation- 34,35,36
tryptophan-degrading associated apoptosis of effector T
dioxygenases cells
indoleamine-2, 3- e Promote regulatory T-cell
dioxygenase (IDO1) and phenotype, further contributing to
tryptophan-2, 3- the suppression of antitumor
dioxygenase (TDO2), immune responses
which catalyze the e Promote the degradation of the
conversion of an essential extracellular matrix and invasion

amino acid, tryptophan,
into kynurenine

1.1.2. Metabolic pathways regulated by tumor suppressors and
oncogenes
The PI3K-AKT-mTOR signaling pathway in cancer cells is often up-regulated by the alteration
of residing oncogenes and tumor suppressor to maintain the signaling regardless of the
stimuli from growth factors. Akt signaling promotes a high level of glucose uptake through
the elevated expression of glucose transporter GLUT1 and the relocation of GLUT1 from the
endomembranes to the cell surface3’28. Besides, Akt further enhances the glycolytic flux
through potentiating enzymes, hexokinase (HK) and phosphofructokinase (PFK), catalyzing
key irreversible steps in the upstream of glycolysis3”-38. Kras, oncogene frequently mutated
in lung, colon, and pancreatic cancers, also up-regulates glycolysis and activate MYC, the

transcription factor frequently amplified in cancer to promote tumorigenicity®®. A major



role of MYC pathway is regulating glutaminolysis as following, to induce the transcription of
glutamine transporters ASCT2 and SN23°, and to promote the expression of enzymes for
glutamine utilization, such as glutaminase (GLS1&2)%°, phosphoribosyl pyrophosphate
synthetase (PRPS2)*° and carbamoyl-phosphate synthetase 2 (CAD)*’. Moreover, loss of
tumor suppressor protein such as TP53 (tumor protein p53), or Rb family proteins induce a
higher glycolytic flux and fatty acid synthesis, and enhance the glutaminolysis through E2F-

dependent upregulation of ASCT2 and GLS1, respectively*°.

1.1.3. Oncogenic mutations found in several metabolic enzymes
Recently, several studies unveil oncogenic contribution of altered metabolism on the basis
of the oncogenic mutation of enzymes residing in well-appreciated metabolic pathways. For
example, mutations in succinate dehydrogenase (SDH), accumulating succinate, were found
in paragangliomas, pheochromocytomas, and a subset of sporadic gastrointestinal stromal
tumors*42, Similarly, fumarate hydratase (FH) deficient cells, accumulating fumarate, were
found in renal cancer, paragangliomas, and pheochromocytomas*. These two mutated
metabolic enzyme share a common phenotype because both succinate and fumarate inhibit
a-ketoglutarate-dependent dioxygenases activity*>. They promote hypermethylation of
DNA through inhibiting jumonji domain-containing histone demethylase (JHDM) and ten
eleven translocation (TET) in DNA methylation pathway!® (Figure 1a®3). Also, Prolyl
hydroxylase is not capable of degrading HIF1a efficiently, resulting in the elevated level of
HIF1a'3. Other oncogenic mutations, modulating the activity of a-ketoglutarate-dependent
dioxygenases, are gain-of-function mutations of isocitrate dehydrogenase 1 (IDH1) and
isocitrate dehydrogenase 2 (IDH2)®. Unlike normal isocitrate dehydrogenases, converting
isocitrate to a-ketoglutarate, mutated IDHs preferentially transform a-ketoglutarate to the
D-2-hydroxyglutarate (2-HG), a competitive inhibitor of a-ketoglutarate-dependent
dioxygenases**°. Thus, mutatant IDH also drive hypermethylation of DNA and induce the

HIF1a signaling pathway (Figure 1b%).
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Figure 1: Mutations of several metabolic enzymes residing in mitochondrial TCA cycle and
its branched pathway were found in specific cancer types'®? (figures are from Pavlova, N.

N. & Thompson, C. B, Cell Metab., 23,2016 & C. B, N. Engl. J. Med., 360, 2009). (a) TCA cycle
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intermediates, Fumarate, Succinate, and a-KG regulate Proline hydroxylase activity. In
paragangliomas, pheochromocytomas, and a subset of sporadic gastrointestinal stromal
tumors, a loss of function in FH or SDH, and mutated IDH inhibit the Proline hydroxylase,
down-regulating the degradation of HIF-1'3. (b) Similarly, a loss of function in FH or SDH,
and mutated IDH inhibit a-KG dependent dioxygenase activity (here, JHDM and TETs),
resulting in DNA hypermethylation in renal cancer, paragangliomas, and

pheochromocytomas?®

1.2 Metabolomics

1.2.1. LC-MS based high through put Metabolomics
Metabolism profiling, Metabolomics, has been broadly used and increasingly recognized as
a powerful technology that links genotype and phenotype. A major tool for studying cellular
metabolism is mass-spectrometry, which enables high throughput detection and
guantification of metabolites. In metabolomics, there are two complimentary
methodologies: targeted and untargeted. Targeted metabolomics enables to obtain highly
guantitative metabolite concentration measurements. Generally, when performing a
targeted metabolic analysis, the known chemical properties of the investigated compounds

can be used to fine tune the sample preparation steps and analytical approaches?®’.

The Shlomi lab has recently set up an LC-MS system, utilizing hydrophilic interaction
chromatography coupled to an Orbitrap mass-spectrometer (Thermo’s QExactive). We
established methods for the targeted detection of ~300 metabolites, via a library of
standards, including acids, amino acids, fatty acids, nucleotides, sugars, and sugar

phosphates, etc.

Coupling of MS to chromatography has been widely used due to a higher level of sensitivity

and precision of MS than that of other detectors*:. A mass spectrometer consists of three



major parts: ion source, mass analyzer, and detector. Recent progression in LC-MS based
protein and peptide biochemistry is attributed to the development of the electrospray ion
source by Fenn in the 1980s*. This new technique enables ionization of a continuous liquid
stream*’. He was awarded the Nobel Prize in 2002 for his work in Mass spectrometry,
together with Koichi Tanaka who developed matrix-assisted laser desorption ionization®’.
Electrospray lonization (ESI) is well suited to the high through put analysis of various
Biological molecules, which are moderately-polar?’. Considering that ESI is a relatively soft
method and minimizing the in-source fragmentation of analytes, it is compatible especially

for the identification or quantification of small molecules in metabolomics°.

Although LC-MS is widely used for the both targeted and untargeted metabolomics, current
technology still have several challenges to address as follows. Firstly, it is extremely difficult
to achieve stable LC-MS measurements due to many variable factors, such as the cleanliness
of the ion source, ion optics and the collision cell, ion suppression, ion source flow rates,
collision cell pressure and the ultimate MS vacuum®. Internal standard is used to deal with
this issue, tracking the baseline change, but it is not straightforward to decide appropriate
guantity to administer according to the dynamic range of each metabolite’s detection.
Besides, due to the analytical limitation of current methods in sensitivity and resolution,
sufficient amount of biomass are required for sample preparation. Contrary to amplifiable
DNA and RNA, since metabolites cannot be amplified>>2, they should be pooled for current

LC-MS protocol.

It has been revealed by various studies that even exponentially growing isogenic
populations of microorganisms have cell-to-cell heterogeneity at their gene expression and
growth rate>3°6, Besides, accumulating evidence claims that slow-growing subpopulation
can be involved in persistence®’, antibiotic resistance®® and chemoresistance in cancer>®-%1,
Due to the significant impact of the heterogeneity issue on health and disease®?, it has
drawn attention; the NIH has funded to support single-cell profiling research, initially with

USS2 million for 60 groups in 2014°2. To advance and expand the knowledge in the single-

10



cell-level research especially for Metabolomics, several innovative technologies have been
recently suggested. Researchers have tried to lower the detection limits to deal with the
inability to amplify or to tag small-molecule metabolites (e.g. extracting larger amount of
metabolites from bigger cells, such as the giant neurons of Aplysia californica, which have
diameters up to 500um and can be handled under a microscope®*%3, Mass Spectrometry
Imaging®-°’, fluorescence-based detection®®® and vibrational spectroscopy’®’%71). To
capture rapid metabolic dynamics, complicated preparation protocols have been modified
and improved (e.g. microfluidics’%’%’!, nanoscale devices’®’%’1, and capillary
electrophoresis and capillary LC'?). However, still the procedure mostly requires either
specialized platform for specific cells or slow isolation inevitably harboring perturbation on
biological system. Hence, the single-cell-level Metabolomics is yet a rapidly growing field of

biology with much room for improvement.

1.2.2. Isotope Tracing
The rate of metabolic reactions and pathways in living cells, also referred to as metabolic
flux, is not a directly measurable quantity. The most direct approach for quantifying
intracellular metabolic flux is isotope tracing’?’3. The method is based on feeding cells with
isotopically labelled nutrients (e.g. with *3C), measuring the isotopic labelling of intracellular
metabolites via LC-MS based technology, and computationally inferring metabolic fluxes
(Figure 2). A metabolite with n carbons has 2" distinct labeling patterns called isotopomers
(with each carbon either labelled or not). LC-MS cannot detect the abundance of distinct
isotopomers in a biological sample, but measures the relative abundance of each
metabolite pool having different number of labeled carbons (i.e. mass-isotopomers). Hence,
LC-MS practically measures the sum of abundances of different isotopomers, having a
certain number of labeled carbons. Metabolic Flux Analysis (MFA) is a computational
technique that enables to interpret isotopic labeling data and estimate metabolic fluxes.

Recently, MFA has become a central technique in studies of cancer cellular metabolism’47>,
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Figure 2: Feeding cells with [U-13C] glucose labels glycolytic and TCA cycle intermediates. As
shown, all glycolytic intermediates are fully labeled, while TCA cycle intermediates are only

partially labeled, due to non-labelled carbons coming from media glutamine.

1.3. Metabolic flux analysis (MFA)

Fluxomics is the discipline that analyzes all fluxes in a cellular system’®. To achieve fluxomics
data, isotope tracing coupled with MFA is commonly used, and has recently become a
central technique in studies of cancer cellular metabolism’#7>. MFA studies were started
from balancing fluxes around intracellular metabolites under the specific network
stoichiometry assumption”’. In this classical MFA method, empirical measurements such as

nutrient uptake rate, growth rate, and CO; evolution rate are provided as constraints to
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estimate intracellular fluxes. However, recently a large number of more advanced MFA
techniques have been suggested and allow higher precision and reliability. To distinguish
the characteristics of each MFA methods, we can determine major three criteria as
following (Figure 3)*: (1) metabolic steady-state assumption, (2) labeling with stable-isotope

tracers, and (3) isotopic steady-state assumption
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Figure 3: Classification of different methods for metabolic flux analysis® (figure from
Antoniewicz, M. R. J. Ind. Microbiol. Biotechnol., 42, 2015). The major distinguishing criteria
between metabolic flux analysis methods are whether stabled isotope tracer is applied, and
whether metabolic (Isotopic) steady state is assumed. (A) MFA: (stochastic) Metabolic flux
analysis, at metabolic steady state without isotopic tracers; (b) 13C-MFA: *3C-Metabolic flux
analysis, at metabolic and isotopic steady state; (c) **C-NMFA: Isotopic non steady state 3C-

Metabolic flux analysis, at metabolic steady state and isotopic non-steady state; (d) DMFA:
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Dynamic metabolic flux analysis, at metabolic non-steady state without isotopic tracers; and
(e) 3C-DMFA: 3C-Dynamic metabolic flux analysis, at metabolic and isotopic non-steady

state

In fact, applied to cell populations with cells at different phases of the cell cycle, classical
MFA typically estimates the average flux throughout the cell cycle. Notably, performing
isotope tracing experiments while not accounting for cell-cycle heterogeneity in a cell

population may significantly bias the estimated population-level fluxes (Figure 4).

G1/S G2/M

/ AA 13C-glucose AA 13C-glucose

IomM o .
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=
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Figure 4: Existing isotope tracing techniques, not accounting for cell-cell variability may
result in false estimation of “average” / population level flux. We consider the case where
an amino acid (AA) is either de novo synthesized from glucose or taken up from the media.
Assume that in G1/S, AA is being produced through de novo biosynthesis, resulting in AA
being labelled when feeding '3C-glucose; in G2/M, it is being mostly taken up from the
media and hence does not get substantially labelled from 13C-glucose. If the concentration
of AA is substantially higher in G1/S in comparison to G2/M, and both G1/S and G2/M last

for a roughly similar duration, AA will be mostly unlabeled in an unsynchronized cell
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population (consisting of cells in both cell-cycle phases). This will lead standard MFA analysis
to the false conclusion that AA is being mostly scavenged from media rather than de novo

synthesized.

1.4. Metabolism and Cell cycle

Cell cycle progression is tightly interlinked with cellular metabolism 78. The availability of
sufficient metabolic nutrients and intracellular energy status control the ability of cells to
enter and progress through cell cycle. The absence of glucose was first shown to arrest cells
at the G1/S restriction point 7°. More recently, cellular energy status (ATP/AMP ratio) was
found to regulate canonical cell cycle signaling pathways via AMP-activated protein kinase
(AMPK) 8. The mammalian target of rapamycin (mTOR) plays a central role in regulating
cell cycle progression and growth, integrating stimuli of amino acid, energy, and oxygen
availability 8282, Cell cycle progression is further controlled by intracellular metabolites
affecting epigenetics: Nuclear acetyl-CoA levels, determined by nuclear ATP citrate lyase
(ACL) 8, and pyruvate dehydrogenase (PDH) 8* regulate the acetylation of histones and thus
control cell cycle progression 8>8%, Additionally, several metabolic enzymes were shown to
directly regulate the cell cycle machinery, including PFKFB3 and PKM2, controlling the

activity of cyclins and cyclin-dependent kinase (CDK) inhibitors in the nucleus 82,

Signaling pathways that coordinate cell cycle progression further regulate metabolic activity
to support the changing metabolic demands throughout the cell cycle. The ubiquitin
proteasome system, which tightly controls the concentration of cyclins, regulates the
activity of two key enzymes in glucose and glutamine metabolism °°-%; the ubiquitin ligase
anaphase-promoting complex/cyclosome (APC/C) and ligase Skp1/cullin/F-box protein (SCF)
complex control glycolytic flux via PFKFB3, restricting its expression to late G1 and early S;
APC/C also regulates glutaminolysis via glutaminase 1 (GLS1), whose expression is induced
in S and G2/M. Cyclins and cyclin-CDK complexes were further suggested to regulate central

metabolic activities, including glycolysis, lipogenesis, and mitochondrial activity 23°%
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Furthermore, central oncogenes and tumor suppressors that control proliferation, growth,
and cell cycle can stimulate the expression of enzymes that mediate glycolysis and

glutaminolysis °°.

Overall, while the cell cycle machinery was found to regulate the concentration of key
metabolic enzymes, an understanding of how the actual rate of metabolic reactions and

pathway (i.e. metabolic flux) change throughout the cell cycle is still fundamentally missing.

1.5. Cell synchronization and Computational deconvolution

1.5.1. Cell synchronization strategy for mammalian cells
Synchronizing cell growth into specific cell cycle phases is an essential strategy in the cell
cycle related research. The goal of a cell synchronization is collecting more homogeneous
population under specific cell cycle to scrutinize the direct link between biological process
and the focused cell cycle phases. There are several procedures that have proven effective

in synchronizing mammalian cells into defined cell cycle phases.

Cell synchronization is achieved by either whole-culture synchronization methods or cell
separation methods. The former uses the chemical inhibition of critical biological process in
cell cycle progression, such as DNA replication or mitotic spindle formation, restricting cells
to enter the next phase. Lovastatin (HMG-CoA retductase inhibitor)®®®’, and Mimosine
(Ctf4/chromatic binding inhibitor)®®°° mediates cell cycle arrest in early and late G1 phase,
respectively. Feedback inhibition of DNA synthesis is induced by excess thymidine in media
impede the progression in S phase'®. Aphidicolin (DNA polymerase inhibitor), and
Hydroxyurea (ribonucleotide inhibitor) prevent DNA replication and arrest cells in
G1/S10%102  |nhjbition of microtubule polymerization by Colchicine/colcemide or
Nocodazole obstruct the progression in mitosis, synchronizing cells at G2/M phasel03-10,

Serum or Amino acid starvation have been also used to induce quiescence at GO/G1
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phasel®-108 Contact inhibition, or density-dependent inhibition enable normal cells to stop
proliferation and arrest them at G1 phase though the inaction of transcriptional

processt0110,

Although most of cell separation methods are considered as less perturbative than whole-
culture synchronization through any inhibition, in general specialized machinery is required
for the procedures. Furthermore, subjected to metabolomics, large number of highly
synchronized population is needed but not all the procedure suffice these requirements.
For instance, flow cytometry and cell sorting is used for isolation of cells in specific stages
based on the characterization of cells according to the fluorescence on antibody or dye or
arough measure for cell size by the scattered light intensity; however, flow cytometry based
methods takes too long time to collect highly synchronized population!!!. Countercurrent
centrifugal elutriation (CCE) is also capable of separating cells according to cell size®!,
Recently developed microfluidic “baby machine” for cell synchronization isolates newly
born L1210 mouse lymphocytic leukemia cells using surface attachment chemistry®!l,

Similarly, for adherent cells, mitotic shake-off (dislodgment of less adhesive mitotic cells)

allows to isolate cells in mitosis!12113,

1.5.2. Applying computational deconvolution for heterogeneous cell
population and cell cycle research
Over the years, development of cell synchronization techniques has substantially
contributed on studies about the metabolic changes involved in the cell cycle
progression’®114-117  However, most of works ignore intra-cell cycle phase variability,
assuming that the observed behavior of chemically or physically synchronized population
can represent the character of a major subpopulation. This assumption may result in wrong
analysis and misleading understanding. Furthermore, considering the cell cycle progression

within a certain cycle phase, the cellular metabolism of the cells at the beginning and the
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end of the same cell cycle phase might differ. Therefore, revealing the heterogeneity in

synchronized cell populations is still a challenging, although a few studies have reported®*18,

In the current LC-MS based Metabolomics platform, researchers typically extract pooled
cell population from a LC-MS measurement. This is a pooled-average value, not more than
a point estimate without containing any information about the distribution of cell
populations. If there are cells in different cell cycle phases, considering only a pooled-
average value may lead to incorrect result for the behavior of a subpopulation (Figure 5a
and 5b). The measured LC-MS value may not represent the behavior of either one of all
populations (Figure 5c). Furthermore, it is not feasible to find the relationship of two
features (e.g., correlated or anti-correlated characteristics) from LC-MS measurements of

two different metabolites without distribution information (Figure 5d).
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Figure 5: A point estimate, such as a pooled-average measurement, can mask the
information about the distribution of subpopulations? (figure from Altschuler, S. J. & Wu, L.
F. Cell, 141, 2010). A pooled-average is referred as the pi (12) (a) A minor subpopulation is
located at the tail of a distribution (shaded area) while the i is close to the mean of the
major population; the pi can be located at between the mean of the major and minor
population. (b) The Wi is close to the mean of major population. (c) If there is a bimodal

distribution, p1 is simply in the middle of two sub-populations. (d) If the population possess
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multiple features, correlation relationship can be measured: correlated (left), and anti-
correlated (right). However, based on a pair of point estimates, this information cannot be

estimated.

An attractive solution is to extract specific data of cell cycle phase from heterogeneous
samples via computational deconvolution techniques!*®. Computational deconvolution is
the algorithm to find the function to reverse the effect of convolution from the raw data,
providing information about the character of subpopulations. For example, the cell cycle
phase information from FACS enables us to find the function to deconvolute the time-series

omics data after synchronization.

In studies related to cell cycle specific gene expression, there have been few attempts to
tackle this ‘intra-cell cycle phase’ heterogeneity by computational deconvolution to survey

an association®>1%120, Dye to the variance in cell-cell doubling time and any possible
experimental artifacts during the synchronization procedure, the time-series data after
synchronization exhibit a considerable variability. Therefore, time-series ‘omics’ data
extracted after synchronization is always insufficient to predict the phenotype at the single-
cell level. In the synchronization loss model, to deconvolute the expression data, each cell
is assumed to progress through the cell cycle at the different intrinsic rate, following a
Gaussian distribution® (Figure 6). The deconvolution algorithm aims to obtain the expected
expression level from the perfectly synchronized population that can be achieved when all
the cells enter and finish the same cell cycle phase together. Five parameters in this model
were estimated based on empirical FACS measurements. For yeast cell cycle, considering
the fact that budding or morphological changes are also other measures for cell cycle
progression, a probabilistic model'?® and a branching process model'?! have been

suggested for revealing the cell-cycle related transcription of yeast cells.

19



—_—
Q
o
—_—
O
o
~a

ARaw dala -
o 15 sDeconvolved dala a B
® = il
. o ™ L]
8’) 1 .- ... .- o -
— '11- A
0.5 ", 4 A, A A :
¢ u
1
: ) S 0 5 © % % %

™" Time (h)

Figure 6: The data deconvolution by the synchronization loss model® (figure from Bar-
Joseph, Z. et al. Proc Natl Acad Sci U S A, 105, 2008). (a) Due to the loss of the synchrony
after the synchronization, synchronized cells (gray dots) after time (t) from the release are
distributed around the black dot, what we can measure from the time (t) sample. Using the
synchronization loss model, the distribution of gray dots at time (t) can be determined.
Using deconvolution on data from multiple time points, we can recover the underlying and
deconvoluted time-series pattern (black line) of convoluted data. (b) Expression profile
example of the BIRC5 gene after synchronizing cells with the thymidine block. Raw observed
data (gray triangles) and deconvoluted data (black squares) by the synchronization loss
model. When the underlying function is an oscillating wavelet, convoluted data typically
lose the size of amplitudes. In other words, after computational deconvolution based on
the synchronization loss model, deconvoluted data show larger amplitude than that of the

observed raw data.
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Research Aims and Significance

My research addressed the challenge of developing an integrated experimental-
computational approach for analyzing metabolic flux changes throughout the cell cycle.

Specifically, | addressed the following aims:

1. Develop a temporal-fluxomics approach for quantifying metabolic oscillations

throughout the cell-cycle
A. Establish an approach for isotope tracing through synchronized cell populations

B. Computational deconvolution of metabolic measurements throughout the cell-

cycle, facilitating inference of metabolic flux oscillations

2. Determine how cells adapt their metabolism to fulfil the changing energetic and

anabolic demands throughout the cell-cycle

3. Analyze how metabolic oscillations through the cell-cycle are regulated.
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2.Results

2.1. Cellular concentration of central metabolic

intermediates oscillate throughout the cell cycle

To study metabolic dynamics throughout cell cycle, we synchronized Hela cells using double
thymidine block and applied high-throughput LC-MS based targeted metabolomics analysis
to synchronized cell populations (> 108 cells per sample) in three-hour intervals for two
complete cell cycles (see cell synchronization dynamics measured via propodium iodide
staining/FACS analysis in Figure 7a; Figure 8; Methods). To obtain a reliable and accurate
view of periodic metabolic oscillations and to overcome a potential perturbation of
metabolism due to synchronization-induced growth arrest, we let synchronized cells
complete one cell cycle before starting the LC-MS analysis (9 hours after cells are released
in G1/S). Measured metabolite abundances in the synchronized cells were normalized by

total cell volume in each time point to determine metabolite concentrations.
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Figure 7: Detection of oscillations in metabolite concentrations throughout the cell cycle in
Hela cells revealed by LC-MS based metabolomics of synchronized Hela cells and
computational deconvolution. (a) Synchronization dynamics of a population of Hela cells
within almost 3 complete cell cycles measured via Pl staining followed by FACS analysis. The
increase in cell number following each mitosis is shown by an overlaid curve (in orange;
mean and s.d. of n=3). (b) Computational modelling of the synchronization loss, considering
11% cell-cell variation in doubling time, shows that the simulated fraction of the cells in G1,
S, and G2/M in the synchronized cells throughout the cell cycle (straight lines) match
experimental measurements (marked with asterisk). (c) The measured average cell volume
in the synchronized cell population (red; mean and s.d. of n=3; v(t) in Equation 6), the
deconvoluted signal (in case of no synchronization loss; green; v'(x) in Equation 6), and the
simulated average cell volume considering the loss in synchronization (black; matching the
measured concentration data; Equation 6). (d) The measured concentration of CTP in
synchronized cells shown in red (mean and s.d. of n=5; u;(t)) in Equation 7; the
deconvoluted concentration dynamics, in case of no synchronization loss (green; u'(x) in
Equation 7); and the expected concentration dynamics based on the deconvoluted
concentrations and considering the loss in synchronization, matching the measured
concentrations (black; Equation 7). The measured concentrations converge towards the

steady-state concentrations measured in non-synchronized cells (horizontal blue line).
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Figure 8: Measurement of cell cycle phase distribution in non-synchronized (control) and

synchronized Hela cells at different times after released from growth arrest, performed by

propidium iodide (PI) staining/FACS analysis.

As cell synchronization is gradually lost with time due to inherent non-genetic cell-to-cell
variability (a phenomenon also known as ‘dispersion’), the distribution of cell cycle phases
in the synchronized cell population becomes similar to that of non-synchronized cells after
completing three rounds of replications (Figure 7a). To account for the loss of synchrony
and to precisely quantify oscillations in metabolite levels, we employed “computational
synchronization” 3: We constructed a probabilistic model that describes the dynamics of the
cell population loosing synchrony, assuming that each cell has its own “internal clock” which
controls the cell cycle progression rate (see synchronization loss model in Methods). The
parameters of the model were estimated by fitting a simulation of how the synchronized
cell population progresses through the different phases of the cell cycle with corresponding
FACS measurements, finding that cell-cell variability in the rate of cell cycle progression
through the cell cycle is 11% (Figure 7b; Methods). We used this model for computational

deconvolution of measured metabolomics data, estimating metabolite concentration
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dynamics throughout the cell cycle, circumventing the impact of cell dispersion (Methods).
Inferring the dynamics of metabolite concentrations throughout the cell cycle (rather than
that of metabolite abundances) further required estimates of the dynamics of cell volume
throughout the cell cycle. The latter was estimated based on deconvolution of total cell
volume measurements performed in the synchronized cell population (Methods; Figure 3c).
For example, the concentration of the nucleotide cytidine triphosphate (CTP) was found to
oscillate throughout cell cycle, showing a ~50% increase in concentration in G1 phase versus
G2/M phase (measured and deconvoluted concentrations shown in Figure 3d). As shown,
the magnitude of the oscillation drops with time and converges to the steady state

concentration measured in non-synchronized cells.

Our analysis reveals 57 metabolites whose concentrations significantly oscillate throughout
the cell cycle (Figure 9; Dataset EV1; FDR corrected p-value < 0.05; Methods). Oscillations
in nearly 44% of these metabolites could be detected only when in silico synchronization
via computational deconvolution was applied (i.e. Equation 7 in Methods), emphasizing the
strength of our pipeline. The median size of the observed oscillations is ~60% (difference
between maximal and minimal concentration throughout the cell cycle); roughly one
guarter of these metabolites show concentration changes larger than 2-fold throughout cell
cycle. A significantly high fraction of the metabolites peak either in late G1 (~50% in the
second half of G1; p-value < 10°; compared with the expected fraction assuming that
concentration peaks are uniformly distributed throughout the entire cell cycle) or early S

(~35% in the first half of S; p-value < 0.002).
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Figure 9: Oscillation in metabolite concentrations throughout the cell cycle in Hela cells.
The figure shows metabolites found to significantly oscillate throughout the cell cycle
(concentrations normalized per metabolite; maximal concentration in red; minimal

concentration in blue). The amplitude of the oscillations is shown on the right. Metabolites
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are color-coded according to metabolic pathways: Energy/redox cofactors (purple); amino

acids (blue); glycolytic metabolites (red); TCA cycle metabolites (green).

The oscillating metabolites include glycolytic and TCA cycle intermediates, nucleotides,
amino acids, and energy and redox cofactors. Expectedly, the concentrations of the
deoxynucleotides dCTP and dATP increase in S phase, when utilized for DNA replication.
Intermediates in polyamine metabolism (5-methylthioadenosine, acetyl-putrescine, S-
adenosyl-L-methionine, and S-adenosyl-L-homocysteine) show marked oscillations, in
accordance with the known cell cycle dependent activity of this pathway ?2. Several
glycolytic metabolites peak during G1/S transition, in accordance with reports of increased
glycolytic flux at this cell cycle phase 1%, Cellular ATP/ADP ratio and redox potential
(NADH/NAD+) further show a ~50% increase in the G1/S transition (Appendix Figure 10).
Intracellular concentration of non-essential amino acids synthesized from consumed
glutamine, including glutamate, ornithine, proline, and aspartate peak in S phase, in
accordance with a reported increase in glutamine dependence in S phase 1123, Intriguingly,
we find that different TCA cycle metabolites peak in distinct cell cycle phases: Acetyl-CoA
and citrate peak in G1/S, while malic acid and a-ketoglutarate peak in late S, suggesting that

the TCA cycle is rewired as cells progress through the cell cycle.

(a) (b)

G2m G1 5 Gam G1 5 Gam G 0862!“ G1 5 G2m G1 5 Gam G1
| . |
12 . 2 . r
- 3 3 §
) /&\//r-\"
b o
g AN IJ = ®
5 ofe - S
o (]
<
<6 2
o o it
0.3
E . 3
=
0.2
2 0.1
% 9 12 15 18 21 24 27 30 33 36 39 42 45 % 9 12 15 18 21 24 27 30 33 36 39 42 45
Time (h) Time (h)

27



Figure 10: The measured and deconvoluted ATP/ADP ratio (a) and NADH/NAD+ ratio (b).
Measured ratios in red (mean and s.d. of n=5); the deconvoluted signal (in case of no
synchronization loss) in green; and the expected ratios considering the loss in

synchronization in black.

3.2 Time-resolved fluxomics reveals increased glycolytic flux into

TCA cycle in G1/S transition

To observe metabolic flux dynamics in TCA cycle and in branching pathways throughout the
cell cycle, we performed pulse chase isotopic tracing experiments in synchronized Hela cells
with [U-13C]-glucose and [U-'3C]-glutamine (one hour feeding), every three hours for two
cell cycles (Figure 1la-b; Methods). Here, LC-MS was utilized to measure the mass-
isotopomer distribution of metabolites (i.e. the fraction of each metabolite pool having zero,
one, two, etc. labelled carbon atoms) after one hour of feeding with the isotopic tracers.
Computational deconvolution was employed to analyze oscillations in metabolite isotopic
labeling patterns while considering cell dispersion. The deconvolution approach is based on
the observation that the measured fractional isotopic labeling of a metabolite in the
synchronized cell population represents the average labeling in cells with distinct intrinsic
times, weighted by the metabolite pool size in these cells (i.e. the measured isotopic
labeling pattern is biased towards that of cells with an intrinsic time in which the metabolite
pool size is larger than in others; Methods). Overall, we detected statistically significant
oscillations in the isotopic labeling pattern of 21 metabolites when feeding isotopic glucose,
and 16 metabolites when feeding isotopic glutamine (FDR corrected p-value < 0.05; Figure

11-12; Dataset EV2).

The inferred oscillations in metabolite isotopic labeling and concentrations were used to
computationally analyze metabolic flux dynamics throughout the cell cycle, utilizing a

variant of Kinetic Flux Profiling (KFP) 2% (Figure 12; in units of nmole/uL-cells/h; i.e., mM/h;
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Methods). Specifically, given a metabolite whose isotopic labeling dynamics throughout the
cell cycle was inferred as explained above, we search for the most likely transient
production and consumption fluxes in each one-hour interval through the cell cycle, such
that the simulated labeling kinetics of this metabolite (within the one-hour interval) would
optimally match the experimental measurements (Methods; Figure 13-18). The simulation
of the isotopic labeling kinetics of a metabolite of interest within a one-hour time interval
is performed via an ordinary differential equations (ODE) model; relying on the inferred
concentration of the metabolite within this time-interval (considering that a metabolite
with a larger pool size would take more time to label, per unit of flux), as well as the isotopic
labeling kinetics of intermediates that produce this metabolite. While KFP is typically
applied to estimate fluxes under metabolic steady state (in which fluxes satisfy a
stoichiometric mass-balance constraint), here, we constrain the difference between
transient fluxes that produce and consume a certain metabolite according to the measured

momentary change in the concentration of that metabolite.
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Figure 11: Oscillations in isotopic labeling of TCA cycle metabolites throughout the cell cycle
from [U-13C]-glucose show induced glycolytic flux into TCA cycle in G1/S. (a) Experimental
scheme for a series of pulse-chase isotope tracing experiments in synchronized cells. (b)
Atom tracing of TCA cycle metabolites from [U-*3C]-glucose (blue) and [U-'3C]-glutamine
(red). (c-e) Measured relative fraction of the m+2 labeling of TCA cycle intermediates after
feeding [U-13C]-glucose (red; mean and s.d. of n=3), the deconvoluted signal (green), and
the expected labeling dynamics considering the loss in synchronization (black; representing
TCA cycle oxidation of glucose-derived acetyl-CoA). (f) Oscillations in citrate m+4 labeling
after feeding [U-13C]-glutamine (mean and s.d. of n=3). (g) Oscillations in the total citrate
concentration throughout the cell cycle (mean and s.d. of n=5). (h) The measured lactate
secretion flux in synchronized cells shown in red (mean and s.d. of n=5; f;(t) in Equation 9);

the deconvoluted secretion flux dynamics, in case of no synchronization loss (green; f; (x)
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in Equation 10); and the expected secretion flux based on the deconvoluted fluxes and

considering the loss in synchronization, matching the measured fluxes (black; Equation 10).
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Figure 12: Oscillations in isotopic labeling of TCA cycle metabolites throughout the cell cycle
from [U-13C]-glutamine show induced oxidative and reductive glutamine metabolism in S
phase. Oscillations in aspartate (a) and malate (b) concentrations throughout the cell cycle
when feeding [U-!3C]-glutamine (representing oxidative TCA cycle activity). (c) Uniform
malate m+4 labeling throughout the cell cycle (combined with the increase in malate
concentration in S phase representing increased oxidative TCA cycle flux in S phase). (d)
Oscillations in pyrimidines m+3 labeling throughout the cell cycle when feeding [U-13C]-

glutamine (representing de novo pyrimidine biosynthesis). (e) Oscillations in lactate m+3
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labeling throughout the cell cycle when feeding [U-3C]-glutamine (representing malic
enzyme activity). (f) Oscillations in malate m+3 throughout the cell cycle when feeding [U-
13C]-glucose (representing pyruvate carboxylase activity). (g) Oscillations in citrate m+5
when feeding [U-13C]-glutamine throughout the cell cycle (representing reductive IDH flux).
(h) Oscillations in acetyl-CoA m+2 when feeding [U-'3C]-glucose, representing oxidative
glucose metabolism. Oscillations in acetyl-CoA m+2 when feeding [U-!3C]-glutamine,
representing reductive glutamine metabolism (i). For measurements of metabolite
concentrations (a-b), red marks represent mean and s.d. of n=5. For measurements of

fractional isotopic labeling (c-i), red marks represent mean and s.d. of n=3.

Oscillations in the isotopic labeling pattern of TCA cycle intermediates when feeding
isotopic glucose suggest that glucose-derived flux into TCA cycle increases in G1 phase and
then drops in S phase. The fractional labeling of the m+2 form of the TCA cycle
intermediates citrate, a-ketoglutarate, and malate drops in S phase (Figure 11c-e). Feeding
cells with isotopic glutamine, we further observed a drop in citrate m+4 produced from
oxaloacetate via citrate synthase in S phase (Figure 11f). Combined with the drop in citrate
concentration during S phase (Figure 11g), metabolic modelling reveals a ~2-fold decrease
in glycolytic flux into TCA cycle as cells progress through S phase; citrate synthase flux drops
from ~6mM/h in G1/S phase to ~3mM/h in late S phase (Figure 19a; Figure 13). TCA cycle
oxidation of citrate via isocitrate dehydrogenase (IDH) shows similar flux dynamics, with ~2-

fold drop in S phase (Figure 19c; Figure 14).
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Figure 13: Computational modelling of citrate producing fluxes: Citrate synthase (v1) and
reductive IDH (v2) fluxes. The measured (blue; mean and s.d. of n=3) and simulated (black
curve) 1-hour labeling kinetics of citrate m+4 and m+5, as well as the measured labeling
kinetics of malate m+4 (red; producing citrate m+4 via v1) and a-ketoglutarate m+5
(producing citrate m+5 via v2) in non-synchronized cells fed with [U-*3C]-glutamine (a-b).
Estimating the flux through v1 and v2, in non-synchronized cells, the simulated labeling
kinetics of citrate m+4 and m+5 match the measured labeling kinetics. (c) The deconvoluted
fractional labeling of citrate m+4 and m+5 after 1-hour feeding with [U-'3C]-glutamine and

citrate concentration throughout the cell cycle.
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Figure 14: Computational modelling of fluxes producing o-ketoglutarate/glutamate:
Glutamine->glutamate (v8) and oxidative IDH (v3) fluxes. The measured (blue; mean and
s.d. of n=3) and simulated (black curve) 1-hour labeling kinetics of a-ketoglutarate m+3 and
m+5, as well as the measured labeling kinetics of citrate m+4 (producing a-ketoglutarate
m+3 via v3), citrate m+5 (producing a-ketoglutarate m+5 via v3), and glutamine (producing
a-ketoglutarate m+5 via v8) in non-synchronized cells fed with [U-'3C]-glutamine (a-b).
Estimating the flux through v3 and v8, in non-synchronized cells, the simulated labeling

kinetics of a-ketoglutarate m+3 and m+5 match the measured labeling kinetics. (c) The

34



deconvoluted fractional labeling of a-ketoglutarate m+3 after 1-hour feeding with [U-13C]-

glutamine and a-ketoglutarate concentration throughout the cell cycle.
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Figure 15: Computational modelling of malate/aspartate producing fluxes: a-ketoglutarate
oxidation (v4) and pyruvate carboxylase (v7) fluxes. The measured (blue; mean and s.d. of
n=3) and simulated (black curve) 1-hour labeling kinetics of aspartate m+4, and the
isotopic labelling kinetics of glutamate m+5 (producing aspartate m+4 via v4), in non-
synchronized cells fed with [U-13C]-glutamine. (b) The measured (blue; mean and s.d. of
n=3) and simulated (black curve) 1-hour labeling kinetics of aspartate m+3, and the
isotopic labelling kinetics of pyruvate m+3 (producing aspartate m+3 via v7), in non-
synchronized cells fed with [U-*3C]-glucose. (c) The deconvoluted fractional labeling of

aspartate m+4 and glutamate m+5 after 1-hour feeding with [U-!3C]-glutamine, and
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aspartate concentration throughout the cell cycle. (d) The deconvoluted fractional labeling
of aspartate m+3 after 1-hour feeding with [U-'3C]-glucose and aspartate concentration

throughout the cell cycle.
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Figure 16: Computational modelling of the UTP producing flux (v5). (a) The measured (blue;
mean and s.d. of n=3) and simulated (black curve) 1-hour labeling kinetics of UTP m+3 and
measured labeling kinetics of carbamoyl-aspartate m+4 (producing UTP m+3 via v5), in non-
synchronized cells fed with [U-13C]-glutamine. Estimating the flux through v5 in non-
synchronized cells, the simulated labeling kinetics of UTP m+3 matches the measured
labeling kinetics. (b) The deconvoluted fractional labeling of UTP m+3 and carbamoyl-
aspartate m+4 after 1-hour feeding with [U-13C]-glutamine and UTP concentration

throughout the cell cycle.
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Figure 17: Computational modelling of malic enzyme flux (v6). The deconvoluted fractional
labeling of lactate m+3 after 1-hour feeding with [U-13C]-glutamine throughout the cell cycle

(red); and lactate secretion flux throughout cell cycle (black).

(a) (b) ()
: 6-phospho-gluconale m+8 , UDP-glucose m+3 serine m+3
— glucose-5-phosphate m+6 —UTP m+3 .05 senine m+3
08 = G-phospho-gluconate m+§ —UDP-glucose m+3
sim_ G-phospho-gluconate m+5 08 sim. UDP-glucose m+3 0045

o
=
=
=

=

£

§F ] 0035
£
o g 3
§3'06 25 28 oos P
- s =2
;"22 1 gg‘ é_? s/
1A e . 33 33 00s /
25 s 8% 4
T= B
= = =
L &5 8z o= /
£ 5 g /
= =0015 /
001 /
-
0005
] 200 400 800 % 5 10 15
Time (min) Time (h)

Figure 18: Quantifying metabolic flux through pathways branching out of glycolysis in non-
synchronized cells. (a) Oxidative PPP flux is estimated based on the rate of labeling of 6-
phospho-gluconate from glucose-6-phosphate, when feeding isotopic glucose (considering
a 6-phospho-gluconate concentration of 0.04mM). Reductive PPP flux is roughly similar to
oxidative PPP considering that the steady state m+1 labeling of ribose converges to ~50%

when feeding [1,2-3C]-glucose (not shown). (b) Glycogenesis flux is estimated based on the
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rate of labeling of UDP-glucose m+3 from UTP m+3, when feeding isotopic glutamine
(considering a UDP-glucose concentration of 0.26mM). (c) The fractional labeling of serine
m+3 is less than 5% after feeding isotopic glucose for 24h; hence de novo serine biosynthesis

is less than 5% of the total serine consumption rate from media (<10mM/h).
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Figure 19: Complementary oscillations of glucose versus glutamine-derived fluxes in TCA
cycle. (a-i) Oscillations in metabolic flux throughout the cell cycle (in mM/h), computed
based on metabolic modelling of measured oscillations in metabolite concentrations and
isotopic labeling (red and green marks represent optimal estimates of transient flux with
95% c.i.). Blue lines represent average fluxes inferred in a non-synchronized cell population.
As shown, glucose-derived flux into TCA cycle peak in late G1 phase, while oxidative and

reductive glutamine metabolism dominates S phase.
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To examine whether the increase in glucose-derived flux into TCA cycle in G1/S is associated
with increased in glycolytic flux, we measured lactate concentrations in the culture media
in the synchronized cell population followed by computational deconvolution (Figure 11h;
Methods). We find a ~65% increase in lactate secretion rate in G1/S transition. Considering
that the average lactate secretion rate throughout the cell cycle is two orders of magnitude
higher than that of pathways that branch out from glycolysis, the observed oscillation in
lactate secretion represents cell cycle dependent changes in glycolytic flux: The average
lactate secretion throughout the cell cycle is ~600mM/h, while oxidative pentose-
phosphate pathway (PPP) is ~3mM/h, reductive PPP is ~3mM/h, glycogenesis is ~0.3mM/h,
and serine biosynthesis is below 1mM/h (Figure 18). Overall, our data show that the
increase in glycolytic flux in G1/S phase co-occurs with the increased glucose-driven flux
entering the TCA cycle. Notably, analyzing oscillations in glycolytic flux based on direct
measurement of changes in glucose consumption throughout the cell cycle (rather than
based on lactate secretion) was not possible due to technical difficulty in accurately
qguantifying glucose consumption by synchronized cells within 3 hour time intervals
(considering that the synchronized cell population consumes ~1% of the glucose in media

within this short time period).

3.3 Induced oxidative and reductive glutamine metabolism
compensates for the decreased glycolytic flux into TCA cycle in S

phase

Glutamine feeds TCA cycle flux by producing glutamate, which is converted to a-
ketoglutarate either via transamination or by glutamate dehydrogenase. As a first
estimation of the cell cycle dynamics of glutamine-derived flux into the TCA cycle, we
guantified cell cycle dependent glutamate production from glutamine versus glutamate

secretion to the media. Tracing the m+5 labeling dynamics of glutamate when feeding [U-
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13C]-glutamine and glutamate concentration throughout the cell cycle suggest that
glutamate production flux increases by 25% in S phase compared to G1 (Figure 19d). This is
evident by a marked increase in glutamate concentration in S phase and similar m+5
glutamate labeling kinetics throughout the cell cycle (Figure 14). Glutamate secretion rate
to the culture medium shows a marked drop in S phase, suggesting increased availability of
glutamate for feeding the TCA cycle flux in S phase (Figure 19d). The increased entry of
glutamine-derived flux into the TCA cycle in S phase is followed by a ~40% increase in a-
ketoglutarate oxidation (Figure 19f; Figure 15). This is evident by the marked increase in
malate and aspartate concentration in S phase (Figure 12a-b) and barely altered m+4 and
m+3 labeling kinetics of these metabolites throughout the cell cycle, respectively (Figure

12c and 20).
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Figure 20: The cell cycle kinetics of L-aspartate m+4 when feeding synchronized Hela cells
with [U-13C]-glutamine for one hour. Measured ratios in red (mean and s.d. of n=3); the
deconvoluted signal (in case of no synchronization loss) in green; and the expected ratios

considering the loss in synchronization in black.

The increased glutamine derived anaplerotic flux into the TCA cycle in S phase (via net

production of the TCA cycle intermediate a-ketoglutarate) is balanced by oscillations in
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cataplerotic fluxes, consuming TCA cycle intermediates for biosynthetic and bioenergetics
purposes: We find a ~70% increase in pyrimidine biosynthesis flux in S phase, consuming
oxaloacetate from TCA cycle (transaminated to produce aspartate; Figure 19g). This is
evident by a marked increase in the m+3 labeling of pyrimidines in S phase (Figure 12d and
21), while considering the oscillations in the labeling kinetics of carbamoyl-aspartate in
pyrimidine biosynthesis and pyrimidine concentrations (Figure 16). Oscillations in the
biosynthetic flux of pyrimidines as well as purines is further supported by an increased m+5
labeling of pyrimidines and purines in S phase (i.e. having all five ribose carbons labelled)
upon feeding with isotopic glucose (Dataset EV2). The malic enzyme flux (decarboxylating
malate dehydrogenases) further shows a marked ~65% increase in S phase (Figure 19h;
Figure 17), as evident by the increased lactate m+3 labeling in S phase when feeding isotopic
glutamine (Figure 12e). Consistently, an increased concentration of lactate m+3 in the
culture media is further observed in S phase (Figure 22). Notably, while glutamine-derived
anaplerotic flux increases in S phase, there is no major change in glucose-derived
anaplerotic flux through pyruvate carboxylase in S phase (Figure 19i; Figure 15). This is
evident by the drop in malate and aspartate m+3 in S phase when feeding isotopic glucose
(Figure 12f and 23) occurring while the concentration of malate and aspartate increase

(Figure 12a-b).
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Figure 21: The cell cycle kinetics of UTP m+3 and TTP m+3 when feeding synchronized Hela

cells with [U-13C]-glutamine for one hour. Measured ratios in red (mean and s.d. of n=3);

the deconvoluted signal (in case of no synchronization loss) in green; and the expected

ratios considering the loss in synchronization in black.
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Figure 23: The cell cycle kinetics of L-aspartate m+3 when feeding synchronized Hela cells
with [U-13C]-glucose for one hour. Measured ratios in red (mean and s.d. of n=3); the
deconvoluted signal (in case of no synchronization loss) in green; and the expected ratios

considering the loss in synchronization in black.

While the increased glutamine-derived flux into the TCA cycle in S phase supports an
increase in a-ketoglutarate oxidation, we further detect a surprisingly high ~55% increase
in the rate of a-ketoglutarate reduction in early S phase (Figure 19b; Figure 13). This is
evident by the marked increase in m+5 citrate in S phase when feeding isotopic glutamine
(Figure 12g). Considering the major drop in glycolytic flux into the TCA cycle in S phase, the
relative contribution of reductive IDH to citrate production increases from ~15% in G1 to
~24% in S phase. Cell cycle oscillations in the relative contribution of glucose versus
glutamine to citrate biosynthesis are further observed in the labeling of acetyl-CoA
(produced in cytosol from citrate via ATP citrate lyase), where the fractional labeling of
acetyl-CoA m+2 from [U-13C]-glucose peak in G1 phase (Figure 12h) and acetyl-CoA m+2
from [U-13C]- glutamine in S phase (Figure 12i). Accordingly, acetylated amino acids show

increased m+2 labeling from glucose in G1 and from glutamine in S phase (Figure 24).
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Figure 24: Oscillations in m+2 labeling of N-acetyl-cysteine (a-b) and O-acetyl-serine (c-d)
when feeding isotopic glucose (a and c) and isotopic glutamine (b and d). Measured ratios
in red (mean and s.d. of n=3); the deconvoluted signal (in case of no synchronization loss)

in green; and the expected ratios considering the loss in synchronization in black.

The complementary oscillations in glucose versus glutamine derived flux into the TCA cycle
result in an overall uniform production rate of reducing equivalents (NADH/FADH)
~85+5mM/h throughout the cell cycle (Figure 19e; Methods): Glucose-derived production
of reducing equivalents peaks in G1/S while glutamine-derived production of reducing
equivalents peaks in late S phase. While the relative contribution of glutamine to
NADH/FADH; production oscillates (between ~60% in G1/S and ~75% in late S phase), it
remains the prime source of reducing power for driving oxidative phosphorylation all

throughout the cell cycle, in accordance with previous measurements in non-synchronized
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cells 25, Consistent with the total production rate of NADH/FADH, remaining constant
throughout the cell cycle, we find that oxygen consumption rate does not change
throughout the cell cycle (Figure 25). Hence, the complementary oscillations in glucose
versus glutamine oxidation in TCA cycle result in a constant rate of reducing equivalent
production, sustaining a constant rate of mitochondrial oxidative phosphorylation flux

throughout the cell cycle.
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Figure 25: Oxygen consumption used for oxidative phosphorylation in synchronized Hela
cells, measured using a Seahorse XFp Flux Analyzer (the non-mitochondrial oxygen
consumption after treatment with the ETC inhibitors rotenone and antimycin A subtracted
from the basal OCR). No significant differences were found in the rate of oxygen
consumption in different cell cycle phase. Data have been represented in averages + SD

from n=3 replicates).
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3.4 Suppression of glycolytic flux into TCA cycle in S phase is

important for cellular progression through the cell cycle

The drop in glycolytic flux into TCA cycle in S phase (Figure 19a) involves a major two-fold
decrease in flux through pyruvate dehydrogenase (PDH), the prime source for acetyl groups
for TCA cycle oxidation. PDH is negatively regulated by pyruvate-dehydrogenase kinase
(PDK) and treatment with the PDK inhibitor dichloroacetate (DCA) was previously shown to
enhance glycolytic flux into TCA cycle while decreasing reductive glutamine metabolism
towards citrate biosynthesis 126. Accordingly, treating the synchronized Hela cells with 4mM
of DCA for one hour leads to a marked increase in the fractional labeling of citrate m+2 and
acetyl-CoA m+2 from isotopic glucose, representing a major increase of glycolytic flux into
the TCA cycle (Figure 26a-b). Notably, DCA treatment completely eliminates the oscillations
in glycolytic flux into the TCA cycle, as evident by a uniform fractional labeling of citrate m+2
and acetyl-CoA m+2 when feeding DCA throughout the cell cycle. DCA treatment further
leads to a uniform citrate m+5/m+4 ratio and fractional labeling of acetyl-CoA m+2 from
isotopic glutamine, eliminating the oscillations in glucose versus glutamine flux towards

acetyl-CoA production (Figure 26c-d).
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Figure 26: PDK inhibition via DCA treatment eliminates the oscillation of glycolytic flux into
TCA cycle and inhibits cellular progression through S phase. (a-b) One hour treatment of
synchronized cells with DCA inhibits the oscillations in citrate m+2 (a) and acetyl-CoA m+2
(b) from isotopic glucose (representing glycolytic flux into TCA cycle). It further inhibits
oscillations in citrate m+5/m+4 ratio (c) and acetyl-CoA m+2 (d) from isotopic glutamine

(representing oxidative versus reductive TCA cycle flux). (e) The fraction of cells in G1, S,
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and G2/M phases in synchronized Hela cells after 3 hour treatment with DCA (normalized
by measurements in untreated control cells). (f) The fraction of cells in G1, S, and G2/M
phases in non-synchronized Hela and HCT-116 cells after 24 hour treatment with DCA
(normalized by measurements in untreated control cells). As shown, DCA significantly
increases the fraction of cells in S phase, inhibiting cellular progression into G2 phase;
showing mean and s.d. of n=3 for all isotopic labeling forms and FACS measurements (a-f).
Statistical significance of changes in the fraction of cells in each cell cycle phase following

DCA treatment is calculated based on two-tailed, unequal variance t-test (e-f).

To test whether the suppression of glycolytic flux into TCA cycle in S phase is important for
progression of cells through the cell cycle, we measured the cell cycle phase distribution in
synchronized Hela cells after three hour treatment with DCA. We find that DCA treatment
leads to 16% increase in the fraction of cells in S phase (Figure 26e; two-tailed t-test p-value
= 0.006). Treating of non-synchronized Hela cells as well as colon carcinoma cells (HCT116)
with DCA for 24 hours further shows a significant increase in the fraction of cells in S phase
(Figure 26f; 30% increase in Hela, two-tailed t-test p-value<103; 17% increase in HCT116,
p-value<10~). Notably, the observed increase in the fraction of cells in S phase represents
slower progression rate of cells through S phase rather than cell cycle arrest at that phase,
as almost all Hela cells (~97%) complete at least one cell cycle after a 72 hour treatment
with DCA (Figure 27). Conversely, treating of cells with a mitochondrial pyruvate carrier
inhibitor (UK5099), which slows glycolytic flux into TCA cycle, shows the opposite effect of
lowering the fraction of cells in S phase (Figure 28). Overall, our results indicate that the
shift from glucose to glutamine-derived flux into TCA cycle plays an important role in cellular

progression through S phase.
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Figure 27: FACS measurement of CFSE signal in non-synchronized Hela cells immediately

after feeding to cells (a) and after 72 hours (b).
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Figure 28: The mitochondrial pyruvate transporter inhibitor (UK5099) decreases oxidative
TCA cycle flux and the fraction of cells in S phase. (a) Citrate m+5/m+4 ratio when feeding
non-synchronized Hela cells with an inhibitor of the mitochondrial pyruvate transporter
(UK5099) and when feeding DCA. (b) The fraction of cells in G1, S, and G2/M phases in non-
synchronized Hela cells after 24 hour treatment with UK5099 (normalized by

measurements in untreated control cells)
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3.Discussion

We described a temporal-fluxomics approach for analyzing the dynamics of intracellular
metabolic flux throughout the cell cycle in proliferating human cells. Inferring cell cycle
dependent changes in flux is technically challenging due to several factors including the
perturbative nature of synchronization-induced growth arrest, the gradual loss of
population synchrony, and the requirement for accurate measurements of oscillations in
metabolite pool sizes that in many cases vary by less than two-fold at maximum. Addressing
these challenges, we tracked synchronized cells for three complete cell cycles, performed
LC-MS based metabolomics and pulse-chase isotope tracing in the synchronized cells, and
employed computational deconvolution techniques to reliably detect oscillations in
metabolite concentrations and isotopic labelling dynamics. Inferring transient fluxes within
each one hour interval throughout the cell cycle was complicated by the fact that the
labelling of TCA cycle intermediates in the synchronized cells does not reach isotopic steady
state within one hour feeding with the isotopic nutrients. This was addressed by modelling
the isotopic labelling kinetics of metabolites within each one hour interval throughout the
cell cycle; for each one time interval using an approach conceptually similar to non-
stationary Metabolic Flux Analysis (MFA) 127128 Applied to Hela cells, we derived a first
comprehensive and quantitative view of metabolic flux oscillations at a high temporal
resolution in central metabolism throughout the cell cycle of human cells, showing
complementary oscillations between glucose and glutamine-derived flux in the TCA cycle
throughout the cell cycle. Cell cycle dependent changes in flux through the pentose-
phosphate pathway were previously studied using isotope tracing in synchronized human

cell lines *2° and in yeast by also utilizing MFA 1%,

The inferred flux oscillations through central metabolism via glucose and glutamine could
potentially be biased by oscillations in the metabolism of other carbon sources. For example,

the uptake and catabolism of glucogenic and ketogenic amino acids may feed into TCA cycle
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and potentially oscillate through the cell cycle. Though, apparently, the relative contribution
of amino acid catabolism to TCA cycle flux in Hela cells is extremely low; feeding isotopic
glucose and glutamine for 24h shows that more than 97% of the carbons in TCA cycle
metabolites are derived exclusively from glucose and glutamine (and from atmospheric CO3;
Figure 29). Hence, a potential change in amino acid metabolism throughout the cell cycle
would have little or no effect on the reported flux oscillations from glucose and glutamine.
Not accounting for potential oscillations through other reactions implicated in central
metabolism of glucose and glutamine could in principle also bias the presented flux
estimations. Though, notably, the flux analysis here is performed separately through groups
of converging reactions producing different metabolites (e.g. for reactions producing citrate,
malate/oxaloacetate, lactate, etc.), hence a potential bias in some of these independent
flux estimations would not change the overall emerging view of glucose and glutamine
oscillations; e.g. the increased TCA cycle metabolism of glutamine in S phase is supported
by several independent flux estimations showing increased glutamine-derived flux into TCA
cycle in S phase, oxidation of a-ketoglutarate, reduction of a-ketoglutarate, malic enzyme
flux, and increased nucleotide biosynthesis. Another simplifying assumption that facilitated
the estimation of flux dynamics throughout the cell cycle is of rapid mixing of mitochondrial
and cytosolic metabolite pools, giving rise to estimates of whole-cell level fluxes. This
assumption is typically made when analyzing flux in eukaryotic cells due to experimental
complications in measuring metabolite concentrations and labelling dynamics in distinct
subcellular compartments. Methodological advancements in subcellular level
metabolomics are required for further studies on cell cycle oscillations in metabolic flux in

mitochondria versus cytosol.
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Figure 29: The fraction of carbons labeled in TCA cycle intermediates and other metabolites
when feeding both [U-3C]-glucose and [U-'3C]-glutamine for 24h. Additional carbons are
derived from the fixation of atmospheric CO; through reductive isocitrate dehydrogenase
(IDH) and pyruvate carboxylase (PC). E.g. for citrate, the fraction of citrate m+5 when
feeding isotopic glutamine (as an indication of reductive IDH activity) and malate m+3 when
feeding isotopic glucose (as an indication pyruvate carboxylase activity) suggest that

another ~3% of the citrate carbons are derived from CO; fixation.

Our result of an induced glycolytic flux in G1/S phase is qualitatively consistent with
previous reports ~3 to 10-fold increase in glycolytic flux in G1/S in HelLa cells °*'>, However,

here, analyzing the metabolism of synchronized cells after resuming exponential growth (i.e.
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completing an entire cell cycle after released from synchronization growth-arrest), suggests
a moderate increase in glycolytic flux of only ~65% in G1/S phase. The smaller magnitude
of the oscillations in glycolytic flux inferred here is in agreement with the moderate changes
in concentration of glycolytic intermediates, which increase only ~2-fold in G1/S phase. Our
finding of increased glutamine-derived flux into the TCA cycle and support of pyrimidine
biosynthesis in S phase agree with reports of the essentiality of glutamine (and not glucose)

for entering and progressing through S phase, which can be rescued by nucleotide feeding

115,123

We showed that complementary oscillations in the rate of glucose versus glutamine
oxidation in the TCA cycle result in a constant rate of NADH/FADH, production and
reduction of oxygen by the electron transport chain throughout the cell cycle. Notably,
while here we observe a constant rate of oxygen consumption throughout the cell cycle,
fluctuations in oxygen consumption were previously reported in yeast cells, with DNA
replication and cell division occurring when oxygen consumption rate is low, protecting
genome integrity 4. On the other hand, respiration was suggested to actually protect
against oxygen-associated DNA damage in proliferating human cells by reducing the
intracellular oxygen concentration and ROS levels 31, and hence may potentially be
beneficial during S phase. Cell cycle dependent changes in the utilization of glucose versus
glutamine may be associated with reported changes in mitochondrial structure throughout
the cell cycle, converted from isolated fragments into a hyperfused network in G1/S

transition 132.

While the current study focuses on identifying and quantifying oscillations in metabolic flux
throughout the cell cycle, further research is required to decipher how these metabolic
changes are regulated. The ubiquitin ligase complexes APC/C and SCF complex were claimed
to control glycolytic flux by limiting the expression of PFKFB3 to the G1/S transition, in
accordance with the identified increase in glycolytic flux. SCF complex further limits the

expression of GLS1 to S and G2/M phases, in agreement with our finding of induced
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glutamine to glutamate conversion in these cell cycle phases. More generally, metabolic
enzymes are typically not regulated at the level of mRNA or protein throughout the cell
cycle based on cell cycle transcriptomics and proteomics studies '33. However, post-
translational modification of central metabolic enzymes is highly abundant and oscillations
in phosphorylation levels of metabolic enzymes have been described 33, Considering our
finding of oscillations in the concentration of numerous metabolic intermediates, as well as
energy and redox cofactors suggests that metabolic regulation via changes in enzyme-
binding site occupancy and allosteric regulation may also play a key role in regulating cell
cycle flux dynamics. This is further supported by the fact that metabolic substrate and
inhibitor levels in mammalian cells are typically in the same range as the Km values for the

corresponding enzymes 134,

We showed that treatment of Hela cells with the PDK inhibitor DCA eliminates the
oscillations in glucose flux into TCA cycle, suggesting that cell cycle specific regulation of
PDH activity may be involved in regulating these flux oscillations. Consistently, PDK4 was
reported to be induced by the E2F-pRB pathway which controls cell entry to S phase 78°%,
Furthermore, analyzing published phosphoproteomics data for Hela cells measured
throughout the cell cycle 133 shows more than 2-fold increase in the phosphorylation of the
PDH E1 component in early and late S phase versus in G1 (Figure 30). Validating this
observation here, we find a significant 2-fold increase in the phosphorylation of PDH- S232
specifically in S phase (Figure 31). A drop in glycolytic flux into TCA cycle in S phase is further
supported by a recent report of a drop in the abundance of the pyruvate-dehydrogenase
complex in mitochondria in S phase, following translocation of the complex components to
the nucleus 8. Further research is required to determine the precise regulatory mechanism
that underlies cell cycle oscillations in glycolytic flux into TCA cycle, which may potential
spread quantitatively among several enzymes (in accordance with the view of Metabolic

Control Analysis 13°).
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increases in S phase. Hela cells were synchronized using double thymidine block and lysates
were prepared at different stages of the cell cycle. PDH phosphorylation was measured via
an ELISA kit. All experiments were done in triplicates; two tailed Student’s T-test was applied
to calculate p-values. Notably, the concentration of PDH (measured via an ELISA kit) remains
constant throughout the cell cycle. (b) DCA treatment significantly decreases PDH

phosphorylation at Ser232.

In the conventional view of mammalian metabolism, acetyl-CoA (a major anabolic precursor
for fatty acid biosynthesis) is primarily produced by the oxidation of glucose-derived
pyruvate in mitochondria. Previous studies have employed isotope tracers to show that in
cancer cells grown under hypoxia %3¢, in cells with defective mitochondria ¥/, and in
anchorage-independent growth 38, a major fraction of acetyl-CoA is produced via another
route, reductive carboxylation of glutamine-derived a-ketoglutarate (catalysed by reverse
flux through isocitrate dehydrogenase, IDH). Under these conditions, feeding cells with
isotopic glutamine leads to a marked increase in the fractional labeling of citrate m+5 and
consequently in the isotopic labeling of synthesized fatty acids. Here, we showed that the
fractional labeling of citrate m+5 significantly oscillates throughout the cell cycle under
standard normoxic conditions. This reflects major oscillations in the relative contribution of
oxidative TCA cycle flux (peaking in G1) and in the reductive metabolism of glutamine-
derived a-ketoglutartate (peaking in S) to the production of acetyl-CoA throughout the cell
cycle. Notably though, the oxidative IDH flux remains several-fold higher than the reductive

flux all throughout the cell cycle, reflecting an overall net flux in the oxidative direction.

Understanding the metabolic adaptation of cells to tumorigenic mutations is a central goal
of cancer metabolic research. Considering that tumorigenic mutations typically alter cell
cycle progression, flux alterations observed at a cell population level may merely reflect a
change in the distribution of cell-cycle phases in the population (due to cells in different

phases having different metabolic fluxes). Hence, the presented temporal-fluxomics
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approach will enable to revisit our understanding of oncogene-induced metabolic
alterations, disentangling population level artifacts from directly regulated flux alterations
with important tumorigenic role and revealing potential targets for therapy. Combined
targeting of cell cycle specific flux alterations with drugs that block progression through

the same cell cycle phases is expected to have important therapeutic applications 39140,
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4.Methods

5.1 Cell culture and synchronization

Hela cells were cultured in Dulbecco’s Modified Eagle Medium (high glucose, Biological
Industries, 01-055-1A) supplemented with 10% (v/v) heat-inactivated dialyzed fetal bovine
serum (Biological Industries), 3mM L-glutamine, 100U/mL penicillin, and 100ug/mL
streptomycin with 5% CO; in a humidified incubator at 37°C. Culture medium was
additionally supplemented with 84mg/mL L-serine, and 48mg/mL L-cystine to maintain
sufficient amount of nutrients for three cell doublings. Hela cells have been validated by
the vendors and we tested for mycoplasma using EZ-PCR Mycoplasma detection kit
(Biological Industries). Cell number and volume analysis was performed using a Z2 Beckman
Coulter Counter (100 um aperture); cells were trypsinized and resuspended in IsoFlow

Sheath Fluid (Beckman Coulter) immediately before counting.

Cell synchronization was achieved using double thymidine block. Briefly, 2mM Thymidine
(Sigma-T1895) was added to 10cm culture plates at 25-30% confluence for 17h. Cells were
released from the first block by washing twice with phosphate buffer saline (PBS) and
replacing with fresh culture medium. After 9h, cells were incubated with 2mM thymidine
for a second block time for 17h. Cells were replated in smaller plates (60mm or 35mm) for
further analysis. Cell cycle analysis of synchronized cells was performed by quantitation of
DNA content using propodium iodide (PI) staining followed by flow cytometry. For PI
staining, cells were fixed using 75% Ethanol/PBS and then resuspended in 0.5mL of PI
staining solution (3.8mM sodium citrate, 40ug/mL PI, 50ng/mL RNase A) for 40 minutes at
room temperature in dark. Flow cytometric analysis was performed using LSRIl (BD
Biosciences; with at least 50,000 cells per FACS run). Cell cycle stages from raw FACS data

were quantified using Modfit (Verity House Software).

58



To check the effect of dicholoroacetate treatment on cell cycle progression, synchronized
cells were treated with 4mM pyruvate dehydrogenase kinase inhibitor dichloroacetate
(Sigma-Aldrich) for 3h. Non-synchronized cells were treated with 16mM DCA for 24h,

followed by cytometric analysis after DNA staining with PI.

5.2 LC-MS based metabolomics and isotope tracing

To measure intracellular metabolite pools, cells were washed with 2ml of ice-cold PBS for
three times and metabolites extracted with 200 ul of 50:30:20 (v/v/v)
methanol:acetonitrile:water solution at -20°C. The cells were quickly scraped on dry ice. For
the extraction of metabolites from the culture medium, 50ul of media were mixed with
200ul of 50:30 (v/v) methanol:acetonitrile solution at -20°C. All metabolite extractions were
stored at -80°C for at least 1h, followed by centrifugation, twice at 20000g for 20 minutes

to obtain protein-free metabolite extraction.

Metabolite pool sizes are expressed per total cell volume, measured using a Coulter counter
in cells grown in parallel in different plates. Absolute metabolite concentrations for specific
metabolites of interest were determined based on isotope ratio using chemical standards#*
(Dataset EV3). Pulse isotopic labelling was performed by feeding synchronized cells at each
time point with either [U-13C]-glucose or [U-'3C]-glutamine for 1 hr. To minimize the
perturbation to cells due to the replacement with fresh media, we used conditioned
medium obtained from a previous culture of Hela cells. Specifically, conditioned medium
with either isotopic glucose or isotopic glutamine was incubated with fully attached Hela

cells at ~30% confluence for 4 hours, and then stored in 4°C until used for pulse chase

labeling experiments.

Chromatographic separation was achieved on a SeQuant ZIC-pHILIC column (2.1 x 150 mm,
5 um bead size, Merck Millipore). Flow rate was set to 0.2 ml/min, column compartment

was set to 30 °C and autosampler tray was maintained at 4°C. Mobile phase A consisted of
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20 mM ammonium carbonate with 0.01% (v/v) ammonium hydroxide. Mobile Phase B was
100% acetonitrile. The mobile phase linear gradient (%B) was as follows: 0 min 80%, 15 min
20%, 15.1 min 80%, 23 min 80%. A mobile phase was introduced to Thermo Q-Exactive mass
spectrometer with an electrospray ionization source working in polarity switching mode.
Metabolites were analyzed using full-scan method in the range 70 - 1000 m/z and with a
resolution of 70000. Positions of metabolites in the chromatogram were identified by

corresponding pure chemical standards. Data were analyzed with MAVEN?'42,

5.3 Measurement of oscillations in oxygen consumption

Measurement of oxygen consumption was done using the XFp Extracellular Flux analyzer
(Agilent). Briefly, Hela cells after synchronization were plated (20,000 cells/well) into XFp
culture mini plates and grown at 37°C with 5% CO; in a humidified incubator for various
times to enrich the cell population with cells at distinct cell cycle phases. Cells were washed
and incubated with pre-warmed XF assay medium (Sigma D5030, pH 7.4) supplemented
with 25mM glucose and 3mM glutamine for 1h in a non-CO; incubator at 37C. Appropriate
dilutions of the inhibitors (final well concentrations: oligomycin 1 uM, FCCP 1 uM,
rotenone/antimycinA 1 uM) were prepared in the assay medium as per the instructions in
the manual. Hydrated sensor cartridges were calibrated prior to the measurement on
SeaHorse XFp Extracellular Flux anylyzer (Agilent). Data acquisition consisted of a baseline
measurement followed by oligomycin, FCCP and rotenone/antimycin A injections
respectively. OCR data were normalized against cell volume obtained from Coulter counter
measurements of the cells from a parallel plate without any treatment and expressed in

pmoles/min/pl.
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5.4 Synchronization loss model

We construct a probabilistic model that describes the loss of synchronization following
release from double thymidine block, due to cell-cell variability in the rate of progression
through the cell cycle. Each cell is assumed to have its own “internal clock”, which controls
the speed at which it progresses through the cell cycle (denoted by y). The relative
progression rates of cells released from synchronization arrest are assumed to be normally
distributed: y ~N(1, 02). We estimate the variance of the distribution (62) as well as the
duration of G1, S, and G2/M (denoted by dg, ds, and du, respectively; in hours), given the
FACS measurements of the fraction of cells in each cell cycle phase in the synchronized cell
population (as described below). We denote the cell doubling time by dcyc (=ds+ds+du; in
hours). For a cell whose rate of progression through the cell cycle is y, the cell-intrinsic time
x (in hours) within the cell cycle (0 < x < d yc) at time t post the release from

synchronization-induced growth arrest is:

x:yt+d6_lw dcyc, (Eq 1)

dcyc

considering that cells resume growth in G1/S transition after released from double
thymidine block. E.g. for a cell with a relative progression rate through the cell cycle of y=1
released from growth arrest, it will take ds+dy hours to complete one cell cycle (and then
have an intrinsic time of x=0), while for a cell with double the rate (y=2) it will take half the
time (i.e. (ds+dm)/2). At time t post the release from synchronization arrest, a cell having an

intrinsic time of x has a relative progression rate through the cell cycle y equal to
1 . . .
;(x + k- dgyc — dg), with k representing the number of completed cell cycles since the

release from growth arrest (based on Equation 1). Hence, considering that y is normally
distributed, we can compute the number of cells in the synchronized population at time t

whose cell-intrinsic time is x (denoted g'(x, t)) as:

_ x+kdcyc—d6_1)2
t

g,t)=Y2_,2%-e 202 , (Eq. 2)
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considering values of k between zero and two, representing three complete cell cycle. We

denote by g(x, t) the probability density function of the number of cells at time t whose
cell intrinsic time is x, with g(x,t) = % g'(x,t), where C is a normalization factor. The

expected fraction of the cellsin S, G1, and G2/M phases at time t (denoted by mg(t), mg;(t)

and m,,(t), respectively) are calculated as:

mg(t) = fodsg(x, t)dx (Eq. 3)
mg(t) = f(iﬁdc;g(x, t)dx (Eq. 4)
my () = [, 90 )dx (Eq. 5)

We perform a maximum log-likelihood estimation of the four parameters of the model (o,
de, ds, and dm), minimizing the variance-weighted sum of squared residuals between the
simulated fraction of cells in the different cell cycle phases (mg(t), m;(t) and my,(t)) and
the FACS measurements (assuming Gaussian noise in FACS measurements with an
empirically estimated standard deviation of ~10%). This minimization was performed via an
implementation of sequential quadratic optimization (SQP) available in Matlab. Confidence
intervals were computed by the likelihood ratio test, comparing the maximum log-
likelihood estimates with that obtained when constraining each of the four parameters to
increasing and then decreasing value (considering the 95% quantile of y2-distribution with
one degree of freedom). The optimal parameters found were 6=11%+1%, ds=6.8h+0.8h,
ds=6.4h%0.5h, and dwv=3.2h+0.4h. Overall, the good fit between the model prediction and
experimental data shown in Figure 1b supports the underlying assumptions of this model.
Computing the duration of each cell cycle phase based on PI staining/FACS measurements
in a population of non-synchronized Hela cells, and considering a decreasing exponential
cell age distribution shows 8.2h for G1, 4.9h for S, and 2.9h for G2/M. The small under
estimation of the duration of G1 and over estimation of the duration of S by the analysis of

the synchronized cell (both not more than 1h off the measurements in the non-
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synchronized cells) may be due to a slight perturbation to cell cycle dynamics due to

synchronization-induced growth arrest.

5.5 Computational deconvolution of cell volume measurements

in the synchronized cell population:

Computational deconvolution was used to estimate cell volume dynamics throughout the
cell cycle, correcting for cell dispersion that bias Coulter counter measurements of cell
volume performed in the synchronized cells. Specifically, denoting the average cell volume
in the synchronized cell population at time t by v(t) (9 < t < 45), we estimate the average
cell volume in the cell-intrinsic time x within the cell cycle (0 < x < dy(), denoted by v'(x),

as following:

v(t) = fodcyc v'(x)g(x, t)dx + € (t), (Eq. 6)

where £(t) represents experimental noise in the volume measurement performed at time
t. We represent v'(x) using a cubic spline, which is a commonly used approach for fitting
biological time-series data (considering splines with 4 segments; defined based on 5 knots).
Non-convex optimization was used to find the optimal position of the knots and
corresponding value of v'(t) minimizing the sum-of-square of the error terms. Non-convex

optimizations were solved using Matlab’s implementation of SQP.

5.6 Computational deconvolution of metabolite concentration,

isotope labeling, and uptake and secretion rate measurements

Given a metabolite /, whose measured concentration in the synchronized cell population at

time t (9 <t < 45) is denoted by u;(t) (measured metabolite pool size normalized by the
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measured average cell volume at time t; v(t)), we estimate the concentration in cell-

intrinsic time x within the cell cycle (0 < x < dy¢), denoted by u;(x) as:

_ 1 dcyc ' ’
w;(t) = T g Jo ruiv' (0 g(x, t)dx + e(t), (Eq. 7)

considering that the measured concentration of metabolite i at time t represents the
average concentration in cells with cell-intrinsic time x, weighted by the total volume of
cells with intrinsic time x at time t (i.e. v'(x)g(x,t)). We represent u;(x) using a cubic

spline and estimate its coefficients as described above.

We denote the measured relative abundance of the k" mass isotopomer of metabolite i (i.e.
the fraction of the metabolite pool having k labeled carbons) after one hour feeding with
an isotopic substrate of synchronized cells at time t by u; ;(t). We estimate the relative
abundance of the k™ mass isotopomer of metabolite i in cell-intrinsic time x within the cell

cycle denoted u; ; (x) as:

1
Jo2 u} )i (20) g (x,t)dax

u () = I g 0u 0V () g (x, )dix + (), (Eq. 8)

considering that the measured fractional isotopic labeling of a metabolite i at time t
represents the average labeling in cells with intrinsic cell cycle time x, weighted by the

metabolite pool size in cells with cell-intrinsic time x (i.e. with u; (x)v'(x)g(x, t)).

We denote the measured change in pool size of metabolite j in the culture media between
time t — At and time t by Ae;(t). We estimate the transport flux of metabolite i by the
synchronized cell population at time t, denoted f;(t) (in molar amount per unit of cell
volume per hour; with positive and negative flux representing secretion and uptake,
respectively) by dividing the change in pool size of metabolite i by the accumulated volume

of cells in the culture metabolite between time t — At and time t:

fi(t) = 2 Ae(t) (Eq. 9)

t d
ft—At fo CYCor(x)g(x,tr)dxdtr

The transport flux of metabolite i at cell-intrinsic time x, denoted f;'(x) is estimated as:
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Ae;(t) = ft fdcyc £ () v'(x)g(x, t)dx dt' + (¢), (Eq. 10)

t—At J0

considering that the measured change in pool size of metabolite j at time t represents the
cumulative transport within the At time interval by cells with different intrinsic cell cycle

time x.

5.7 Statistical significance of oscillations in metabolite

concentrations and isotopic labeling patterns:

To assess the statistical significance of observed oscillations in the deconvoluted
concentration of a certain metabolite, we compared the observed amplitude of the
oscillation to the amplitude expected by chance (considering the noise in LC-MS

measurements). Specifically, for each metabolite i, we define the amplitude of its oscillation

by a; as:

! . !
a; = max u;(x)— min u;(x Eqg. 11
t O<x<dcyc l( ) O<x<dcyc l( ) ( 9 )

Next, we compute the distribution of amplitudes expected by chance by repeating the
following steps 10,000 times: For each time t for which LC-MS measurements were
performed on the synchronized cell population (9 <t < 45), we generate a random
metabolite concentration (denoted r(t)) by sampling from a normal distribution whose
mean is the average concentration of metabolite i measured throughout all time points in
the synchronized cells, and with the standard deviation of the experimental measurement

of metabolite i at time t, denoted o;(t):

r(©~N (;3u(©),07©) (Eq. 12)

Computational deconvolution (Eq. 7) is applied on the randomly generated metabolite
concentration data (i.e. r(t)) and an empirical p-value computed based on the fraction of

randomly sampled concentration vectors for which the derived amplitude is equal or larger
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than that computed for the concentration measurements of metabolite i. FDR correction
for multiple testing is computed using the approach of Benjamini—-Hochberg. A conceptually
similar method was employed to assess the statistical significance of oscillations in the
relative abundance of metabolite isotopic labeling (applying computational deconvolution

(Eg. 8) to randomly generated isotopic labelling data).

5.8 Computational inference of metabolic flux dynamics

throughout the cell cycle:

For every one-hour interval j throughout the cell cycle j € {0 ... |dcycl} (referred to as the
jth cell cycle interval), we computed the most likely momentary fluxes through 9 reactions
in TCA cycle and in branching pathways (Figure 11b). Towards this end we employed a
variant of Kinetic Flux Profiling (KFP) to separately infer fluxes producing each metabolite i
in cell cycle interval j, for which the simulated isotopic labeling kinetics optimally match the

experimental measurements.

The relative abundance of the k" mass-isotopomer of metabolite i after 1 hour feeding of
cells within cell cycle interval j was inferred based on the pulse chase labeling experiments
in the synchronized cells followed by deconvolution as described above (denoted by u{'k ().
To estimate the dynamics of the isotopic labeling form of this metabolite within the one-
hour cell cycle interval (i.e. within time periods shorter than one hour), we performed pulse-
chase labeling experiments with isotopic glucose and glutamine in non-synchronized cells,
measuring the relative abundance of the k' mass-isotopomer of metabolite i at different
timest € T = {10,20,30,60} (in minutes), denoted by Xi'k(t). These measurements were
used to estimate the relative abundance of the k™ mass-isotopomer of metabolite i, t

minutes after the beginning of the j one-hour time interval within the cell cycle (denoted

by Xi]:k(t)) by scaling the measurements performed on the non-synchronized cells:
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ulk(]+1)
Xia(®) = S0 K (©) (Eq. 13)

To validate these estimated labeling kinetics, we performed rapid pulse-chase labeling
experiments (10 and 30 minutes) in synchronized cells grown for 15 hours (G1/S) and 20

hours (S), finding a good match between the estimated and measured labeling dynamics

(Figure 32).
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Figure 32: The estimated and measured short-time (10 and 30 mins) labeling kinetics for 15 and 20
hours show a good match. (a) Measured (green dots) versus estimated (red curves) labeling
kinetics of citrate m+4 (a), citrate m+5 (b), a-ketoglutarate m+5 (c), and malate m+4 (d),
when feeding non-synchronized and synchronized cells in G1/S (15h) and S (20h) with
isotopic glutamine. The estimated labeling kinetics in the synchronized cells was derived

based on Eqg. 13 (in main text).

We describe the inference of metabolic flux through reactions producing citrate while other
fluxes are obtained similarly (see below). The analysis accounts for citrate synthase (v;) and
reductive isocitrate dehydrogenase (IDH; v,) producing citrate (Figure 11b). We denote the
total citrate consumption flux by v,,:, which may be lower or higher than the sum of v1
and v2 in case citrate is accumulated or depleted within a cell cycle interval, respectively (as
the synchronized cells are not in metabolic steady-state). The expected mass-isotopomer
distribution of citrate after t minutes into the j cell cycle interval, considering the fluxes v1,
v2, and v,,; is denoted YC];t(t, V1, Vs, Vgye) - Assuming that the error in the measured
isotope labeling data is normally distributed, maximum likelihood estimate of fluxes are

obtained by minimizing the variance-weighted sum of squared residuals between measured

and computed mass-isotopomer distributions, where o’

cit k is the standard deviation in the

measurement of the relative abundance of the k' mass-isotopomer of citrate in the j% time

interval:
P Xgit k(t)_ycjit kEV1.v2,V0ut) g

min. Yier Yge(as) ' i (Eq. 14)
V1,V2,Vout Orit ke
s.t.
Vout = V1 TV + (uéit(]' +1)— u;it(j)) (Eg.14.1)
V1, V2 Vour = 0 (Eq. 14.2)

1, Y2, Yout
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Where u_;, (j)represents the deconvoluted concentration of citrate (in mM) in the j™ cell
cycle interval, and is used to constrain the difference between the total citrate producing
and consuming flux within the j* one-hour cell cycle interval (Eq. 14.1). We accounted for
the two major mass-isotopomers of citrate, m+4 and m+5 (Figure 13). To simulate the

labeling kinetics of the k™ mass-isotopomer of citrate within the j* cell cycle interval,
denoted by YC];tk(t, V1, Uy, Voyt), We utilized the following system of ordinary differential
equations (Eq. 14.3):

dYCJit,k (t, V1, V2, Vour) _
dt ugir ()

(leyjna[,k (t) + UZXéKG,k (t) - voutYC]it,k (t' V1, V2, 17out))

where X/

mavk(t) and XéKG’k(t) represent the relative abundance of the k¥ mass-

isotopomer of malate and a-ketoglutarate, t minutes into the j cell-cycle interval; and

v, X!

mak(t) and szC]l'Kle(t) represent the momentary production of the k¥ mass-

isotopomer of citrate from of malate and from a-ketoglutarate. The term
voutYC];t‘k(t, V1, V2, Voye) FEPresents the total momentary consumption of the k' mass-
isotopomer of citrate. The difference between the momentary production and
consumption rate of the different mass-isotopomers of citrate (term in parenthesis on right
hand side of the equation) is normalized by the concentration of citrate to give the

momentary change in fractional labeling.

A similar approach was employed to infer fluxes through reactions producing the following
metabolites: (i) a-ketoglutarate — rapid isotopic exchange with glutamate results in
essentially a single intracellular pool of a-ketoglutarate and glutamate (as reflected by
similar labeling kinetics of the two metabolites). We considered a-ketoglutarate/glutamate
m+5 production by oxidative IDH from citrate m+5 when feeding isotopic glutamine
(reaction v3 in Figure 11b) and from glutamine m+5 when feeding isotopic glutamine (v8),
as well a-ketoglutarate/glutamate m+3 production by oxidative IDH from citrate m+4 when

feeding isotopic glutamine (v3) (Figure 14). (ii) Malate — considering the rapid isotopic
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exchange with aspartate (>100mM/h based KFP analysis of malate and aspartate labeling
kinetics, we account for a single malate/aspartate pool. We consider for malate/aspartate
m+4 production from o-ketoglutarate m+5 (v4), when feeding isotopic glutamine, and
malate/aspartate m+4 production from pyruvate m+3 (v7), when feeding isotopic glucose
(Figure 15). (iii) UTP — considering UTP m+3 production from carbamoyl-aspartate m+3
when feeding isotopic glutamine (v5) (Appendix Figure S6). (iii) Lactate — considering lactate
m+3 production by malic enzyme when feeding isotopic glutamine (v6) and the production
of non-labelled lactate by glycolysis (Figure 17). We consider an average malic enzyme flux
of 7.9mM/h throughout the cell cycle (considering a fractional labeling of 1.3% m+3 lactate
under isotopic steady state, when feeding isotopic glutamine; and lactate secretion rate of

610mM/h).

Non-convex optimizations were solved using Matlab’s implementation of Sequential
Quadratic Optimization (SQP). All optimizations were run 10 times, starting from different
sets of random fluxes, to overcome potential local minima. To compute confidence intervals
for estimated fluxes, we iteratively ran the SQP optimization to compute the maximum log-
likelihood estimation while constraining the flux to increasing (and then decreasing) values
(with a step size equal to 5% of the flux predicted in the initial maximum log-likelihood
estimation)!?>143, The confidence interval bounds were determined based on the 95%
quantile of y2-distribution with one degree of freedom. Notably, while all flux estimates are
given in mM/h (i.e. fmole/pL-cells/h), multiplying a flux estimate with intrinsic time x with
the estimated cell volume at that time (i.e. v'(x) in pL; see Figure 1c) gives a flux value per

cell (fmole/cell/h).

The rate of production of reducing equivalents for driving oxidative phosphorylation
generated by glucose oxidation was calculated by summing the flux through the following
NADH producing reactions: PDH (according to reaction v1 in Figure 11b; considering that
~99% of pyruvate is produced by glucose oxidation throughout the cell cycle, with the

fractional labeling of pyruvate from isotopic glutamine under isotopic steady state being <
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0.01), oxidative IDH (reaction v3), and the rate of shuttling of NADH produced in glycolysis
for oxidation in mitochondria (estimated based on pyruvate secretion; a uniform flux of
~17mM/h measured throughout the cell cycle). The rate of reducing equivalents production
from glutamine oxidation was calculated based on the rate of a-ketoglutarate oxidation in
TCA cycle (reaction v4 in Figure 11b; considering that >95% of a-ketoglutarate is produced
from glutamine all throughout the cell cycle; the fractional labeling of a-ketoglutarate from
isotopic glutamine under isotopic steady state is > 0.95), producing NADH by a-
ketoglutarate dehydrogenase and FADH; by succinate dehydrogenase (SDH). Malate
dehydrogenase (v4 in Figure 11b) further produces another NADH.
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