CHARACTERIZATION OF NEWLY DEVELOPED FEEDSTOCK IN METAL INJECTION MOULDING APPLICATION USING TITANIUM MIX WITH PALM STEARIN BINDER SYSTEM

RESEARCH MANAGEMENT INSTITUTE (RMI) UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR MALAYSIA

BY:

NOR HAFIEZ BIN MOHAMAD NOR MUHAMMAD HUSSAIN BIN ISMAIL PROF. DR. NORHAMIDI BIN MUHAMAD

MARCH 2011

PROJECT TEAM MEMBERS

NOR HAFIEZ BIN MOHAMAD NOR Project Leader

. .

MUHAMMAD HUSSAIN BIN ISMAIL Project Member

12

PROF. DR. NORHAMIDI BIN MUHAMAD Project Member

_

TABLE OF CONTENTS

Letter of Research Acceptance	ii
Letter of Report Submission	v
Project Team Members	vi
Acknowledgement	vii
Table of Contents	viii
List of Tables	xi
List of Figures	xii
Abstract	xiii

CHAPTER I	INTRODUCTION	
1.1	INTRODUCTION	1
1.2	OBJECTIVES	4
1.3	SCOPE OF PROJECT	4
1.4	OUTLINE OF REPORT	4

2.1	INTRODUCTION			
2.2	TITA	NIUM POWDER TECHNOLOGY	6	
	2.2.1	Markets for TI-PIM	8	
	2.2.2	Applications	8	
2.3	BIND	ER	9	
	2.3.1	Solid Polymer Solution (SPS) Binder System	9	
	2.3.2	The Characteristic of PS	10	
2.4	FEEDSTOCK			
	2.4.1	Introduction	11	
	2.4.2	Homogeneity of MIM Feedstock	11	
	2.4.3	Flow Characteristic of MIM Feedstock	12	

2.5 2.5 CONCLUSIONS

CHAPTER III		EXPE	RIMENTAL PROCEDURE			
3.0	INTRO	ODUCTION				
3.1	CHAR	HARACTERIZATION OF TITANIUM ALLOY				
	Ti-6Al-4V POWDER					
	3.1 1	Particle Size,	Shape and Distribution	16		
	3.1.2	Pycnometer an	nd Tap Density	17		
3.2	CHAR	RACTERIZATION OF PS AND PE BINDER				
	3.2.1	Thermal Analysis				
		3.2.1.1.1	Differential Scanning	18		
			Calorimeter (DSC)			
		3.2.1.1.2	Thermogravimetric Analysis	19		
3.3	BIND	ER COMPOSI	TION AND FORMULATION	20		
	3.3.1	Critical Powde	er Volume Percentage (CPVP)	20		
	3.3.2	Mixing Proces	38	21		
3.4	CHAR	RACTERIZATION OF THE FEEDSTOCK				
	3.4.1	Rheological test				
	3.4.2	Morphology o	f the Feedstock using Field Emission			
		Scanning Elec	tron Microscope (FESEM)	26		
CHAPTER IV RESULTS AND DISCUSSION						
4.0	INTRO	DUCTION		27		
4.1	CHAR	CHARACTERISTIC OF TITANIUM ALLOY				
	Ti-6Al-4V POWDER			27		
	4.1.1	Particle Size a	nd Shape	28		
	4.1.2	Pycnometer D	ensity	30		
4.2	DSC A	ANALYSIS OF	PS AND PE	30		
4.3	TGA A	ANALYSIS OF	PS AND PE BINDERS	32		

15

ABSTRACT

Metal Injection Molding (MIM) process has some features such as shape complexity, low production cost and tight tolerance. The MIM process consists of four steps such as mixing, injection molding, debinding and sintering. These steps are dependent upon the types of binder used. Successful production of parts by MIM is closely related to the binder system utilized. The role of the binder is to serve as a temporary or transient phase to impart flowability and moldability to the powder mixture. This will enable the shaping of the feedstock to the desired shape during injection molding. To have a good understanding of the MIM process and successful in manufacturing, characterisation of the material feedstock is essential. This paper presents the characterization of MIM feedstock consisting titanium alloy (Ti-6Al-4V) powder mix with binder 60wt% of palm stearin and 40wt% polyethylene. The characterisation of Ti-6Al-4V alloy powder, binders and feedstock includes scanning electron micrograph (SEM), thermo gravimetric analysis (TGA), differential scanning calorimeter (DCS) and rheological test were established. Rheological results exhibited pseudoplastic or shear thinning flow behaviour, where its viscosity decreased with increasing shear rate. The feedstock viscosity also decreased with increasing temperature and was found to be suitable for moulding. The feedstock is loaded with Ti-6Al-4V at volume ranging 63, 65, 67, and 69 percentages. The binder composition consists of 60% palm stearin and 40% polyethylene based on weight fraction. The feedstock that is suitable for injection molding has possessed the highest value in shear sensitivity (n-1), lowest activation energy (E) and highest moldability index, (α_{STV}). Optimization of the rheological data shows that feedstock of 63vol % has the best rheological properties when it flow at 144.68°C.