

Characterization of Roughness on Urban and Low-Speed Roadways

By

Steven M. Karamihas

University of Michigan Transportation Research Institute

With Mark E. Gilbert, Michelle A. Barnes

NCHRP 10-93

COTR: Amir Hanna

NCHRP 10-93 Approach

Valid measurement of longitudinal profile is at the core of the approach.

- Reproducibility/Time Stability
- Versatility
- Diagnostics

Characterization of the roughness will depend on profile, not the roughness source.

- Vehicle response (e.g., ride) is of primary importance.
- Tools are needed to identify roughness sources.

Ride Experiment

- Relate objective measurement of ride vibration on urban and low-speed roads to roughness.
- •Use standard measures of "discomfort" caused by vibration.
- Seek correlation to roughness.

Ride Experiment

29 Test sections

- •6 routes
- functional class 3 and 4
- speed limit 30-55 mph

Route	Test	County	Functional	Speed Limit
	Sections		Class	Range (mi/hr)
Jackson Road/Huron Street	3	Washtenaw	3	35
Grand River (M-5)	5	Wayne	3	35
Michigan Ave. (US-12)	9	Wayne	3	30-45
Fort Street (M-85)	4	Wayne	3	30-50
West Grand River	6	Livingston	4	30-55
M-52	2	Washtenaw	4	30

Source: NCHRP Rpt. 914

Test Vehicles

Source: NCHRP Rpt. 914

Instrumentation: Driver/Vehicle Interface Accelerations

Source: NCHRP Rpt. 914 **PE 2019**

Instrumentation: Profiler

Source: NCHRP Rpt. 914

Accelerometer Output

Source: NCHRP 10-93

SAE 2834/ISO 2631 Frequency Weighting

Source: NCHRP Rpt. 914

SAE 2834/ISO 2631 Frequency Weighting

Interface	Direction	Weighting Function	Multiplying Factor
Seat/buttock	Longitudinal	W _d	1.0
	Lateral	W _d	1.0
	Vertical	Wb	1.0
Seat/back	Longitudinal	W_{c}	0.8
	Lateral	W _d	0.5
	Vertical	W _d	0.4
Floor/foot	Vertical	Wb	0.4

"Rough" Ride Metrics

Root Mean Square Weighted Acceleration:

$$rmsa_w = \left[\frac{1}{N}\sum_{i=1}^N a_w^2(i)\right]^{\frac{1}{2}}$$

Point Vibration Total:

$$PV = \left(k_{x}^{2} rmsa_{wx}^{2} + k_{y}^{2} rmsa_{wy}^{2} + k_{z}^{2} rmsa_{wz}^{2}\right)^{\frac{1}{2}}$$

Overall Vibration Total:

$$OVT = \left(PV_{ff}^{2} + PV_{sbk}^{2} + PV_{sbt}^{2}\right)^{\frac{1}{2}}$$

* Stay tuned for "Transient" metrics.

Source: ISO 2631/SAE J2834

"Golden Car" Model

$$C = c_s/m_s = 6.0 \text{ sec}^{-1}$$

$$K_1 = k_t/m_s = 653 \text{ sec}^{-2}$$

$$K_2 = k_s/m_s = 63.3 \text{ sec}^{-2}$$

$$\mu = m_u/m_s = 0.15$$

$$B = 9.84 \text{ in}$$

Sayers, M.W., "On the Calculation of International Roughness Index from Longitudinal Road Profile." *Transportation Research Record 1501* (1995) pp. 1-12.

Golden Car Frequency Response

Correlation to Discomfort

Discomfort mid-sized sedan SUV full-sized van R² \mathbb{R}^2 R^2 RMS Resid. (g) RMS Resid. (g) RMS Resid. (g) Quantity 0.0065 0.796 0.0077 0.778 0.0071 0.798 rmsawzff 0.0036 0.866 0.0057 0.820 0.0048 0.699 rmsa_{wzsbt} 0.618 **PVTsbt** 0.0033 0.891 0.0057 0.827 0.0068 OVT 0.0046 0.897 0.0075 0.821 0.0096 0.643

Disc	omfort	mid-sized sedan		SUV		full-sized van	
Qu	antity	RMS Resid. (g)	R^2	RMS Resid. (g)	R ²	RMS Resid. (g)	R ²
rm	sawzff	0.0081	0.683	0.0087	0.712	0.0076	0.766
rms	awzsbt	0.0052	0.722	0.0068	0.741	0.0055	0.600
P	VT _{sbt}	0.0047	0.782	0.0065	0.778	0.0074	0.548
0)VT	0.0065	0.791	0.0085	0.770	0.0104	0.583

PE 2019

Left IRI:

Correlation to Discomfort

Discomfort mid-sized sedan		SUV		full-sized van		
Quantity	RMS Resid. (g)	R ²	RMS Resid. (g)	R^2	RMS Resid. (g)	\mathbf{R}^2
rmsa _{wzff}	0.0059	0.832	0.0065	0.838	0.0075	0.772
rmsawzsbt	0.0035	0.874	0.0044	0.891	0.0047	0.710
PVT sbt	0.0040	0.846	0.0053	0.8 <mark>4</mark> 9	0.0073	0.554
OVT	0.0057	0.842	0.0069	0.849	0.0105	0.576

GCARV _V	•
--------------------	---

GCARS₃₅:

Discomfort	fort mid-sized sedan		SUV		full-sized van	
Quantity	RMS Resid. (g)	R ²	RMS Resid. (g)	R ²	RMS Resid. (g)	R^2
rmsa _{wzff}	0.0066	0.79 <mark>0</mark>	0.0063	0.852	0.0063	0.840
rmsawzsbt	0.0049	0.757	0.0046	0.881	0.0046	0.719
PVT _{sbt}	0.0047	0.788	0.0050	0.868	0.0069	0.600
OVT	0.0066	0.787	0.0066	0.863	0.0097	0.634

Left IRI versus Floor/Foot Acceleration

Source: NCHRP Rpt. 914

GCARS₃₅ versus Floor/Foot Acceleration

Source: NCHRP 10-93

GCARV_V versus Floor/Foot Acceleration

Source: NCHRP 10-93

Technical Issues

- Limited test vehicles.
- •Other responses.
- Thresholds.
- Passengers.
- Localized roughness.

IRI Generality

Other Locations

© Copyright University of Michigan

Thresholds: Meaning of "inches/mi"

GCARS (in/mi)

Karamihas, S.M., "Simulation Speed and Its Implications to the Relevance of the IRI." American Society for Testing and Materials STP 1555 (2012) pp. 248–266.

Thresholds: Meaning of "inches/mi"

GC RMS Sprung Mass Accel. (g)

Karamihas, S.M., "Simulation Speed and Its Implications to the Relevance of the IRI." American Society for Testing and Materials STP 1555 (2012) pp. 248–266.

Transient Ride Metrics

Root Mean Quad Weighted Acceleration:

$$rmqa_{w} = \left[\frac{1}{N}\sum_{i=1}^{N}a_{w}^{4}(i)\right]^{\frac{1}{4}}$$

Maximum Transient Vibration: $rmsa_{w,T}(j) = \left[\frac{1}{M}\sum_{i=1}^{j+M-1}a_w^2(i)\right]^{\frac{1}{2}}$

$$MTV = max(rmsa_{w,T}(j)), j = 1, N - M$$

Crest Factor: $CF = \frac{max(|a_w(j)|, j = 1, N)}{rmsa_w}$

Transient vibration if:
$$rmqa_w$$

 $rmsa_w$ >1.5, MTV
 $rmsa_w$ >1.5, $CF > 9$ Source: ISO 2631/SAE J2834

MTV/rmsa_w, Mid-Sized Sedan

MTV versus Peak Localized Roughness

Source: NCHRP Rpt. 914

Summary

- IRI correlated to measures of ride discomfort on lowspeed and urban roadways, but better correlation is possible.
- A shift toward shorter wavelengths improved correlation.
- Optimizing correlation for limited conditions is not recommended.
- Localized roughness must be considered to quantify functional quality.

Discussion Points

- Can a new scale be accommodated?
- Should we avoid a scale in inches/mi?
- Should we be using a relative or absolute measure of localized roughness?
- How shall we establish new thresholds?
- What is a higher priority, functional status or pavement health?

The Report.....

Download NCHRP Report 914

http://www.trb.org/Publications/Blurbs/179566.aspx

Thank you!!!!

Built-In Roughness: Hit or Miss Utility Cover

Source: NCHRP Rpt. 914

Built-In Roughness: Compound Event

Source: NCHRP Rpt. 914 **PE 2019**

Built-In Roughness: Compound Event

