Characterization of the convolutor and multiplier spaces \mathcal{O}'_C and \mathcal{O}_M by the short-time Fourier transform

Christian Bargetz

joint work with Norbert Ortner

Institut für Mathematik Universität Innsbruck

Workshop on Functional Analysis Valencia 2015 15–19 June 2015

Christian Bargetz (Universität Innsbruck) Characterising $\mathcal{O}'_{\mathcal{C}}$ and $\mathcal{O}_{\mathcal{M}}$ by the short-time Fourier transform

Short-Time Fourier transform of distributions

Classically the short-time Fourier transform is defined as

$$V_g f(x,\xi) = \int_{\mathbb{R}^n} f(y) \mathrm{e}^{-\mathrm{i}\xi y} g(y-x) \,\mathrm{d}y$$

for $f, g \in L^2(\mathbb{R}^n)$. For distributions $f, g \in S'$ the expression f(y)g(y-x) is defined as the image of

 $f(\xi)\otimes g(\eta)\in \mathcal{S}'(\mathbb{R}^{2n}_{\xi,\eta})$

under the linear map

$$\mathbb{R}^{2n}_{x,y} \to \mathbb{R}^{2n}_{\xi,\eta}, \xi = y, \eta = x - y.$$

If $f, g \in S'(\mathbb{R}^n)$ then $V_g f$ is defined by the partial or vector-valued Fourier transform:

$$V_g f = \mathcal{F}_y(f(y)g(y-x)) \in \mathcal{S}'_{x,y}$$

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Short-Time Fourier transform of distributions

Classically the short-time Fourier transform is defined as

$$V_g f(x,\xi) = \int_{\mathbb{R}^n} f(y) \mathrm{e}^{-\mathrm{i}\xi y} g(y-x) \,\mathrm{d}y$$

for $f, g \in L^2(\mathbb{R}^n)$. For distributions $f, g \in S'$ the expression f(y)g(y-x) is defined as the image of

$$f(\xi)\otimes g(\eta)\in \mathcal{S}'(\mathbb{R}^{2n}_{\xi,\eta})$$

under the linear map

$$\mathbb{R}^{2n}_{x,y} \to \mathbb{R}^{2n}_{\xi,\eta}, \xi = y, \eta = x - y.$$

If $f,g \in S'(\mathbb{R}^n)$ then $V_g f$ is defined by the partial or vector-valued Fourier transform:

$$V_g f = \mathcal{F}_y(f(y)g(y-x)) \in \mathcal{S}'_{x,y}$$

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

Short-Time Fourier transform of distributions

Classically the short-time Fourier transform is defined as

$$V_g f(x,\xi) = \int_{\mathbb{R}^n} f(y) \mathrm{e}^{-\mathrm{i}\xi y} g(y-x) \,\mathrm{d}y$$

for $f,g \in L^2(\mathbb{R}^n)$. For distributions $f,g \in S'$ the expression f(y)g(y-x) is defined as the image of

$$f(\xi)\otimes g(\eta)\in \mathcal{S}'(\mathbb{R}^{2n}_{\xi,\eta})$$

under the linear map

$$\mathbb{R}^{2n}_{x,y} \to \mathbb{R}^{2n}_{\xi,\eta}, \xi = y, \eta = x - y.$$

If $f, g \in S'(\mathbb{R}^n)$ then $V_g f$ is defined by the partial or vector-valued Fourier transform:

$$V_g f = \mathcal{F}_y(f(y)g(y-x)) \in \mathcal{S}'_{x,y}.$$

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

Theorem (Gröchenig–Zimmermann, 2001)

Let $g \in S(\mathbb{R}^d) \setminus \{0\}$ fixed. Then for $f \in S'(\mathbb{R}^d)$ the following are equivalent:

• $f \in \mathcal{S}(\mathbb{R}^d)$.

$$V_g f \in \mathcal{S}(\mathbb{R}^{2d}).$$

3 For all
$$n \ge 0$$
 exists $C_n > 0$ such that

$$\forall (x,\xi) \in \mathbb{R}^{2d}$$
: $|V_g f(x,\xi)| \leq C_n (1+|x|+|\xi|)^{-n}.$

Question

Can we get a similar characterisation of $\mathcal{O}'_{\mathcal{C}}(\mathbb{R}^d)$ and $\mathcal{O}_{\mathcal{M}}(\mathbb{R}^d)$?

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

イロト 不得 とくほ とくほ とうほう

Theorem (Gröchenig–Zimmermann, 2001)

Let $g \in S(\mathbb{R}^d) \setminus \{0\}$ fixed. Then for $f \in S'(\mathbb{R}^d)$ the following are equivalent:

• $f \in \mathcal{S}(\mathbb{R}^d)$.

$$V_g f \in \mathcal{S}(\mathbb{R}^{2d}).$$

• For all $n \ge 0$ exists $C_n > 0$ such that

$$\forall (x,\xi) \in \mathbb{R}^{2d}$$
: $|V_g f(x,\xi)| \leq C_n (1+|x|+|\xi|)^{-n}.$

Question

Can we get a similar characterisation of $\mathcal{O}'_{\mathcal{C}}(\mathbb{R}^d)$ and $\mathcal{O}_{\mathcal{M}}(\mathbb{R}^d)$?

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

イロト 不得 とくほ とくほ とうほう

Definition and Proposition

If $h \in \mathcal{S}$ and $F \in \mathcal{S}'_{x,\xi}$ then the W_h -transform

$$W_h \colon \mathcal{S}'_{x,\xi} \to \mathcal{S}'_z, F \mapsto {}_{\mathcal{O}_{C,x}} \langle 1_x, (\mathcal{F}_{\xi}^{-1}F)(x,z)h(z-x) \rangle_{\mathcal{O}'_{C,x}(\mathcal{S}'_z)}$$

is well-defined, linear and continuous. The bracket $\mathcal{O}_{C,x}\langle\cdot,\cdot\rangle_{\mathcal{O}'_{C,x}(\mathcal{S}'_z)}$ is the \mathcal{S}' -valued extension of the evaluation mapping

$$\mathcal{O}_{\mathcal{C}} \times \mathcal{O}_{\mathcal{C}}' \to \mathbb{C}, (\varphi, T) \mapsto T(\varphi)$$

and hence bilinear and hypocontinuous.

イロト 不得 トイヨト イヨト 二日

Some technical background: Vector-Valued distributions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Let E, F and G be three (separated) locally convex spaces and

$$b: E \times F \to G$$

a bilinear mapping.

The mapping *b* is hypocontinuous iff for all bounded set $B \subset E$ and all bounded subsets $B' \subset F$ the mappings

$$B \times F \rightarrow G, (e, f) \mapsto b(e, f)$$

and

$$E \times B' \rightarrow G, (e, f) \mapsto b(e, f)$$

are continuous

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is continuous.

 $E \otimes_{\beta} F$... finest locally convex topology such that

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is hypocontinuous. $E\widehat{\otimes}_{\pi}F$ and $E\widehat{\otimes}_{\beta}F$... completion of $E\otimes_{\pi}F$ and $E\otimes_{\beta}F$, respectively.

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is continuous.

 $E \otimes_{\beta} F$... finest locally convex topology such that

can:
$$E \times F \to E \otimes F$$
, $(x, y) \mapsto x \otimes y$

is hypocontinuous. $E\widehat{\otimes}_{\pi}F$ and $E\widehat{\otimes}_{\beta}F$... completion of $E\otimes_{\pi}F$ and $E\otimes_{\beta}F$, respectively.

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is continuous.

 $E \otimes_{\beta} F$... finest locally convex topology such that

can:
$$E \times F \to E \otimes F$$
, $(x, y) \mapsto x \otimes y$

is hypocontinuous.

 $E\widehat{\otimes}_{\pi}F$ and $E\widehat{\otimes}_{\beta}F$... completion of $E\otimes_{\pi}F$ and $E\otimes_{\beta}F$, respectively.

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is continuous.

 $E \otimes_{\beta} F$... finest locally convex topology such that

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is hypocontinuous. $E\widehat{\otimes}_{\pi}F$ and $E\widehat{\otimes}_{\beta}F$... completion of $E \otimes_{\pi}F$ and $E \otimes_{\beta}F$, respectively.

Let *E* and *F* be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F$... finest locally convex topology such that

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous.

We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Let *E* and *F* be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F$... finest locally convex topology such that

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous.

We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Let *E* and *F* be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F$... finest locally convex topology such that

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous.

We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Let *E* and *F* be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F$... finest locally convex topology such that

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous. We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

(1) If *E* and *F* are barrelled, $E \otimes_{\iota} F = E \otimes_{\beta} F$

② If E and F are Fréchet spaces, $E \otimes_{\iota} F = E \otimes_{\beta} F = E \otimes_{\pi} F$

③ If
$$E$$
 and F are (DF) spaces, $E\otimes_eta F=E\otimes_\pi F$

• If *E* and *F* are barrelled (DF) spaces, $E \otimes_{\iota} F = E \otimes_{\beta} F = E \otimes_{\pi} F$

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous.

We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

If E and F are barrelled, E ⊗_ι F = E ⊗_β F
If E and F are Fréchet spaces, E ⊗_ι F = E ⊗_β F = E ⊗_π F
If E and F are (DF) spaces, E ⊗_β F = E ⊗_π F
If E and F are barrelled (DF) spaces, E ⊗_ι F = E ⊗_β F = E ⊗_π F

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous.

We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

- $If E and F are barrelled, E \otimes_{\iota} F = E \otimes_{\beta} F$
- **2** If *E* and *F* are Fréchet spaces, $E \otimes_{\iota} F = E \otimes_{\beta} F = E \otimes_{\pi} F$
- (3) If *E* and *F* are (DF) spaces, $E \otimes_{\beta} F = E \otimes_{\pi} F$

If *E* and *F* are barrelled (DF) spaces, $E \otimes_L F = E \otimes_{\beta} F = E \otimes_{\pi} F$

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous.

We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

- $If E and F are barrelled, E \otimes_{\iota} F = E \otimes_{\beta} F$
- **2** If *E* and *F* are Fréchet spaces, $E \otimes_{\iota} F = E \otimes_{\beta} F = E \otimes_{\pi} F$
- **③** If *E* and *F* are (DF) spaces, $E \otimes_{\beta} F = E \otimes_{\pi} F$

If *E* and *F* are barrelled (DF) spaces, $E \otimes_{\iota} F = E \otimes_{\beta} F = E \otimes_{\pi} F$

$$\operatorname{can}: E \times F \to E \otimes F, (x, y) \mapsto x \otimes y$$

is partially continuous.

We have

$$E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F$$

and

- $If E and F are barrelled, E \otimes_{\iota} F = E \otimes_{\beta} F$
- **2** If *E* and *F* are Fréchet spaces, $E \otimes_{\iota} F = E \otimes_{\beta} F = E \otimes_{\pi} F$
- $If E and F are (DF) spaces, E \otimes_{\beta} F = E \otimes_{\pi} F$
- If *E* and *F* are barrelled (DF) spaces, $E \otimes_{\iota} F = E \otimes_{\beta} F = E \otimes_{\pi} F$

Recall the definition of scalar-valued distributions

 $\mathcal{D}'(\Omega) = \mathcal{L}_b(\mathcal{D}(\Omega), \mathbb{C}) = \{ T \colon \mathcal{D}(\Omega) \to \mathbb{C}; T \text{ linear and continuous} \}$

Let E be a separated locally convex topological vector space.

Definition

We define the space of E-valued distributions by

 $\mathcal{D}'(\Omega; E) := \mathcal{L}_b(\mathcal{D}(\Omega), E) = \{ T \colon \mathcal{D}(\Omega) \to E; T \text{ lin. and cont.} \}.$

For $\Omega = \mathbb{R}^n$, we use the shorter notation

 $\mathcal{D}'(E) := \mathcal{D}'(\mathbb{R}^n; E).$

Recall the definition of scalar-valued distributions

 $\mathcal{D}'(\Omega) = \mathcal{L}_b(\mathcal{D}(\Omega), \mathbb{C}) = \{ T \colon \mathcal{D}(\Omega) \to \mathbb{C}; T \text{ linear and continuous} \}$

Let E be a separated locally convex topological vector space.

Definition

We define the space of E-valued distributions by

 $\mathcal{D}'(\Omega; E) := \mathcal{L}_b(\mathcal{D}(\Omega), E) = \{ T \colon \mathcal{D}(\Omega) \to E; T \text{ lin. and cont.} \}.$

For $\Omega = \mathbb{R}^n$, we use the shorter notation

 $\mathcal{D}'(E) := \mathcal{D}'(\mathbb{R}^n; E).$

Recall the definition of scalar-valued distributions

 $\mathcal{D}'(\Omega) = \mathcal{L}_b(\mathcal{D}(\Omega), \mathbb{C}) = \{ T \colon \mathcal{D}(\Omega) \to \mathbb{C}; T \text{ linear and continuous} \}$

Let E be a separated locally convex topological vector space.

Definition

We define the space of *E*-valued distributions by

$$\mathcal{D}'(\Omega; E) := \mathcal{L}_b(\mathcal{D}(\Omega), E) = \{ T \colon \mathcal{D}(\Omega) \to E; T \text{ lin. and cont.} \}.$$

For $\Omega = \mathbb{R}^n$, we use the shorter notation

 $\mathcal{D}'(E) := \mathcal{D}'(\mathbb{R}^n; E).$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Recall the definition of scalar-valued distributions

 $\mathcal{D}'(\Omega) = \mathcal{L}_b(\mathcal{D}(\Omega), \mathbb{C}) = \{ T \colon \mathcal{D}(\Omega) \to \mathbb{C}; T \text{ linear and continuous} \}$

Let E be a separated locally convex topological vector space.

Definition

We define the space of *E*-valued distributions by

$$\mathcal{D}'(\Omega; E) := \mathcal{L}_b(\mathcal{D}(\Omega), E) = \{ T : \mathcal{D}(\Omega) \to E; T \text{ lin. and cont.} \}.$$

For $\Omega = \mathbb{R}^n$, we use the shorter notation

 $\mathcal{D}'(E) := \mathcal{D}'(\mathbb{R}^n; E).$

We want to have not only $\mathcal{D}'(\mathbb{R}^n; E)$ but also other spaces of vector-valued distributions like $\mathcal{S}'(\mathbb{R}^n; E)$.

Observations:

O['](ℝⁿ; E) depends on the (pre-)dual D of D' and not directly on D'.

We have

$$\mathcal{D}'(E) = \mathcal{L}_b(\mathcal{D}, E) = \mathcal{L}_\varepsilon((\mathcal{D}')'_c, E)$$

This motivates the following definition:

Definition

Let E and F be locally convex spaces. The space

$$E \varepsilon F = \mathcal{L}_{\varepsilon}(E'_{c}, F).$$

is called ε -product of E and F.

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_C and \mathcal{O}_M by the short-time Fourier transform

We want to have not only $\mathcal{D}'(\mathbb{R}^n; E)$ but also other spaces of vector-valued distributions like $\mathcal{S}'(\mathbb{R}^n; E)$.

Observations:

① *D'*(*Rⁿ*; *E*) depends on the (pre-)dual *D* of *D'* and not directly
on *D'*.

We have

$$\mathcal{D}'(E) = \mathcal{L}_b(\mathcal{D}, E) = \mathcal{L}_\varepsilon((\mathcal{D}')'_c, E)$$

This motivates the following definition:

Definition

Let E and F be locally convex spaces. The space

$$E \varepsilon F = \mathcal{L}_{\varepsilon}(E'_{c}, F).$$

is called ε -product of E and F.

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_C and \mathcal{O}_M by the short-time Fourier transform

We want to have not only $\mathcal{D}'(\mathbb{R}^n; E)$ but also other spaces of vector-valued distributions like $\mathcal{S}'(\mathbb{R}^n; E)$.

Observations:

- D'(Rⁿ; E) depends on the (pre-)dual D of D' and not directly
 on D'.
- 2 We have

$$\mathcal{D}'(E) = \mathcal{L}_b(\mathcal{D}, E) = \mathcal{L}_{\varepsilon}((\mathcal{D}')'_c, E)$$

This motivates the following definition:

Definition

Let E and F be locally convex spaces. The space

$$E \varepsilon F = \mathcal{L}_{\varepsilon}(E'_{c}, F).$$

is called ε -product of E and F.

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

We want to have not only $\mathcal{D}'(\mathbb{R}^n; E)$ but also other spaces of vector-valued distributions like $\mathcal{S}'(\mathbb{R}^n; E)$.

Observations:

D'(Rⁿ; E) depends on the (pre-)dual D of D' and not directly
 on D'.

We have

$$\mathcal{D}'(E) = \mathcal{L}_b(\mathcal{D}, E) = \mathcal{L}_{\varepsilon}((\mathcal{D}')'_c, E)$$

This motivates the following definition:

Definition

Let E and F be locally convex spaces. The space

$$E \varepsilon F = \mathcal{L}_{\varepsilon}(E'_{c}, F).$$

is called ε -product of E and F.

A locally convex space \mathcal{H} is called space of distributions if it is contained in \mathcal{D}' with a finer topology.

Definition

Let \mathcal{H} be a space of distributions. We define

 $\mathcal{H}(E)=\mathcal{H}\varepsilon E.$

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition

A locally convex space E is called nuclear, if for all locally convex spaces F the identity

$$E\otimes_{\varepsilon}F=E\otimes_{\pi}F$$

holds.

Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

A locally convex space ${\cal H}$ is called space of distributions if it is contained in ${\cal D}'$ with a finer topology.

Definition

Let ${\mathcal H}$ be a space of distributions. We define

 $\mathcal{H}(E)=\mathcal{H}\,\varepsilon\,E.$

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition

A locally convex space E is called nuclear, if for all locally convex spaces F the identity

$$E\otimes_{\varepsilon}F=E\otimes_{\pi}F$$

holds.

A locally convex space \mathcal{H} is called space of distributions if it is contained in \mathcal{D}' with a finer topology.

Definition

Let \mathcal{H} be a space of distributions. We define

 $\mathcal{H}(E)=\mathcal{H}\,\varepsilon\,E.$

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition

A locally convex space E is called nuclear, if for all locally convex spaces F the identity

$$E\otimes_{\varepsilon}F=E\otimes_{\pi}F$$

holds.

A locally convex space \mathcal{H} is called space of distributions if it is contained in \mathcal{D}' with a finer topology.

Definition

Let \mathcal{H} be a space of distributions. We define

 $\mathcal{H}(E)=\mathcal{H}\,\varepsilon\,E.$

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition

A locally convex space E is called nuclear, if for all locally convex spaces F the identity

$$E\otimes_{\varepsilon}F=E\otimes_{\pi}F$$

holds.

Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform

Theorem (L. Schwartz 1958)

Let \mathcal{H} and \mathcal{K} be normal spaces of distributions and \mathcal{L} be a space of distributions. Moreover let E and F be two separated locally convex spaces. We assume \mathcal{H} to be a nuclear space admitting a nuclear dual space. Let $*: \mathcal{H} \times \mathcal{K} \to \mathcal{L}$ be a hypocontinuous convolution mapping.

There is a (unique, if ${\cal K}$ has the approximation property) bilinear map

$${}^*_{\otimes}: \mathcal{H}(E) imes \mathcal{K}(F) o \mathcal{L}(E \widehat{\otimes}_{\pi} F), (S, T) \mapsto {}^*_{\otimes}(S, T)$$

such that ${}^*_{\otimes}((S \otimes e), (T \otimes f)) = S * T \otimes e \otimes f$ for all $S \in \mathcal{H}$, $T \in \mathcal{K}$, $e \in E$ and $f \in F$. Moreover the convolution mapping ${}^*_{\otimes}$ is hypocontinuous with respect to bounded subsets of $\mathcal{H}(E)$ and $\mathcal{K}(F)$.

イロン 不同 とくほう イロン

Theorem (L. Schwartz 1958)

Let \mathcal{H} and \mathcal{K} be normal spaces of distributions and \mathcal{L} be a space of distributions. Moreover let E and F be two separated locally convex spaces. We assume \mathcal{H} to be a nuclear space admitting a nuclear dual space. Let $*: \mathcal{H} \times \mathcal{K} \to \mathcal{L}$ be a hypocontinuous convolution mapping.

There is a (unique, if ${\cal K}$ has the approximation property) bilinear map

$${}^*_{\otimes}: \mathcal{H}(E) \times \mathcal{K}(F) \to \mathcal{L}(E \widehat{\otimes}_{\pi} F), (S, T) \mapsto {}^*_{\otimes}(S, T)$$

such that ${}^*_{\otimes}((S \otimes e), (T \otimes f)) = S * T \otimes e \otimes f$ for all $S \in \mathcal{H}$, $T \in \mathcal{K}$, $e \in E$ and $f \in F$. Moreover the convolution mapping ${}^*_{\otimes}$ is hypocontinuous with respect to bounded subsets of $\mathcal{H}(E)$ and $\mathcal{K}(F)$.

イロン 不同 とくほう イロン

This result only allows the combination of a hypocontinuous mapping with a continuous mapping.

- In our situation both mappings are not continuous but hypocontinuous.
- There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.
- Aim: Find a result which allows for the combination of two hypocontinuous mappings with conditions which are easy to check.

- This result only allows the combination of a hypocontinuous mapping with a continuous mapping.
- In our situation both mappings are not continuous but hypocontinuous.
- There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.
- Aim: Find a result which allows for the combination of two hypocontinuous mappings with conditions which are easy to check.

- This result only allows the combination of a hypocontinuous mapping with a continuous mapping.
- In our situation both mappings are not continuous but hypocontinuous.
- There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.
- Aim: Find a result which allows for the combination of two hypocontinuous mappings with conditions which are easy to check.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りゅう

- This result only allows the combination of a hypocontinuous mapping with a continuous mapping.
- In our situation both mappings are not continuous but hypocontinuous.
- There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.
- Aim: Find a result which allows for the combination of two hypocontinuous mappings with conditions which are easy to check.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Let \mathcal{H} , \mathcal{K} and \mathcal{L} be complete spaces of distributions (or more general complete locally convex spaces), where \mathcal{H} is nuclear. Let E, F and G be three locally convex spaces, G complete, and

 $u\colon \mathcal{H}\times\mathcal{K}\to\mathcal{L}$ and $b\colon E\times F\to G$

be two hypocontinuous bilinear maps. If one of the assumptions

H and E are Fréchet spaces

❷ H and E are (DF)-spaces

is satisfied, there is a hypocontinuous bilinear map

 $_{b}^{u}:\mathcal{H}(E)\times\mathcal{K}(F)\rightarrow\mathcal{L}(G)$

satisfying the consistency property

[...]

$${}^{u}_{b}(S \otimes e, T \otimes f) = u(S, T) \otimes b(e, f).$$

Let \mathcal{H} , \mathcal{K} and \mathcal{L} be complete spaces of distributions (or more general complete locally convex spaces), where \mathcal{H} is nuclear. Let E, F and G be three locally convex spaces, G complete, and

 $u\colon \mathcal{H}\times\mathcal{K}\to\mathcal{L}$ and $b\colon E\times F\to G$

be two hypocontinuous bilinear maps. If one of the assumptions

H and E are Fréchet spaces

❷ H and E are (DF)-spaces

is satisfied, there is a hypocontinuous bilinear map

 $^{u}_{b}:\mathcal{H}(E)\times\mathcal{K}(F)\to\mathcal{L}(G)$

[...] If \mathcal{K} satisfies the approximation property $_{b}^{u}$ is the unique partially continuous bilinear map satisfying this consistency property.

 $\Gamma_{\beta,\beta}\colon (\mathcal{H}\widehat{\otimes}_{\beta}E)\times (\mathcal{K}\,\varepsilon\,F)\to (\mathcal{H}\widehat{\otimes}_{\beta}\mathcal{K})\,\varepsilon(E\widehat{\otimes}_{\beta}F)$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.

- ⁽²⁾ The assumptions on \mathcal{H} and E yield $\mathcal{H}\widehat{\otimes}_{\beta}E = \mathcal{H}(E)$.
- Show that bounded subsets of H(E) and K(F) satisfy the conditions of the "Théorèmes de croisement" such that Γ_{β,β} is hypocontinuous.
- Compose Γ_{β,β} with the ε-product of the continuous linear maps corresponding to u and b.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

$$\Gamma_{\beta,\beta}\colon (\mathcal{H}\widehat{\otimes}_{\beta}E)\times (\mathcal{K}\,\varepsilon\,F)\to (\mathcal{H}\widehat{\otimes}_{\beta}\mathcal{K})\,\varepsilon(E\widehat{\otimes}_{\beta}F)$$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.

- **2** The assumptions on \mathcal{H} and E yield $\mathcal{H}\widehat{\otimes}_{\beta}E = \mathcal{H}(E)$.
- Show that bounded subsets of H(E) and K(F) satisfy the conditions of the "Théorèmes de croisement" such that Γ_{β,β} is hypocontinuous.
- Compose Γ_{β,β} with the ε-product of the continuous linear maps corresponding to u and b.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\Gamma_{\beta,\beta}\colon (\mathcal{H}\widehat{\otimes}_{\beta}E)\times (\mathcal{K}\,\varepsilon\,F)\to (\mathcal{H}\widehat{\otimes}_{\beta}\mathcal{K})\,\varepsilon(E\widehat{\otimes}_{\beta}F)$$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.

- **2** The assumptions on \mathcal{H} and E yield $\mathcal{H}\widehat{\otimes}_{\beta}E = \mathcal{H}(E)$.
- Show that bounded subsets of *H*(*E*) and *K*(*F*) satisfy the conditions of the "Théorèmes de croisement" such that Γ_{β,β} is hypocontinuous.
- Compose Γ_{β,β} with the ε-product of the continuous linear maps corresponding to u and b.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\Gamma_{\beta,\beta}\colon (\mathcal{H}\widehat{\otimes}_{\beta}E)\times (\mathcal{K}\,\varepsilon\,F)\to (\mathcal{H}\widehat{\otimes}_{\beta}\mathcal{K})\,\varepsilon(E\widehat{\otimes}_{\beta}F)$$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.

- **2** The assumptions on \mathcal{H} and E yield $\mathcal{H}\widehat{\otimes}_{\beta}E = \mathcal{H}(E)$.
- Show that bounded subsets of *H*(*E*) and *K*(*F*) satisfy the conditions of the "Théorèmes de croisement" such that Γ_{β,β} is hypocontinuous.
- Compose Γ_{β,β} with the ε-product of the continuous linear maps corresponding to u and b.

Definition and Proposition

If $h \in \mathcal{S}$ and $F \in \mathcal{S}'_{x,\xi}$ then the W_h -transform

$$W_h \colon \mathcal{S}'_{x,\xi} \to \mathcal{S}'_z, F \mapsto {}_{\mathcal{O}_{C,x}} \langle 1_x, (\mathcal{F}_{\xi}^{-1}F)(x,z)h(z-x) \rangle_{\mathcal{O}'_{C,x}(\mathcal{S}'_z)}$$

is well-defined, linear and continuous. The bracket $\mathcal{O}_{C,x}\langle\cdot,\cdot\rangle_{\mathcal{O}'_{C,x}(\mathcal{S}'_z)}$ is the \mathcal{S}' -valued extension of the evaluation mapping

$$\mathcal{O}_{\mathcal{C}} \times \mathcal{O}_{\mathcal{C}}' \to \mathbb{C}, (\varphi, T) \mapsto T(\varphi)$$

and hence bilinear and hypocontinuous.

The inclusion $h \in S$ implies $h(z - x) \in S_x \widehat{\otimes} \mathcal{O}_{C,z}$ and $F \in S'_{x,\xi}$ implies $(\mathcal{F}_{\xi}^{-1}F)(x,z) \in S'_x \widehat{\otimes} S'_z$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

$$(\mathcal{S}'_x\widehat{\otimes}\mathcal{S}'_z)\times(\mathcal{S}_x\widehat{\otimes}\mathcal{O}_{\mathcal{C},z})\to\mathcal{O}'_{\mathcal{C},x}\widehat{\otimes}\mathcal{S}'_z$$

and hence

$$(\mathcal{F}_{\xi}^{-1}F)(x,z)h(z-x)\in \mathcal{O}'_{C,x}\widehat{\otimes}\mathcal{S}'_{z}.$$

The previous Proposition can be applied since the mappings

 $S \times S' \to \mathcal{O}'_C, (\varphi, T) \mapsto \varphi \cdot T,$ $\mathcal{O}_C \times S' \to S', (\varphi, T) \mapsto \varphi \cdot T$

are hypocontinuous and since \mathcal{S}' is a (DF)-space.

イロン 不同 とくほう イロン

The inclusion $h \in S$ implies $h(z - x) \in S_x \widehat{\otimes} \mathcal{O}_{C,z}$ and $F \in S'_{x,\xi}$ implies $(\mathcal{F}_{\xi}^{-1}F)(x,z) \in S'_x \widehat{\otimes} S'_z$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

$$(\mathcal{S}'_x\widehat{\otimes}\mathcal{S}'_z)\times(\mathcal{S}_x\widehat{\otimes}\mathcal{O}_{\mathcal{C},z})\to\mathcal{O}'_{\mathcal{C},x}\widehat{\otimes}\mathcal{S}'_z$$

and hence

$$(\mathcal{F}_{\xi}^{-1}F)(x,z)h(z-x)\in \mathcal{O}_{C,x}'\widehat{\otimes}\mathcal{S}_{z}'.$$

The previous Proposition can be applied since the mappings

 $S \times S' \to \mathcal{O}'_C, (\varphi, T) \mapsto \varphi \cdot T, \\ \mathcal{O}_C \times S' \to S', (\varphi, T) \mapsto \varphi \cdot T$

are hypocontinuous and since S' is a (DF)-space.

The inclusion $h \in S$ implies $h(z - x) \in S_x \widehat{\otimes} \mathcal{O}_{C,z}$ and $F \in S'_{x,\xi}$ implies $(\mathcal{F}_{\xi}^{-1}F)(x,z) \in S'_x \widehat{\otimes} S'_z$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

$$(\mathcal{S}'_x\widehat{\otimes}\mathcal{S}'_z)\times(\mathcal{S}_x\widehat{\otimes}\mathcal{O}_{\mathcal{C},z})\to\mathcal{O}'_{\mathcal{C},x}\widehat{\otimes}\mathcal{S}'_z$$

and hence

$$(\mathcal{F}_{\xi}^{-1}F)(x,z)h(z-x)\in\mathcal{O}_{\mathcal{C},x}'\widehat{\otimes}\mathcal{S}_{z}'.$$

The previous Proposition can be applied since the mappings

 $S \times S' \to \mathcal{O}'_C, (\varphi, T) \mapsto \varphi \cdot T, \\ \mathcal{O}_C \times S' \to S', (\varphi, T) \mapsto \varphi \cdot T$

are hypocontinuous and since S' is a (DF)-space.

The inclusion $h \in S$ implies $h(z - x) \in S_x \widehat{\otimes} \mathcal{O}_{C,z}$ and $F \in S'_{x,\xi}$ implies $(\mathcal{F}_{\xi}^{-1}F)(x, z) \in S'_x \widehat{\otimes} S'_z$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

$$(\mathcal{S}'_x\widehat{\otimes}\mathcal{S}'_z)\times(\mathcal{S}_x\widehat{\otimes}\mathcal{O}_{\mathcal{C},z})\to\mathcal{O}'_{\mathcal{C},x}\widehat{\otimes}\mathcal{S}'_z$$

and hence

$$(\mathcal{F}_{\xi}^{-1}F)(x,z)h(z-x)\in \mathcal{O}'_{\mathcal{C},x}\widehat{\otimes}\mathcal{S}'_{\mathcal{Z}}.$$

The previous Proposition can be applied since the mappings

$$\mathcal{S} \times \mathcal{S}' \to \mathcal{O}'_{\mathcal{C}}, (\varphi, T) \mapsto \varphi \cdot T, \\ \mathcal{O}_{\mathcal{C}} \times \mathcal{S}' \to \mathcal{S}', (\varphi, T) \mapsto \varphi \cdot T$$

are hypocontinuous and since S' is a (DF)-space.

Proposition

If $g\in \mathcal{S}'$ and $h\in \mathcal{S}$ then it holds $W_h\circ V_g=\langle g,h
angle$ id on $\mathcal{S}'.$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Let $g \in S$, $g \neq 0$. Then for $f \in S'$ the following assertions are equivalent:

- $f \in \mathcal{O}'_C$,
- **2** $V_g f \in \mathcal{S}_x \widehat{\otimes} \mathcal{O}_{M,\xi}$ and
- V_gf is continuous and

$$\begin{aligned} \forall k \in \mathbb{N}_0 \, \exists m \in \mathbb{N}_0 \, \exists C > 0 : \\ |(V_g f)(x, \xi)| &\leq C (1 + |x|^2)^{-k/2} (1 + |\xi|^2)^{m/2} \end{aligned}$$
for all $(x, \xi) \in \mathbb{R}^{2n}$.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Let $g \in S$, $g \neq 0$. Then for $f \in S'$ the following assertions are equivalent:

- $f \in \mathcal{O}_M$,
- **2** $V_g f \in \mathcal{O}_{C,x} \widehat{\otimes} \mathcal{S}_{\xi}$ and
- V_gf is continuous and

$$orall k \in \mathbb{N}_0 \exists m \in \mathbb{N}_0 \exists C > 0:$$

 $|(V_g f)(x,\xi)| \le C(1+|x|^2)^{m/2}(1+|\xi|^2)^{-k/2}$
for all $(x,\xi) \in \mathbb{R}^{2n}$.

◆□> ◆□> ◆三> ◆三> ・三 のへで

References

Karlheinz Gröchenig and Georg Zimmermann. Hardy's theorem and the short-time Fourier transform of Schwartz functions.

J. London Math. Soc. (2), 63(1):205–214, 2001.

Laurent Schwartz.

Théorie des distributions à valeurs vectorielles. II. *Ann. Inst. Fourier. Grenoble*, 8:1–209, 1958.

Christian Bargetz and Norbert Ortner.

Convolution of vector-valued distributions: A survey and comparison.

Dissertationes Math., 495:55 pp., 2013.

Christian Bargetz and Norbert Ortner. Characterization of L. Schwartz' convolutor and multiplier spaces \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time fourier transform. *Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM* 108(2):833–847, 2014. Christian Bargetz (Universität Innsbruck) Characterising \mathcal{O}'_{C} and \mathcal{O}_{M} by the short-time Fourier transform