Characterization of the convolutor and multiplier spaces \mathcal{O}_{C}^{\prime} and \mathcal{O}_{M} by the short-time Fourier transform

Christian Bargetz joint work with Norbert Ortner
Institut für Mathematik
Universität Innsbruck

Workshop on Functional Analysis Valencia 2015
15-19 June 2015

Short-Time Fourier transform of distributions

Classically the short-time Fourier transform is defined as

$$
V_{g} f(x, \xi)=\int_{\mathbb{R}^{n}} f(y) \mathrm{e}^{-\mathrm{i} \xi y} g(y-x) \mathrm{d} y
$$

for $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$. For distributions $f, g \in S^{\prime}$ the expression
$f(y) g(y-x)$ is defined as the image of

$$
f(\xi) \otimes g(\eta) \in \mathcal{S}^{\prime}\left(\mathbb{R}_{\xi, \eta}^{2 n}\right)
$$

under the linear map

If $f, g \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ then $V_{g} f$ is defined by the partial or vector-valued
Fourier transform:

Short-Time Fourier transform of distributions

Classically the short-time Fourier transform is defined as

$$
V_{g} f(x, \xi)=\int_{\mathbb{R}^{n}} f(y) \mathrm{e}^{-\mathrm{i} \xi y} g(y-x) \mathrm{d} y
$$

for $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$. For distributions $f, g \in \mathcal{S}^{\prime}$ the expression $f(y) g(y-x)$ is defined as the image of

$$
f(\xi) \otimes g(\eta) \in \mathcal{S}^{\prime}\left(\mathbb{R}_{\xi, \eta}^{2 n}\right)
$$

under the linear map

$$
\mathbb{R}_{x, y}^{2 n} \rightarrow \mathbb{R}_{\xi, \eta}^{2 n}, \xi=y, \eta=x-y .
$$

If $f, g \in S^{\prime}\left(\mathbb{R}^{n}\right)$ then $V_{g} f$ is defined by the partial or vector-valued
Fourier transform:

Short-Time Fourier transform of distributions

Classically the short-time Fourier transform is defined as

$$
V_{g} f(x, \xi)=\int_{\mathbb{R}^{n}} f(y) \mathrm{e}^{-\mathrm{i} \xi y} g(y-x) \mathrm{d} y
$$

for $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$. For distributions $f, g \in \mathcal{S}^{\prime}$ the expression $f(y) g(y-x)$ is defined as the image of

$$
f(\xi) \otimes g(\eta) \in \mathcal{S}^{\prime}\left(\mathbb{R}_{\xi, \eta}^{2 n}\right)
$$

under the linear map

$$
\mathbb{R}_{x, y}^{2 n} \rightarrow \mathbb{R}_{\xi, \eta}^{2 n}, \xi=y, \eta=x-y .
$$

If $f, g \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ then $V_{g} f$ is defined by the partial or vector-valued
Fourier transform:

$$
V_{g} f=\mathcal{F}_{y}(f(y) g(y-x)) \in \mathcal{S}_{x, y}^{\prime}
$$

A characterisation of $\mathcal{S}\left(\mathbb{R}^{d}\right)$

Theorem (Gröchenig-Zimmermann, 2001)

Let $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ fixed. Then for $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ the following are equivalent:
(1) $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(2) $V_{g} f \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$.
(3) For all $n \geq 0$ exists $C_{n}>0$ such that

$$
\forall(x, \xi) \in \mathbb{R}^{2 d}: \quad\left|V_{g} f(x, \xi)\right| \leq C_{n}(1+|x|+|\xi|)^{-n}
$$

Question

Can we get a similar characterisation of $\mathcal{O}_{C}^{\prime}\left(\mathbb{R}^{d}\right)$ and $\mathcal{O}_{M}\left(\mathbb{R}^{d}\right)$?

A characterisation of $\mathcal{S}\left(\mathbb{R}^{d}\right)$

Theorem (Gröchenig-Zimmermann, 2001)

Let $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ fixed. Then for $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ the following are equivalent:
(1) $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(2) $V_{g} f \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$.
(3) For all $n \geq 0$ exists $C_{n}>0$ such that

$$
\forall(x, \xi) \in \mathbb{R}^{2 d}: \quad\left|V_{g} f(x, \xi)\right| \leq C_{n}(1+|x|+|\xi|)^{-n}
$$

Question

Can we get a similar characterisation of $\mathcal{O}_{C}^{\prime}\left(\mathbb{R}^{d}\right)$ and $\mathcal{O}_{M}\left(\mathbb{R}^{d}\right)$?

The W_{h}-transform for distributions

Definition and Proposition

If $h \in \mathcal{S}$ and $F \in \mathcal{S}_{x, \xi}^{\prime}$ then the W_{h}-transform

$$
W_{h}: \mathcal{S}_{x, \xi}^{\prime} \rightarrow \mathcal{S}_{z}^{\prime}, F \mapsto \mathcal{O}_{C, x}\left\langle 1_{x},\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) h(z-x)\right\rangle_{\mathcal{O}_{C, x}^{\prime}\left(\mathcal{S}_{z}^{\prime}\right)}
$$

is well-defined, linear and continuous.
The bracket $\mathcal{O}_{C, x}\langle\cdot, \cdot\rangle_{\mathcal{O}_{C, x}^{\prime}\left(\mathcal{S}_{z}^{\prime}\right)}$ is the \mathcal{S}^{\prime}-valued extension of the evaluation mapping

$$
\mathcal{O}_{C} \times \mathcal{O}_{C}^{\prime} \rightarrow \mathbb{C},(\varphi, T) \mapsto T(\varphi)
$$

and hence bilinear and hypocontinuous.

Some technical background:

Vector-Valued distributions

Let E, F and G be three (separated) locally convex spaces and

$$
b: E \times F \rightarrow G
$$

a bilinear mapping.
The mapping b is hypocontinuous iff for all bounded set $B \subset E$ and all bounded subsets $B^{\prime} \subset F$ the mappings

$$
B \times F \rightarrow G,(e, f) \mapsto b(e, f)
$$

and

$$
E \times B^{\prime} \rightarrow G,(e, f) \mapsto b(e, f)
$$

are continuous

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.

Topological tensor products

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.
$E \otimes_{\pi} F \ldots$ finest locally convex topology such that

$$
\text { can }: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is continuous.
$E \otimes_{\beta} F \ldots$ finest locally convex topology such that
is hypocontinuous.

$E \widehat{\otimes}_{\pi} F$ and $E \widehat{\otimes}_{\beta} F$completion of $E \otimes_{\pi} F$ and $E \otimes_{\beta} F$ respectively.

Topological tensor products

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.
$E \otimes_{\pi} F$... finest locally convex topology such that

$$
\text { can }: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is continuous.
$E \otimes_{\beta} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is hypocontinuous.
respectively.

Topological tensor products

Let E and F be two separated locally convex spaces. We use the following two topologies on the tensor product $E \otimes F$.
$E \otimes_{\pi} F$... finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is continuous.
$E \otimes_{\beta} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is hypocontinuous.
$E \widehat{\otimes}_{\pi} F$ and $E \widehat{\otimes}_{\beta} F \ldots$ completion of $E \otimes_{\pi} F$ and $E \otimes_{\beta} F$, respectively.

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.

We have

(1) If E and F are barrelled, $E \otimes_{\iota} F=E \otimes_{\beta} F$

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\text { can }: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.

We have

(1) If E and F are barrelled, $E \otimes_{\iota} F=E \otimes_{\beta} F$

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.

We have

(1) If E and F are barrelled, $E \otimes_{\iota} F=E \otimes_{\beta} F$

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.
We have

$$
E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F
$$

and

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.
We have

$$
E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F
$$

and
(1) If E and F are barrelled, $E \otimes_{\iota} F=E \otimes_{\beta} F$
(2) If E and F are Fréchet spaces, $E \otimes_{l} F=E \otimes_{\beta} F=E \otimes_{\pi} F$
(3) If E and F are (DF) spaces, $E \otimes_{\beta} F=E \otimes_{\pi} F$

- If E and F are barrelled (DF) spaces,

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.
We have

$$
E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F
$$

and
(1) If E and F are barrelled, $E \otimes_{\iota} F=E \otimes_{\beta} F$
(2) If E and F are Fréchet spaces, $E \otimes_{\iota} F=E \otimes_{\beta} F=E \otimes_{\pi} F$
© If E and F are (DF) spaces, $E \otimes_{\beta} F=E \otimes_{\pi} F$

- If E and F are barrelled (DF) spaces,

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.
We have

$$
E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F
$$

and
(1) If E and F are barrelled, $E \otimes_{\iota} F=E \otimes_{\beta} F$
(2) If E and F are Fréchet spaces, $E \otimes_{\iota} F=E \otimes_{\beta} F=E \otimes_{\pi} F$
(3) If E and F are (DF) spaces, $E \otimes_{\beta} F=E \otimes_{\pi} F$

- If E and F are barrelled (DF) spaces,

Topological tensor products

Let E and F be separated locally convex spaces. By $E \otimes_{\iota} F$ we denote $E \otimes_{\iota} F \ldots$ finest locally convex topology such that

$$
\operatorname{can}: E \times F \rightarrow E \otimes F,(x, y) \mapsto x \otimes y
$$

is partially continuous.
We have

$$
E \otimes_{\iota} F \hookrightarrow E \otimes_{\beta} F \hookrightarrow E \otimes_{\pi} F
$$

and
(1) If E and F are barrelled, $E \otimes_{\iota} F=E \otimes_{\beta} F$
(2) If E and F are Fréchet spaces, $E \otimes_{\iota} F=E \otimes_{\beta} F=E \otimes_{\pi} F$
(3) If E and F are (DF) spaces, $E \otimes_{\beta} F=E \otimes_{\pi} F$
(9) If E and F are barrelled (DF) spaces, $E \otimes_{\iota} F=E \otimes_{\beta} F=E \otimes_{\pi} F$

Vector-valued distributions and the ε-product

Recall the definition of scalar-valued distributions

$$
\mathcal{D}^{\prime}(\Omega)=\mathcal{L}_{b}(\mathcal{D}(\Omega), \mathbb{C})=\{T: \mathcal{D}(\Omega) \rightarrow \mathbb{C} ; T \text { linear and continuous }\}
$$

Let E be a separated locally convex topological vector space.

Definition

We define the space of E-valued distributions by

For $\Omega=\mathbb{R}^{n}$, we use the shorter notation

Vector-valued distributions and the ε-product

Recall the definition of scalar-valued distributions
$\mathcal{D}^{\prime}(\Omega)=\mathcal{L}_{b}(\mathcal{D}(\Omega), \mathbb{C})=\{T: \mathcal{D}(\Omega) \rightarrow \mathbb{C} ; T$ linear and continuous $\}$
Let E be a separated locally convex topological vector space.
Definition
We define the space of E-valued distributions by
$D^{\prime}(\Omega ; E):=\mathcal{L}_{b}(D(\Omega), E)=\{T: D(\Omega) \rightarrow E ; T$ lin. and cont. $\}$
For $\Omega=\mathbb{R}^{n}$, we use the shorter notation

Vector-valued distributions and the ε-product

Recall the definition of scalar-valued distributions
$\mathcal{D}^{\prime}(\Omega)=\mathcal{L}_{b}(\mathcal{D}(\Omega), \mathbb{C})=\{T: \mathcal{D}(\Omega) \rightarrow \mathbb{C} ; T$ linear and continuous $\}$
Let E be a separated locally convex topological vector space.

Definition

We define the space of E-valued distributions by

$$
\mathcal{D}^{\prime}(\Omega ; E):=\mathcal{L}_{b}(\mathcal{D}(\Omega), E)=\{T: \mathcal{D}(\Omega) \rightarrow E ; T \text { lin. and cont. }\} .
$$

For $\Omega=\mathbb{R}^{n}$, we use the shorter notation

Vector-valued distributions and the ε-product

Recall the definition of scalar-valued distributions
$\mathcal{D}^{\prime}(\Omega)=\mathcal{L}_{b}(\mathcal{D}(\Omega), \mathbb{C})=\{T: \mathcal{D}(\Omega) \rightarrow \mathbb{C} ; T$ linear and continuous $\}$
Let E be a separated locally convex topological vector space.

Definition

We define the space of E-valued distributions by

$$
\mathcal{D}^{\prime}(\Omega ; E):=\mathcal{L}_{b}(\mathcal{D}(\Omega), E)=\{T: \mathcal{D}(\Omega) \rightarrow E ; T \text { lin. and cont. }\} .
$$

For $\Omega=\mathbb{R}^{n}$, we use the shorter notation

$$
\mathcal{D}^{\prime}(E):=\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)
$$

Vector-valued distributions and the ε-product

We want to have not only $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ but also other spaces of vector-valued distributions like $\mathcal{S}^{\prime}\left(\mathbb{R}^{n} ; E\right)$.
(1) $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ depends on the (pre-)dual \mathcal{D} of \mathcal{D}^{\prime} and not directly
(3) We have

This motivates the following definition:

Definition

Let E and F be locally convex spaces. The space

Vector-valued distributions and the ε-product

We want to have not only $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ but also other spaces of vector-valued distributions like $\mathcal{S}^{\prime}\left(\mathbb{R}^{n} ; E\right)$. Observations:
(1) $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ depends on the (pre-)dual \mathcal{D} of \mathcal{D}^{\prime} and not directly on \mathcal{D}^{\prime}.
(2) We have

This motivates the following definition:
Definition
Let E and F be locally convex spaces. The space

$$
E \varepsilon F=\mathcal{L}_{\varepsilon}\left(E_{c}^{\prime}, F\right)
$$

Vector-valued distributions and the ε-product

We want to have not only $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ but also other spaces of vector-valued distributions like $\mathcal{S}^{\prime}\left(\mathbb{R}^{n} ; E\right)$. Observations:
(1) $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ depends on the (pre-)dual \mathcal{D} of \mathcal{D}^{\prime} and not directly on \mathcal{D}^{\prime}.
(2) We have

$$
\mathcal{D}^{\prime}(E)=\mathcal{L}_{b}(\mathcal{D}, E)=\mathcal{L}_{\varepsilon}\left(\left(\mathcal{D}^{\prime}\right)_{c}^{\prime}, E\right)
$$

This motivates the following definition:
Definition
Let E and F be locally convex spaces. The space

$$
E \varepsilon F=\mathcal{L}_{\varepsilon}\left(E_{c}^{\prime}, F\right) .
$$

Vector-valued distributions and the ε-product

We want to have not only $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ but also other spaces of vector-valued distributions like $\mathcal{S}^{\prime}\left(\mathbb{R}^{n} ; E\right)$.
Observations:
(1) $\mathcal{D}^{\prime}\left(\mathbb{R}^{n} ; E\right)$ depends on the (pre-)dual \mathcal{D} of \mathcal{D}^{\prime} and not directly on \mathcal{D}^{\prime}.
(2) We have

$$
\mathcal{D}^{\prime}(E)=\mathcal{L}_{b}(\mathcal{D}, E)=\mathcal{L}_{\varepsilon}\left(\left(\mathcal{D}^{\prime}\right)_{c}^{\prime}, E\right)
$$

This motivates the following definition:

Definition

Let E and F be locally convex spaces. The space

$$
E \varepsilon F=\mathcal{L}_{\varepsilon}\left(E_{c}^{\prime}, F\right)
$$

is called ε-product of E and F.

Vector-valued distributions and the ε-product

A locally convex space \mathcal{H} is called space of distributions if it is contained in \mathcal{D}^{\prime} with a finer topology.

Definition
I et \mathcal{H} be a space of distributions. We define

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition

A locally convex space E is called nuclear, if for all locally convex spaces F the identity

Vector-valued distributions and the ε-product

A locally convex space \mathcal{H} is called space of distributions if it is contained in \mathcal{D}^{\prime} with a finer topology.

Definition

Let \mathcal{H} be a space of distributions. We define

$$
\mathcal{H}(E)=\mathcal{H} \varepsilon E .
$$

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition
A locally convex space E is called nuclear, if for all locally convex spaces F the identity

Vector-valued distributions and the ε-product

A locally convex space \mathcal{H} is called space of distributions if it is contained in \mathcal{D}^{\prime} with a finer topology.

Definition

Let \mathcal{H} be a space of distributions. We define

$$
\mathcal{H}(E)=\mathcal{H} \varepsilon E
$$

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition

A locally convex space E is called nuclear, if for all locally convex spaces F the identity

Vector-valued distributions and the ε-product

A locally convex space \mathcal{H} is called space of distributions if it is contained in \mathcal{D}^{\prime} with a finer topology.

Definition

Let \mathcal{H} be a space of distributions. We define

$$
\mathcal{H}(E)=\mathcal{H} \varepsilon E
$$

We have $E \otimes F \subset E \varepsilon F$ and denote by $E \otimes_{\varepsilon} F$ the space $E \otimes F$ with the topology induced by $E \varepsilon F$

Definition

A locally convex space E is called nuclear, if for all locally convex spaces F the identity

$$
E \otimes_{\varepsilon} F=E \otimes_{\pi} F
$$

holds.

Combination with continuous bilinear maps

Theorem (L. Schwartz 1958)

Let \mathcal{H} and \mathcal{K} be normal spaces of distributions and \mathcal{L} be a space of distributions. Moreover let E and F be two separated locally convex spaces. We assume \mathcal{H} to be a nuclear space admitting a nuclear dual space. Let $*: \mathcal{H} \times \mathcal{K} \rightarrow \mathcal{L}$ be a hypocontinuous convolution mapping.
There is a (unique, if \mathcal{K} has the approximation property) bilinear map

$$
\stackrel{*}{\otimes}: \mathcal{H}(E) \times \mathcal{K}(F) \rightarrow \mathcal{L}\left(E \widehat{\otimes}_{\pi} F\right),(S, T) \mapsto \stackrel{\otimes}{\otimes}^{*}(S, T)
$$

such that $\stackrel{*}{\otimes}((S \otimes e),(T \otimes f))=S * T \otimes e \otimes f$ for all $S \in \mathcal{H}$, $T \in \mathcal{K}, e \in E$ and $f \in F$. Moreover the convolution mapping ${ }_{\otimes}^{*}$ is hypocontinuous with respect to bounded subsets of $\mathcal{H}(E)$ and $\mathcal{K}(F)$.

Combination with continuous bilinear maps

Theorem (L. Schwartz 1958)

Let \mathcal{H} and \mathcal{K} be normal spaces of distributions and \mathcal{L} be a space of distributions. Moreover let E and F be two separated locally convex spaces. We assume \mathcal{H} to be a nuclear space admitting a nuclear dual space. Let $*: \mathcal{H} \times \mathcal{K} \rightarrow \mathcal{L}$ be a hypocontinuous convolution mapping.
There is a (unique, if \mathcal{K} has the approximation property) bilinear map

$$
\stackrel{*}{\otimes}: \mathcal{H}(E) \times \mathcal{K}(F) \rightarrow \mathcal{L}\left(E \widehat{\otimes}_{\pi} F\right),(S, T) \mapsto{ }_{\otimes}^{*}(S, T)
$$

such that $\stackrel{*}{\otimes}((S \otimes e),(T \otimes f))=S * T \otimes e \otimes f$ for all $S \in \mathcal{H}$, $T \in \mathcal{K}, e \in E$ and $f \in F$. Moreover the convolution mapping ${ }_{\otimes}^{*}$ is hypocontinuous with respect to bounded subsets of $\mathcal{H}(E)$ and $\mathcal{K}(F)$.
(1) This result only allows the combination of a hypocontinuous mapping with a continuous mapping.
(O In our situation both mappings are not continuous but hypocontinuous.
(3) There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.
(1) Aim: Find a result which allows for the combination of two hypocontinuous mappings with conditions which are easy to check.
(1) This result only allows the combination of a hypocontinuous mapping with a continuous mapping.
(2) In our situation both mappings are not continuous but hypocontinuous.
© There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.
(1) Aim: Find a result which allows for the combination of two hypocontinuous mappings with conditions which are easy to check.
(1) This result only allows the combination of a hypocontinuous mapping with a continuous mapping.
(2) In our situation both mappings are not continuous but hypocontinuous.
(3) There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.

The Problem

(1) This result only allows the combination of a hypocontinuous mapping with a continuous mapping.
(2) In our situation both mappings are not continuous but hypocontinuous.
(3) There are (complicated) results for partially continuous bilinear mappings but only for special spaces of vector-valued distributions, e.g. spaces with support restrictions.
(9) Aim: Find a result which allows for the combination of two hypocontinuous mappings with conditions which are easy to check.

Proposition (B.-Ortner, 2013)

Let \mathcal{H}, \mathcal{K} and \mathcal{L} be complete spaces of distributions (or more general complete locally convex spaces), where \mathcal{H} is nuclear. Let E, F and G be three locally convex spaces, G complete, and

$$
u: \mathcal{H} \times \mathcal{K} \rightarrow \mathcal{L} \text { and } b: E \times F \rightarrow G
$$

be two hypocontinuous bilinear maps. If one of the assumptions
(1) \mathcal{H} and E are Fréchet spaces
(2) \mathcal{H} and E are (DF)-spaces
is satisfied, there is a hypocontinuous bilinear map

$$
{ }_{b}^{u}: \mathcal{H}(E) \times \mathcal{K}(F) \rightarrow \mathcal{L}(G)
$$

satisfying the consistency property

$$
{ }_{b}^{u}(S \otimes e, T \otimes f)=u(S, T) \otimes b(e, f) .
$$

[...]

Proposition (B.-Ortner, 2013)

Let \mathcal{H}, \mathcal{K} and \mathcal{L} be complete spaces of distributions (or more general complete locally convex spaces), where \mathcal{H} is nuclear. Let E, F and G be three locally convex spaces, G complete, and

$$
u: \mathcal{H} \times \mathcal{K} \rightarrow \mathcal{L} \text { and } b: E \times F \rightarrow G
$$

be two hypocontinuous bilinear maps. If one of the assumptions
(1) \mathcal{H} and E are Fréchet spaces
(2) \mathcal{H} and E are (DF)-spaces
is satisfied, there is a hypocontinuous bilinear map

$$
{ }_{b}^{u}: \mathcal{H}(E) \times \mathcal{K}(F) \rightarrow \mathcal{L}(G)
$$

[...]
If \mathcal{K} satisfies the approximation property $\underset{b}{u}$ is the unique partially continuous bilinear map satisfying this consistency property.

Proof Sketch

(1) Main ingredient: L. Schwartz' "Théorèmes de croisement" yields the existence of a bilinear map

$$
\Gamma_{\beta, \beta}:\left(\mathcal{H} \widehat{\otimes}_{\beta} E\right) \times(\mathcal{K} \varepsilon F) \rightarrow\left(\mathcal{H} \widehat{\otimes}_{\beta} \mathcal{K}\right) \varepsilon\left(E \widehat{\otimes}_{\beta} F\right)
$$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.
(2) The assumptions on \mathcal{H} and E yield $\mathcal{H} \widehat{\otimes}_{\beta} E=\mathcal{H}(E)$
(3) Show that bounded subsets of $\mathcal{H}(E)$ and $\mathcal{K}(F)$ satisfy the conditions of the "Théorèmes de croisement" such that $\Gamma_{\beta, \beta}$ is hypocontinuous.

- Compose $\Gamma_{\beta, \beta}$ with the ε-product of the continuous linear maps corresponding to u and b.

Proof Sketch

(1) Main ingredient: L. Schwartz' "Théorèmes de croisement" yields the existence of a bilinear map

$$
\Gamma_{\beta, \beta}:\left(\mathcal{H} \widehat{\otimes}_{\beta} E\right) \times(\mathcal{K} \varepsilon F) \rightarrow\left(\mathcal{H} \widehat{\otimes}_{\beta} \mathcal{K}\right) \varepsilon\left(E \widehat{\otimes}_{\beta} F\right)
$$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.
(2) The assumptions on \mathcal{H} and E yield $\mathcal{H} \widehat{\otimes}_{\beta} E=\mathcal{H}(E)$.
(3) Show that bounded
conditions of the "
is hypocontinuous.
(9) Compose $\Gamma_{\beta, \beta}$ with the ε-product of the continuous linear
maps corresponding to u and b.
(1) Main ingredient: L. Schwartz' "Théorèmes de croisement" yields the existence of a bilinear map

$$
\Gamma_{\beta, \beta}:\left(\mathcal{H} \widehat{\otimes}_{\beta} E\right) \times(\mathcal{K} \varepsilon F) \rightarrow\left(\mathcal{H} \widehat{\otimes}_{\beta} \mathcal{K}\right) \varepsilon\left(E \widehat{\otimes}_{\beta} F\right)
$$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.
(2) The assumptions on \mathcal{H} and E yield $\mathcal{H} \widehat{\otimes}_{\beta} E=\mathcal{H}(E)$.
(3) Show that bounded subsets of $\mathcal{H}(E)$ and $\mathcal{K}(F)$ satisfy the conditions of the "Théorèmes de croisement" such that $\Gamma_{\beta, \beta}$ is hypocontinuous.
(1) Main ingredient: L. Schwartz' "Théorèmes de croisement" yields the existence of a bilinear map

$$
\Gamma_{\beta, \beta}:\left(\mathcal{H} \widehat{\otimes}_{\beta} E\right) \times(\mathcal{K} \varepsilon F) \rightarrow\left(\mathcal{H} \widehat{\otimes}_{\beta} \mathcal{K}\right) \varepsilon\left(E \widehat{\otimes}_{\beta} F\right)
$$

which is the unique partially continuous mapping which conincides with the canonial mapping on the tensor products.
(2) The assumptions on \mathcal{H} and E yield $\mathcal{H} \widehat{\otimes}_{\beta} E=\mathcal{H}(E)$.
(3) Show that bounded subsets of $\mathcal{H}(E)$ and $\mathcal{K}(F)$ satisfy the conditions of the "Théorèmes de croisement" such that $\Gamma_{\beta, \beta}$ is hypocontinuous.
(9) Compose $\Gamma_{\beta, \beta}$ with the ε-product of the continuous linear maps corresponding to u and b.

Back to our original situation

Definition and Proposition

If $h \in \mathcal{S}$ and $F \in \mathcal{S}_{x, \xi}^{\prime}$ then the W_{h}-transform

$$
W_{h}: \mathcal{S}_{x, \xi}^{\prime} \rightarrow \mathcal{S}_{z}^{\prime}, F \mapsto \mathcal{O}_{C, x}\left\langle 1_{x},\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) h(z-x)\right\rangle_{\mathcal{O}_{C, x}^{\prime}\left(\mathcal{S}_{z}^{\prime}\right)}
$$

is well-defined, linear and continuous.
The bracket $\mathcal{O}_{C, x}\langle\cdot, \cdot\rangle_{\mathcal{O}_{C, x}^{\prime}}\left(\mathcal{S}_{z}^{\prime}\right)$ is the \mathcal{S}^{\prime}-valued extension of the evaluation mapping

$$
\mathcal{O}_{C} \times \mathcal{O}_{C}^{\prime} \rightarrow \mathbb{C},(\varphi, T) \mapsto T(\varphi)
$$

and hence bilinear and hypocontinuous.

Proof.

The inclusion $h \in \mathcal{S}$ implies $h(z-x) \in \mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{C, z}$ and $F \in \mathcal{S}_{x, \xi}^{\prime}$ implies $\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) \in \mathcal{S}_{x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

and hence

$$
\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) h(z-x) \in \mathcal{O}_{C, x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime} .
$$

The previous Proposition can be applied since the mappings

$$
\begin{aligned}
& S \times S^{\prime} \rightarrow \mathcal{O}_{C}^{\prime},(\varphi, T) \mapsto \varphi \cdot T, \\
& \mathcal{O}_{C} \times S^{\prime} \rightarrow \mathcal{S}^{\prime},(\varphi, T) \mapsto \varphi \cdot T
\end{aligned}
$$

\square

Proof.

The inclusion $h \in \mathcal{S}$ implies $h(z-x) \in \mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{C, z}$ and $F \in \mathcal{S}_{x, \xi}^{\prime}$ implies $\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) \in \mathcal{S}_{x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

$$
\left(\mathcal{S}_{x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}\right) \times\left(\mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{C, z}\right) \rightarrow \mathcal{O}_{C, x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}
$$

and hence
$\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) h(z-x) \in \mathcal{O}_{C, x}^{\prime} \widehat{\otimes} S_{z}^{\prime}$.
The previous Proposition can be applied since the mappings

\square

Proof.

The inclusion $h \in \mathcal{S}$ implies $h(z-x) \in \mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{C, z}$ and $F \in \mathcal{S}_{x, \xi}^{\prime}$ implies $\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) \in \mathcal{S}_{x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

$$
\left(\mathcal{S}_{x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}\right) \times\left(\mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{C, z}\right) \rightarrow \mathcal{O}_{C, x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}
$$

and hence

$$
\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) h(z-x) \in \mathcal{O}_{C, x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}
$$

The previous Proposition can be applied since the mappings

\square

Proof.

The inclusion $h \in \mathcal{S}$ implies $h(z-x) \in \mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{C, z}$ and $F \in \mathcal{S}_{x, \xi}^{\prime}$ implies $\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) \in \mathcal{S}_{x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}$. The previous Proposition yields the unique existence of a hypocontinuous bilinear multiplication

$$
\left(\mathcal{S}_{x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}\right) \times\left(\mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{C, z}\right) \rightarrow \mathcal{O}_{C, x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}
$$

and hence

$$
\left(\mathcal{F}_{\xi}^{-1} F\right)(x, z) h(z-x) \in \mathcal{O}_{C, x}^{\prime} \widehat{\otimes} \mathcal{S}_{z}^{\prime}
$$

The previous Proposition can be applied since the mappings

$$
\begin{aligned}
& \mathcal{S} \times \mathcal{S}^{\prime} \rightarrow \mathcal{O}_{C}^{\prime},(\varphi, T) \mapsto \varphi \cdot T, \\
& \mathcal{O}_{C} \times \mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime},(\varphi, T) \mapsto \varphi \cdot T
\end{aligned}
$$

are hypocontinuous and since \mathcal{S}^{\prime} is a (DF)-space.

Proposition

If $g \in \mathcal{S}^{\prime}$ and $h \in \mathcal{S}$ then it holds

$$
W_{h} \circ V_{g}=\langle g, h\rangle \mathrm{id}
$$

on \mathcal{S}^{\prime}.

Proposition (B.-Ortner, 2013)

Let $g \in \mathcal{S}, g \neq 0$. Then for $f \in \mathcal{S}^{\prime}$ the following assertions are equivalent:
(1) $f \in \mathcal{O}_{C}^{\prime}$,
(2) $V_{g} f \in \mathcal{S}_{x} \widehat{\otimes} \mathcal{O}_{M, \xi}$ and
(3) $V_{g} f$ is continuous and
$\forall k \in \mathbb{N}_{0} \exists m \in \mathbb{N}_{0} \exists C>0:$

$$
\left|\left(V_{g} f\right)(x, \xi)\right| \leq C\left(1+|x|^{2}\right)^{-k / 2}\left(1+|\xi|^{2}\right)^{m / 2}
$$

for all $(x, \xi) \in \mathbb{R}^{2 n}$.

Proposition (B.-Ortner, 2013)

Let $g \in \mathcal{S}, g \neq 0$. Then for $f \in \mathcal{S}^{\prime}$ the following assertions are equivalent:
(1) $f \in \mathcal{O}_{M}$,
(2) $V_{g} f \in \mathcal{O}_{C, x} \widehat{\otimes} \mathcal{S}_{\xi}$ and
(3) $V_{g} f$ is continuous and
$\forall k \in \mathbb{N}_{0} \exists m \in \mathbb{N}_{0} \exists C>0:$

$$
\left|\left(V_{g} f\right)(x, \xi)\right| \leq C\left(1+|x|^{2}\right)^{m / 2}\left(1+|\xi|^{2}\right)^{-k / 2}
$$

for all $(x, \xi) \in \mathbb{R}^{2 n}$.

References

围 Karlheinz Gröchenig and Georg Zimmermann．
Hardy＇s theorem and the short－time Fourier transform of Schwartz functions．
J．London Math．Soc．（2），63（1）：205－214， 2001.
國 Laurent Schwartz．
Théorie des distributions à valeurs vectorielles．II．
Ann．Inst．Fourier．Grenoble，8：1－209， 1958.
围 Christian Bargetz and Norbert Ortner．
Convolution of vector－valued distributions：A survey and comparison．
Dissertationes Math．，495：55 pp．， 2013.
國 Christian Bargetz and Norbert Ortner．
Characterization of L．Schwartz＇convolutor and multiplier spaces \mathcal{O}_{C}^{\prime} and \mathcal{O}_{M} by the short－time fourier transform． Rev．R．Acad．Cienc．Exactas Fís．Nat．Ser．A Math．
RACSAM 108（2）：833－847． 2014.
Christian Bargetz（Universität Innsbruck）Characterising \mathcal{O}_{C}^{\prime} and \mathcal{O}_{M} by the short－time Fourier transform

