CHARACTERIZING AIR EMISSIONS FROM WASTEWATER FACILITIES

Malcolm Fabiyi, PhD, MBA

Hydromantis USA

Hydromantis

vironmental Software Solutions, Inc

Agenda

- Overview air emissions in wastewater treatment
- Sources of emissions
- Measurement & Reporting of emissions
- Role of Fate & Transport models in characterizing Air Emissions
- Conclusion

Wastewater Treatment The Activated Sludge Process

Air Pollutants & Odors

Sources in wastewater treatment

- THMs from Cl₂ disinfection
- Reduced Sulfur Compounds $O_2 - \text{Aerobic} \rightarrow CO_2$ $NO_3 - \text{Anoxic} \rightarrow N_2$ $SO_4 - \text{Anaerobic} \rightarrow H_2S$

In Wastewater influent

Generated In-

situ

Odors – Mercaptans, H₂S VOCs – Benzene, Toluene, etc. HAPs

Air Pollution Regulations Through the Years

The Air Pollution Control Act of 1955

- First federal air pollution legislation
- Funded research on scope and sources of air pollution

Clean Air Act of 1963

- Authorized a national program to address air pollution
- Authorized research into techniques to minimize air pollution

Air Quality Act of 1967

- Enforcement procedures involving interstate transport of pollutants
- Expanded research activities

Clean Air Act of 1970

- Established National Ambient Air Quality Standards (NAAQS)
- Established requirements for State Implementation Plans
- Establishment of New Source Performance Standards for stationary sources
- Establishment of National Emission Standards for Hazardous Air Pollutants
- Authorized control of motor vehicle emissions

1977 Amendments to the Clean Air Act of 1970

- Authorized provisions related to prevention of significant deterioration
- Authorized provisions relating to non-attainment areas

1990 Amendments to the Clean Air Act of 1970

- Authorized programs for acid deposition control
- Authorized controls for 189 toxic pollutants, including those previously regulated by the national emission standards for hazardous air pollutants (HAPs)
- Established permit program requirements
- Expanded provisions concerning NAAQS

- What happens to odors & HAPs in conveyance & WWTP (Fate & Transport)
- What happens to HAPs that are emitted into the air at the treatment plant (Dispersion)?

Fate & Transport models developed in response to 1990 CAA Amendments

Contaminant Fate & Transport in Wastewater Treatment

How are they removed?

What are Emission Sources?

- Wherever energy is transferred to wastewater (wherever turbulence is created)
 - Gravity (waterfalls, weirs)
 - Mixers
 - Surface Aerators
 - Diffusers
- Wherever air streams with low concentrations of VOCs are in contact with VOC laden liquids

Activated Sludge Aeration

Mechanical Aeration

 Extreme turbulence causes VOC stripping and surface renewal

Diffused Aeration

- Only about 10-20% of O₂ is dissolved
- i.e., only 2-4% of influent gas @ 21% O₂ is dissolved
- ~96%-98% vent gas strips VOCs and odors!

Clarifiers

Surface

• Large surface area enhances VOC release

Weirs

 Note foam in the trough due to air entrainment

Emissions from Drop Structures & Ponds

Drop Structure

• A drop structure with process flow flowing into an existing process stream

Equalization Ponds

 Wind passing over large wastewater surface areas results in high surface volatilization rates

Emissions Estimation Methods

Direct Methods

Direct Measurement of Off-gas

- For enclosed headspaces, pipe flows, etc.
- Analyze concentration in off-gas flow (C_g)
- Measure off-gas flow rate (Q_g)
- Emission rate = $C_g * Q_g$

Measurement from Open Surfaces

- For open, non-confined surfaces (e.g. aeration tanks)
- Use floating flux chambers
- Trap and analyze emissions from surface area enclosed by chamber
- Measure gas flow through chamber
- Emission rate = $C_g * Q_g$

Indirect Methods

Emission Factors (EFs)

- Often based on some unit of production (e.g. lb of product per day) or WWTP operation (e.g. flow)
- Mass emitted = EF * mass production rate
- Accuracy is not that great; requires much historical evidence

Mathematical Modeling

- Main EPA approved models are BASTE, TOXCHEM[™] and WATER9 (EPA)
- Based on mass balances, kinetic rate expressions and empirically-derived relationships

Measurement from Covered Tanks

- Measure off-gas flow rate (Q_g)
- Emission rate = $C_g * Q_g$

Measurement from Open Surfaces

Floating Flux Chamber

Fig D. Measuring Emissions from a Refinery Aerated Lagoon

Fig G. Municipal Wastewater Treatment

Direct Measurement of Air Emissions is Very Challenging

Indirect Estimation Methods

Emission Factors (EFs)

- Often based on some unit of production (e.g. lb of product per day) or WWTP operation (e.g. flow)
- Mass emitted = EF * mass production rate
- Accuracy is not that great; requires much historical evidence

Mathematical Modeling

- EPA specifies applicable modeling methods in 40 CFR Part 63
- Two main models are TOXCHEM[™] and WATER 9 (EPA)
- Based on mass balances, kinetic rate expressions and empirically-derived relationships

Odors and Air Pollutants

Reasons for Modeling

- Representative samples may be hard to collect
- Field staff may lack knowledge or resources for optimum sampling
- Measurements impacted by lots of variables wind speed, throughput (Hi/Low flow), etc.
- Applicable to facilities in upgrade or design

Modeling offers a robust, regulatory approved means of determining pollutant fate

CONCILIA Contaminant Fate & Transport Model

- Estimates fate and emission rates of organic compounds and metals from collection and treatment system components
- Used since 1991, +840 compounds & metals
- Specified in regulations (CAAA, SARA 40 CFR, Part 63)
- Customizable (processes, compounds, parameters)
- Applications
 - Contaminant fate
 - Technology evaluation
 - Parameter estimation / validation

How Models are Used

Mechanical & Thermal effects

Characterizing Emissions With Toxchem

- Multiple influent streams
- 13 contaminants across both streams
- Several unique process treatment steps

Characterizing Emissions With Toxchem

T Oily Wastewater		×	T Oily Wastewater		×	T Emission Hotspot Setup			×	
Data Entry Contaminants Flow Split			Data Entry Contaminants Flow Split							
Contaminants Add/Remove 1,2-Dimethylnaphthalene Acenaphthene Benzene Benzo(A)Pyrene Toluene Hexane(-N) Xylene,P- (1,4-Xylene) Naphthalene	100.0 ug/L 100.0 ug/L 100.0 ug/L 100.0 ug/L 100.0 ug/L 100.0 ug/L 100.0 ug/L 100.0 ug/L 100.0 ug/L		Flow Rate Suspended Solids VSS to SS Ratio Wastewater DOC Oil/Grease Concentration Temperature	30000.0 m3/d 500.0 mg/L 75.0 % 0.0 mg/L 500.0 mg/L 30.0 deg C	• 0 • 0 • 0 • 0 • 0 • 0	Base output on percent emissions (%) Base output on loading emissions (lb/d) High level emitters Medium level emitters Low level emitters Emitters less than the low level	ater than 5.0 % ater than 2.5 % ater than 1.0 %	Cancel		
Process Influent Data Entry Contaminants Flow Split Contaminants Add/Remove Acetone Benzene Chloroform (Trichloromethane) Dichlorobenzene, 1, 4- Methanol	100.0 ug/L 100.0 ug/L 100.0 ug/L 100.0 ug/L	×	Process Influent Data Entry Contaminants Flow Split Flow Rate Suspended Solids VSS to SS Ratio Wastewater DOC Oll/Grease Concentration Temperature	20000.0 m3/d 200.0 mg/L 75.0 % 0.0 mg/L 0.0 mg/L 25.0 deg C	× • D • D • D • D	API Data Entry Advanced Flow Split Liquid Depth Surface Area Weir Length Waterfall Height SS Removal Efficiency	2.4 m 1500.0 m2 100.0 m 0.2 m 50.0 %	•		
 Each unit 	Accept	cancel	Be specified	Accept Can	cel	Oil Removal Efficiency Sludge SS Concentration Flow Rate of Recovered Oil Stream Covered	80.0 % 10000.0 mg/L 0.132085 MGD(US)	• • •		

Local pH value

2

- +840 chemicals and metals are available
- Custom data can be input as well

Cancel

7.0

Accept

Database Details

Filter : All Search by name : Find Search by CAS # : Find 1.2-Dimethylnaphthalene Find 1.3-Dinitropyrene Sludge Process 1.6-Dinitropyrene Anaerobic Sludge Biodegradation Rate @ 35 C U(mg.ht) 1.6-Dinitropyrene Anaerobic Biodegradation Rate @ 35 C U(mg.ht) 1.7a-ethinylestradiol (EE2) Anaerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.ht) 2.2', 4, 4', 5: F-Hexabromodiphenyl Ether (BDE153) Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.ht) 2.2', 4, 4', 5: Pentabromodiphenyl Ether (BDE153) Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.ht) 2.4 D Half Saturation Constant (Ks) mg/L 2.4, 4'-Tribromodiphenyl Ether (BDE28) A.f. Tribromodiphenyl Ether (BDE15) Anaerobic Reduction Factor (fana) 0.1 4.4'-Dibotromodiphenyl Ether (BDE15) Anaerobic Reduction Factor (fana) 0.1 0.1 50% PEG T12-Dimethylenzo(a) anthracene Th The second and the	Organic Chemical List		Selected Organ	nic Chem	ical Details					
Search by name : Find Search by CAS # : Find 1.2-Dimethylmsphthalene Anaerobic Sludge Biodegradation Dissociation References 1.3-Dinitropyrene Anaerobic Sludge Biodegradation Rate @ 35 C U(mg.ht 1.6-Dimethylmsphthalene Anaerobic Sludge Biodegradation Rate @ 35 C U(mg.ht 1.6-Dimethylmsphthalene Aerobic Biodegradation Rate @ 35 C U(mg.ht 1.6-Dimethylmsphthalene Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.ht 17a-ethinylestradiol (E2) Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.ht 2.2', 4, 4', 5.5'-Hexabromodiphenyl Ether (BDE153) Aerobic Biodegradation Factor (fanox) 0.8 2.2', 4, 4'-Tetrabromodiphenyl Ether (BDE28) Anaerobic Reduction Factor (fanox) 0.1 2.4, 4'-Tribromodiphenyl Ether (BDE15) Attributene 0.1 4.4'-methylenebis(2-chloroaniline) Maerobic Reduction Factor (fana) 0.1 50% PEG T12-Dimethylenzo(a)anthracene T T Thiberzo(c,g)carbazole T T T	Filter :	•	1,2-Dimethylnaphthalene							
1.2-Dimethylnaphthalene Anaerobic Sludge Biodegradation Rate @ 35 C U(mg.hi 1.3-Dinitropyrene Anaerobic Sludge Biodegradation Rate @ 35 C 0.009283 U(mg.hi 1.6-Dinitropyrene Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.hi 1.6-Dinitropyrene Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.hi 1.7-estradiol (E2) Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.hi 2.2', 4, 4', 5.5'-Hexabromodiphenyl Ether (BDE153) Aerobic Biodegradation Rate (Kb) @ 20 C 0.009283 U(mg.hi 2.2', 4, 4', 5.5'-Hexabromodiphenyl Ether (BDE47) Anaerobic Reduction Factor (fanox) 0.8 2.4, 4'-Tribromodiphenyl Ether (BDE28) Anaerobic Reduction Factor (fana) 0.1 2.4, 4'-Tribromodiphenyl Ether (BDE15) Anaerobic Reduction Factor (fana) 0.1 4.4'-Dibromodiphenyl Ether (BDE15) Anaerobic Reduction Factor (fana) 0.1 50% PEG Tribenzo(c,g)carbazole The Dibenzo(c,g)carbazole The Dibenzo(c,g)carbazole	Search by name :	Find	Properties S	stripping	Sorption Biod	legradation	Dissociation	References		
	1,2-Dimethylnaphthalene 1,3-Dinitropyrene 1,6-Dimethylnaphthalene 1,6-Dinitropyrene 17a-ethinylestradiol (EE2) 17b-estradiol (E2) 2,2',4,4',5,5'-Hexabromodiphenyl Ether (BDE19) 2,2',4,4',5-Pentabromodiphenyl Ether (BDE47) 2,4,4'-Tetrabromodiphenyl Ether (BDE47) 2,4 D 2,4,4'-Tribromodiphenyl Ether (BDE28) 2,4,5 T 4,4'-Dibromodiphenyl Ether (BDE15) 4,4'-methylenebis(2-chloroaniline) 50% PEG 7,12-Dimethylbenzo(a)anthracene 7H-Dibenzo(c,g)carbazole	53)	Sludge Proce	ss Biodegra Biodegra uration Co Reduction bic Reduc	e Biodegradatio Idation Rate (Kt Indation Rate (Kt In Factor (Ks) In Factor (fanox) Ition Factor (fan	n Rate @ 35 i) @ 20 C i) @ 20 C ia)	C 0.009	L/(mg.hr) 283 L/(mg.hr) 283 L/(mg.hr) mg/L 0.8 0.1		

Characterizing contaminant Fate

Benzene

Methanol

Total Air Emissions Summary

Relationship between Fate & Transport Models and Dispersion Models

Most accurate Fate & Transport model

Conclusion

- Odors and VOCs are generated / released in the wastewater treatment process
- Process models offer a robust approach for characterizing emissions
 - Have regulatory approval (40 CFR Part 63)
 - Comprehensively cover all aspects of wastewater treatment
 - Can be calibrated to site specifics
- Additional benefits of modeling
 - Incorporate emission mitigation into process design
 - Enable sensitivity analyses
 - Troubleshooting e.g., odor & emission sources & concentrations
 - Can be readily integrated with dispersion models

Questions

Fabiyi@hydromantis.com 773-647-8872

Factors Affecting Air Emissions

- Waste characteristics flow rate, temperature, chemical composition, others (suspended solids, oils)
- Chemical compound properties Henry's coefficient (volatility), molecular weight, density, partition parameters. Biodegradation rates
- Process unit parameters physical dimensions, process parameters, covered or open processes, air flow rates, aerator power input, sludge characteristics
- Site & ambient conditions temperature, wind speed, elevation

Clean Air Act – 11 Titles

- Title I attainment & maintenance of NAAQS*
- Title III Air Toxics Control
- Title IV Acid Rain Control
- Title V Permits & Reporting
- Title VI Stratospheric Ozone Protection
- Tile VII Enforcement

Regulated Air Pollutants

- Six criteria pollutants from 1963 CAA (SO, NOx, CO, Pb, O₃, Pm)
- VOCs
- NSPS H₂S, Reduced Sulfur Compounds, total reduced sulfur, sulfuric acid mist, dioxin/furan, fluorides and HCl
- 188 Hazardous Air Pollutants (HAPs)
- * NAAQS National Ambient Air Quality Standards

Emission Factors

- Often based on some unit of production (e.g. lb of product per day) or WWTP operation (e.g. flow)
- Mass emitted = EF * mass production rate
- Accuracy is not that great; requires much historical evidence

http://www3.epa.gov/ttn/chief/efpac/protocol/index.html

