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Abstract Triple-negative breast cancers (TNBCs) are a

heterogeneous set of tumors defined by an absence of

actionable therapeutic targets (ER, PR, and HER-2).

Microdissected normal ductal epithelium from healthy

volunteers represents a novel comparator to reveal insights

into TNBC heterogeneity and to inform drug development.

Using RNA-sequencing data from our institution and The

Cancer Genome Atlas (TCGA) we compared the tran-

scriptomes of 94 TNBCs, 20 microdissected normal breast

tissues from healthy volunteers from the Susan G. Komen

for the Cure Tissue Bank, and 10 histologically normal

tissues adjacent to tumor. Pathway analysis comparing

TNBCs to optimized normal controls of microdissected

normal epithelium versus classic controls composed of

adjacent normal tissue revealed distinct molecular signa-

tures. Differential gene expression of TNBC compared

with normal comparators demonstrated important findings

for TNBC-specific clinical trials testing targeted agents;

lack of over-expression for negative studies and over-

expression in studies with drug activity. Next, by com-

paring each individual TNBC to the set of microdissected

normals, we demonstrate that TNBC heterogeneity is

attributable to transcriptional chaos, is associated with non-

silent DNA mutational load, and explains transcriptional

heterogeneity in addition to known molecular subtypes.

Finally, chaos analysis identified 146 core genes dysregu-

lated in [90 % of TNBCs revealing an over-expressed
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central network. In conclusion, use of microdissected

normal ductal epithelium from healthy volunteers enables

an optimized approach for studying TNBC and uncovers

biological heterogeneity mediated by transcriptional chaos.

Keywords Triple-negative breast cancer � RNA-seq �
TCGA � Normal breast � Adjacent normal � Ductal

epithelium

Introduction

Triple-negative breast cancer (TNBC) preferentially affects

pre-menopausal women and women of African descent and has

been plagued by the absence of targeted therapies leading to

poor survival [1–5]. Because these tumors do not over-express

the estrogen, progesterone, or HER-2 receptors (triple-nega-

tive), these patients do not respond to targeted therapies that are

successfully used in patients who over-express these proteins.

A major impediment to therapeutic development in TNBC is an

inadequate understanding of the transcriptional biology of the

normal breast as a comparator. The use of microdissected

ductal epithelium from healthy women as the optimal control is

not commonly used secondary to sample availability from

healthy volunteers and laborious sample preparation. Many

prior gene expression studies have used undissected reduction

mammoplasty or histologically ‘‘non-cancerous’’ tissue adja-

cent to the tumor. Both of these controls are fraught with

problems. Specifically hyperplastic breasts that require surgical

reduction may harbor neoplasms or pathological atypia [6–9].

In addition, these tissues are more likely to contain perturba-

tions in global gene expression [10, 11], changes in epigenetic

markers [12], and loss of heterozygosity [13, 14].

Recent studies have begun to shed light on the hetero-

geneity of TNBC using genome-wide technologies. Work

by Lehmann et al. using TNBC gene expression data from

publically available microarrays demonstrated that TNBC

can be divided into six reproducible subtypes (plus an

unclassified type), with potential therapeutic implications

[15]. On the DNA level, recent reports from Shah et al.

[16], and The Cancer Genome Atlas (TCGA) [17] using

exome sequencing have reported extensive mutational

heterogeneity among TNBCs/basal-like tumors with very

low frequency mutations in a variety of genes, with com-

mon recurrent mutations restricted primarily to TP53 and

the PI3K pathway. In addition, previous studies using copy

number analysis have also demonstrated frequent RB1 loss

of heterozygosity as well as Chromosome 5q loss and 8q,

10p, and 12p gains [18–20]. Building on this knowledge of

mutational heterogeneity, we used RNA-sequencing

(RNA-seq) to analyze TNBCs, donated microdissected normal

breast epithelium and adjacent normal tissues to better under-

stand the transcriptional heterogeneity of this disease.

Methods

RNA from 20 normal frozen breast tissues from healthy

pre-menopausal volunteers with no history of disease were

procured from the Susan G. Komen for the Cure� Tissue

Bank (KTB) at the IU Simon Cancer Center (IUSCC). As

ductal epithelium (the presumed origin of breast cancer)

comprises a minority of cells in the normal breast, these

tissues were laser capture microdissected in order to enrich

for epithelial RNA. RNA from 10 frozen TNBCs was

extracted from tissues with high tumor content and did not

necessitate microdissection. Normal and TNBC RNA was

sequenced on a Life Technologies SOLiD sequencer with

subsequent read mapping to the genome using LifeScope

2.5.1 [21]. RNA-seq data from the normal tissues is

available for download from dbGAP (http://www.ncbi.nlm.

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs00064

4.v1.p1). Data for non-TCGA TNBCs are pending NCBI

GEO submission. Normal and TNBC RNA-seq data from

Indiana University were then merged with RNA-seq data

from 84 TNBCs and 10 adjacent normals from the TCGA

downloaded from the UCSC cgHUB database (dbGAP

approval #3317: Transcriptional and Mutational Landscape

of Triple-Negative Breast Cancer, P.I. Milan Radovich).

Samples IDs of all samples used in this study are in Sup-

plementary Table 4. Sequencing data was imported into

Partek Genomics Suite for gene expression and statistical

analysis, and IPA 9.0 for network and pathway analyses. Full

methods of sample preparation, sequencing, bioinformatics

analysis, qPCR, and immunohistochemistry (IHC) are in the

Supplemental Methods. All studies on these samples were

approved by the IU Institutional Review Board.

Results

Microdissected normal epithelium is a distinct control

compared to adjacent normal tissue

We performed next-generation RNA sequencing on 20

microdissected normal breast tissues from our Susan G.

Komen for Cure� Tissue Bank at the Indiana University

Simon Cancer Center as well as 10 TNBCs and merged the

mapped sequencing data with 84 TNBCs and 10 adjacent

normal tissues available from the TCGA (Supplementary

Figs. 1 and 2, Supplementary Methods). Unsupervised

principal components analysis (PCA) of 14,271 expressed

genes demonstrated a significant separation of TNBCs from

microdissected normal tissues and adjacent normal tissues

illustrating the vast differences in their transcriptomic pro-

files (Fig. 1). In order to better delineate the individual

genes that differentiate the tissue types, we compared the

expression values between TNBCs, microdissected normal
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breast tissues, and adjacent normal tissues. When consid-

ering a false discovery rate (FDR) \0.05 with a fold-

change more than ±2, we report 3,197 differentially

expressed genes for TNBC vs. microdissected normal tis-

sue; 3,217 genes for TNBC vs. adjacent normal, and 933

genes for adjacent normal vs. microdissected normal tissue

(Fig. 2, Supplementary Table 1). To better understand the

biological differences between these tissue types, we

employed canonical pathway analysis to compare them.

Observing the most statistically significant pathways,

TNBC vs. microdissected normal tissue reveals key path-

ways known to be implicated in TNBC biology (BRCA1/

DNA damage, immune system, chromosomal abnormali-

ties) [22], whereas TNBC vs. adjacent normal reveals some

of the same pathways but others that are not as intuitive to

TNBC biology but instead stromal biology (atherosclerosis

signaling, hepatic fibrosis). The difference in these tissue

types becomes more evident when we examined pathways

with genes specific to each comparison (that do not overlap

on the Venn diagram). TNBC vs. microdissected normal

tissue primarily reveals immune pathways (well known to

be implicated in TNBC), with the vast majority of gene

ontology biological functions associated with leukocyte

and lymphocyte biology. Conversely, TNBC vs. adjacent

normal tissue reveals a diverse set of pathways with

considerably lower P values with genes indicative of

stroma and with gene ontology biological functions asso-

ciated with death, edema, angiogenesis, microtubule

dynamics, and neuronal and organ development. These

observations can be attributed to the fact that the adjacent

normals are not microdissected and represent a milleu

of various stromal cells. In a further analysis, we also

performed a pathway analysis of those genes that were

differentially expressed between both TNBC vs. micro-

dissected normal and adjacent normal (Fig. 2 Venn dia-

gram overlap of 1,267 genes). This analysis recapitulated

pathways seen in both comparators, but was absent of

immune pathways, thus excluding potentially important

microenvironmental cues observed in the TNBC vs. mi-

crodissected normal comparison. Overall, this data sug-

gests that both types of normal controls discover key genes,

but that using microdissected normal tissue provides

increased accuracy of understanding gene dysregulation in

TNBC, and thus is used as the standard control for the rest

of our analyses.

To further support the use of microdissected normal

epithelium, we performed an upstream transcriptional

regulator analysis which predicts transcriptional regulators

that are either ‘‘inhibited’’ or ‘‘activated’’ based on differ-

entially expressed genes (Supplementary Table 2). Atop

Fig. 1 Unsupervised principal components analysis (PCA) of 14,271

expressed genes demonstrating global gene expression differences

between microdissected normal tissue from healthy volunteers,

adjacent histologically normal tissue, and triple-negative breast

cancers. The sample types cluster into three distinct groups with the

TNBCs from IU and from the TCGA clustering together, demon-

strating effective merging of the data. IU Indiana University, KTB

Susan G. Komen Tissue Bank at the Indiana University Simon Cancer

Center, TCGA The Cancer Genome Atlas
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the list of inhibited transcription factors is TP53, which is

known to be mutated in 80 % of basal-like breast cancers

and is the most common recurrently mutated in gene in

TNBC [17]. In addition, we observe RB1 as significantly

inhibited in TNBC. Previous data has demonstrated func-

tional loss of RB1 with loss of heterozygosity observed in

72 % of basal-like breast cancers [18]. Further, genomic

sequencing has also demonstrated mutations within the

RB1 gene and an enrichment of somatic mutations within

RB-associated protein binding sites in TNBC [16]. As RB1

is a canonical suppressor of the E2F1 transcription factor,

our analysis shows significant activation of E2F1 as would

be expected. In addition, our analysis demonstrates inhi-

bition of the tumor suppressor CDKN2A (p16) most likely

due to loss of function of RB1, activation of the MYC

oncogene whose network is known to be activated in basal-

like breast cancer [17], and activation of the FOXM1

transcription factor (discussed later in the results).

Congruency of gene expression with results of TNBC

clinical trials

We next examined genes that had been targeted in clinical

trials enriched for TNBC patients, specifically, EGFR, KIT,

Fig. 2 Venn diagram of differentially expressed genes (FDR\ 5 %,

fold-change [ ±2) compared between each tissue type and their

overlap. In order to elucidate the biological differences between these

analyses, canonical pathway analysis was performed using Ingenuity

Pathway Analysis. The top 5 pathways ranked by P value are shown

for the TNBC vs. microdissected normal and the TNBC vs. adjacent

normal comparisons, as well as for the genes that are specific to those

analyses (that did not overlap on the Venn diagram). In addition, the

top 5 pathways for those genes that overlapped between TNBC

vs. microdissected and adjacent normal tissues are shown
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and PARP1. EGFR and KIT, which have previously been

shown to be over-expressed in TNBC by microarray [23] and

IHC when compared to other breast cancer subtypes, were

not differentially expressed and down-regulated, respec-

tively, when compared to normal breast in our study

(Table 1). Interestingly, the expression of PARP1, whose

inhibitors have shown clinical activity in BRCA1 mutated

and sporadic TNBCs, was significantly up-regulated com-

pared to normal. To further validate these findings, we

assessed the gene expression of EGFR, KIT, and PARP1 in a

separate cohort of 26 frozen TNBCs and 10 microdissected

normal samples by qPCR (Supplementary Fig. 3). The

qPCR data from the validation cohort confirmed the findings

from the next-generation sequencing of a lack of differential

expression of EGFR, downregulation of KIT, and upregu-

lation of PARP1. To further confirm at the protein level, we

performed IHC for EGFR and KIT on 20 normal breast tis-

sues and 11 TNBCs (Supplementary Fig. 4). The IHC also

demonstrates no difference in EGFR expression and down-

regulation of KIT in TNBC compared to normal. The lack of

transcriptional upregulation (compared with normal breast),

and the lack of recurrent activating mutations in these two

genes might explain the disappointing outcomes to several

clinical trials implementing agents designed to target these

pathways (Table 1) [24–28]. To further validate the role of

over-expression of drug targets with efficacy, we used data

from the Cancer Cell Line Encyclopedia (CCLE) [29] which

contains data of 13 TNBC cell lines treated with 24 cancer

drugs (Supplementary Table 3). As seen in Supplementary

Fig. 5, we find that drugs that target genes that are over-

expressed in our TNBC vs. microdissected normal data set

had significantly lower IC50s in treated TNBC cell lines than

those that did not (P \ 0.0001).

Transcriptional chaos contributes to TNBC

heterogeneity

In order to gain a better understanding of how individual

TNBCs differ from microdissected normal breast tissues, we

compared each of our 94 TNBCs individually versus the set

of 20 microdissected normal breast tissues. We then plotted

the number of differentially expressed genes per TNBC on

a waterfall plot (Fig. 3a) to demonstrate that there is a

significant range in the number of dysregulated genes

(‘‘transcriptional chaos’’) between individual TNBCs

(1,328–3,594 differentially expressed genes). To validate

this transcriptional chaos, we correlated the number of dif-

ferentially expressed genes for each TNBC with their num-

ber of non-silent somatic DNA mutations as reported by the

TCGA Broad Firehose application [30]. 76 of the 94 TNBCs

had DNA mutational data available. In Fig. 3b, there was

indeed a significant correlation between transcriptional

chaos and non-silent somatic DNA mutations (P = 0.0007)

suggesting that DNA mutational events play a significant

role in the transcriptional chaos that is being observed. To

delve deeper into this association, we used analyzed TNBC

TCGA data from the Memorial-Sloan Kettering Cancer

Center cBioPortal for Cancer Genomics [31, 32]. Using the

same 76 TNBCs that had DNA mutational data available, we

first checked to see if genes that are commonly mutated in

TNBC (either by base mutations, amplification, or deletion)

are associated with transcriptional chaos. Interestingly, we

see no significant association between mutations in TP53

(P = 0.57), MYC (P = 0.86), PIK3CA (P = 0.28), or RB1

(P = 0.73) and transcriptional chaos. In addition, we further

examined whether there was an association between tran-

scriptional chaos and the fraction of somatic copy number

altered genome as reported by cBioPortal and again saw no

association (P = 0.25). Taken together, we observe that

transcriptional chaos is mutationally dictated primarily by

the conglomerate of DNA mutations, both common and rare.

We then sought to determine whether this transcriptional

chaos can add additional information to the currently known

subtypes of TNBC. To better discriminate, we focused on

TNBCs within the top and bottom quartiles of transcriptional

chaos, and plotted them on an unsupervised PCA (using

RPKM values of all expressed genes) (Fig. 4a). In addition,

to avoid any bias from data merging, we plotted only the

TCGA samples using the raw log 2 transformed RPKM

values. We indeed observed a separation of TNBCs based on

Table 1 Differential gene expression of drug targets clinically tested in enriched TNBC patient populations

Treatment Target RNA sequencing

TNBC vs. normal

Fold-change

(P value)

Clinic trial outcomes

Cetuximab EGFR Not overexpressed -2.39

(P = 0.14, NS)

Negative

Gefitinib

Imatinib KIT Not overexpressed -6.45

(P = 4.9 9 10-3)

Negative

Dasatinib

Iniparib, Olaparib,

Rucaparib, and others

PARP Overexpressed 3.32

(P = 1.6 9 10-7)

Some activity (in BRCA mutant

TNBCs), newer PARP inhibitors

currently in clinical trial
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unsupervised PCA into low and high transcriptional chaos

groups. To further determine whether this observation adds

to what is currently known about TNBC heterogeneity,

we subtyped our TNBCs using the Vanderbilt TNBCtype

tool (https://cbc.mc.vanderbilt.edu/tnbc/) (Supplementary

Table 4). We then compared the PCA of the TNBC samples

Fig. 3 a Waterfall plot comparing the number of differentially

expressed genes for each individual TNBC vs. microdissected normal

tissues (transcriptional chaos). A significant range is observed from

1,328 to 3,594 differentially expressed genes. b To provide DNA-

level evidence of transcriptional chaos, mutation data from exome

sequencing was available on 76 TCGA TNBCs downloaded from the

TCGA Broad Firehose Application. A positive correlation is observed

between transcriptional chaos and the number of non-silent DNA

mutations
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colored by transcriptional chaos to the same PCA colored by

Vanderbilt TNBCtype, and demonstrate that transcriptional

chaos adds additional information along with the TNBC

subtype in explaining the heterogeneity (Fig. 4b). Samples

were also subtyped by PAM50 [33, 34], but because only 7 of

94 TNBCs were non-basal, a proper comparison between

transcriptional chaos and PAM50 could not be performed.

To determine whether known clinical factors can explain

transcriptional chaos, we found no significant association of

transcriptional chaos with age, stage, or race (Supplementary

Table 5). TCGA did not have grade available, though the

vast majority of TNBCs are Grade 3 [22], and a survival

analysis was not performed secondary to too few reported

survival events (7 deaths out of 94 samples). To further

Fig. 4 TCGA TNBC samples

representing the top and bottom

quartiles of transcriptional

chaos were plotted using an

unsupervised PCA. A separation

of TNBC samples is observed

based on transcriptional chaos.

a Samples labeled by top and

bottom quartiles. b The same

samples labeled by Vanderbilt

TNBC molecular subtype. (BL1

basal-like 1, BL2 basal-like 2,

IM immunomodulatory,

M mesenchymal, MSL

mesenchymal stem-like, LAR

luminal androgen receptor, UNS

unspecified)
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understand the nature of the transcriptional chaos, we per-

formed a correlation analysis of all expressed genes with

transcriptional chaos (Supplementary Table 6). Analysis of

the top positive-correlated genes (r [ 0.5, P \ 2.57 9 10-7)

revealed strong involvement in proliferation, cell cycle, and

DNA replication, including: TUBG1, AURKA, EBNA1BP2,

FAM58A, CENPA, SUV39H1, CCNB1, RRM2, RNASEH1,

DKC1, and NABP2.

Chaos analysis reveals a set of TNBC core genes

regulated by a FOXM1 network

Finally, we sought to determine whether there were any

transcriptional denominators that served as underlayment

for TNBC biology. We filtered the results of our tran-

scriptional chaos analysis to only those genes that were

differentially expressed in [90 % of our TNBC samples

(85 or more of 94 TNBCs). This resulted in 146 genes

referred to as the ‘‘TNBC core genes’’ (Supplementary

Table 7). Network analysis of the 146 core genes identified

a major hub network regulated by the transcription factor

FOXM1. As shown in Fig. 5, when focusing only on the

146 core genes, FOXM1 directly regulates 13 of these core

genes. When taken to second level interactions, those 13

genes directly regulate an additional 32 core genes. Alto-

gether, the FOXM1 hub network directly regulates 47 of

146 TNBC core genes as known by the IPA database. Of

interest, the FOXM1 gene itself is 17.2-fold over-expressed

in TNBC compared to microdissected normal. Altogether,

these data suggest that FOXM1 acts as a regulator of a

substantial number of genes that define the core tran-

scriptional dysregulation present in TNBC.

Discussion

Using differential gene expression and pathway analysis

we demonstrate that microdissected normal tissues are an

optimal comparator to adjacent normal tissues for studying

TNBC gene expression. Of interest, we were able to

identify key pathways using both comparators, but adjacent

normal tissues added pathways indicative of stroma. This is

Fig. 5 Network analysis of FOXM1 within the context of the 146

TNBC core genes. Arrows in gold represent direct interactions of

FOXM1 with 14 of 146 core genes. Gray arrows represent the second

level of interactions adding an additional 32 of 146 core genes. In

total, 47 of 146 (32 %) core genes are regulated by FOXM1,

demonstrating that this protein is a regulator of the TNBC core gene

set. (red = overexpression)
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not surprising, as histologically ‘‘normal’’ tissue adjacent to

tumor is comprised of a milieu of stromal cells that com-

plicate a normal epithelium vs. tumor epithelium analysis.

This observation is obviously due to the adjacent normal

not being microdissected, though use of adjacent normal as

a comparator for breast studies is commonly used. Further,

factors secreted by tumors can have a substantial effect on

the transcriptomes of normal epithelium near the tumor,

referred to as ‘‘field effect’’ [35, 36]. Indeed, it has been

previously demonstrated that microdissected normal epi-

thelium adjacent to tumor were subject to gene expression

dysregulation, aberrant methylation, and loss of heterozy-

gosity events [10–14]. In addition, previous data have

demonstrated that adjacent normal tissue contains gene

expression patterns indicative of wound healing [37]

(congruent with our observations of genes involved in

edema and angiogenesis in the adjacent normal), as well as

can serve as a predictor of clinical outcome [38], further

reinforcing abnormal dysregulation in the adjacent normal.

A commonly used alternative is the use of reduction

mammoplasty tissue, both dissected and undissected.

While usually derived from healthy patients, the need for

surgery secondary to hyperplasticity combined with the

relative occurrence of pathologic atypia [7–9], as well as

adipose contamination if not dissected, makes these sam-

ples less optimal as controls. Another possible alternative

control is matched contralateral normal breast tissue from

breast cancer patients. Data is limited on this type of

control, but recently published data points to changes in

lipid metabolism genes in contralateral normal as bio-

markers of ER-specific breast cancer risk [39]. In practical

terms, matched contralateral breast tissue is not normally

collected at the time of surgery and not widely available for

research.

We also observed that the canonical pathway analysis

comparing TNBC vs. microdissected normal detected cues

of non-epithelial cell-types, in particular, immune cells.

While tumor cellularity in our TNBC sample set was high

as was required of both TCGA breast cancer tissues [17] as

well as the IU TNBC tissues, non-epithelial infiltrating

cells are present. While having these non-epithelial cells in

the analysis did not mask finding tumor epithelial specific

pathways as evidenced by some of the top hits (role of

BRCA1 in DNA damage response, cell cycle: G2/M DNA

damage checkpoint, and cell cycle control of chromosomal

replication), we find having the intrinsic microenvironment

in our analysis an advantage. In particular, the intrinsic

microenvironment can assist in identifying therapeutic

targets that would not be identified if the tumor microen-

vironment was absent due to microdissection. A key

example is PD-1 (Programmed Death 1) which is expressed

on the surface of tumor infiltrating immune cells and is up-

regulated in our data set (Gene Symbol PDCD1, fold-

change = 10.23, P = 0.0009), has been recently demon-

strated to be associated with poor survival in all subtypes of

breast cancer including basal-like/TNBC [40]. This is

further evidenced by a recently initiated Phase Ib clinical

trial testing the PD-1 inhibitor, lambrolizumab, in solid

tumors with a specific focus on TNBC (http://clinicaltrials.

gov/show/NCT01848834). Taken together, we find the role

of these non-epithelial cells present in TNBCs (even

though a minority population) an important aspect of the

analysis. Further, to independently validate our findings,

we compared our differentially expressed genes (Supple-

mentary Table 1) to a recently published set of differen-

tially expressed genes derived from 30 microdissected

TNBCs and 13 normal ductal epithelium using microarrays

[41]. We validated by determining the number of over-

lapping genes between the two data sets where the direc-

tion of the fold-change was the same and the

P value \ 0.05. We found 80 % of the significant genes in

the smaller microarray data set had validated in our larger

RNA-seq data set, providing an independent validation.

To clinically associate our results, we compared the

differential expression of previously tested targeted agents

to clinical trial outcomes. This was most strikingly illus-

trated by the fact that some genes previously reported to be

over-expressed in TNBC by microarray and IHC (e.g.,

EGFR and KIT) were not up-regulated when compared to

normal ductal epithelium in this study [42, 43]. In contra-

distinction, one of the few targeted agents that has shown

clinical activity in a randomized trial enriched for patients

with TNBC was Iniparib (BSI-201), a PARP inhibitor [44].

The target for iniparib (PARP1) is threefold over-expressed

in TNBC compared to normal in our study. While the

subsequent randomized phase III trial did not support clear

and uniform activity for all patients with sporadic TNBC,

there were multiple confounding variables including the

presumed mechanism of activity [45]. Other trials using

agents with robust PARP inhibition in selected popula-

tions with TNBC have demonstrated exquisite sensitivity

[46–48]. Taken together, our data is in congruence with

current clinical trial outcomes of agents that target these

proteins (Table 1), and suggests that comparing TNBC to

microdissected ductal epithelium versus other comparators

may yield better therapeutic targets.

We then sought to determine if we could use micro-

dissected normal epithelium to better understand TNBC

transcriptional heterogeneity. We performed a transcrip-

tional chaos analysis by comparing each individual TNBC

to the set of 20 microdissected normals, demonstrating a

wide range in the number of genes that are dysregulated in

each individual TNBC. ‘‘Chaos’’ is a proper term for this

analysis as any number of 14,156 genes was dysregulated

in at least two or more TNBCs. Further the term ‘‘chaos’’ is

supported by the observation that transcriptional chaos is
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associated with the number of non-silent DNA mutations,

of which the vast majority are not recurrent. This suggests

an interesting link between the burden of non-recurrent,

non-silent DNA mutations with observed transcriptional

heterogeneity. Of interest, transcriptional chaos was not

associated with stage, age, or race, but was correlated with

the expression of genes involved in proliferation, cell

cycle, and DNA damage repair. Recently, studies using

various modalities have sought to subtype TNBCs into

distinct molecular subtypes with varying degrees of over-

lap [15, 17, 19]. To understand how transcriptional chaos

plays a role, we compared our chaos results with TNBC-

type and PAM50, and demonstrate that transcriptional

chaos adds additional information to molecular subtypes.

This suggests that while the commonly used subtyping

methods do separate samples into various groups, its the

individual uniqueness of each TNBC and its difference

compared to normal that also dictates heterogeneity.

Finally, in the midst of the transcriptional chaos, we

sought to determine whether any genes were present that

served as transcriptional denominators for TNBC. We

identified 146 genes that were dysregulated in [90 % of

TNBCs (‘‘TNBC core genes’’). Strikingly, out of 14,271

expressed RefSeq genes in this study, these core genes

represent only 1 %. Of this small fraction, we demonstrate

that over-expressed FOXM1 is a master regulator of a

significant fraction of these core genes. FOXM1 is a tran-

scription factor known for its role in mediating cell cycle

progression and metastasis [49, 50]. Indeed, several of the

genes involved in the FOXM1 TNBC core gene network

are involved in proliferation and cellular movement

(Fig. 5). To support the importance of FOXM1, data from

the TCGA has identified activation of FOXM1 as a basal-

like specific network when compared to the other intrinsic

subtypes [17]. Taken together, these data suggest that tar-

geting FOXM1 or its network members may serve as

potential therapeutic targets for TNBC.

In summation, we present a comprehensive and novel

characterization of the differential expression of a lethal

disease with no FDA-approved targeted therapies using

RNA-seq technology. By using microdissected normal

epithelium from healthy volunteers we demonstrate the

utility of this tissue to uncover novel biological insights

into TNBC biology and for informing future drug devel-

opment. Further, we show that a significant portion of

observed transcriptional heterogeneity can be explained by

transcriptional chaos that was uncovered only through the

use of a normal control.
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