
Charged black holes in GR and beyond

N. K. Johnson-McDaniel

Benasque meeting: NR beyond GR

04.06.2018

LIGO-G1801141-v1



Overview of charged BH solutions: 
Standard electrically charged solutions

• Reissner-Nordström: Nonspinning, discovered in 1916, the same year as the 
Schwarzschild solution. Simple generalization of Schwarzschild:  
 
 
 
 
However, introducing charge gives some radically different properties, similar to the 
introduction of angular momentum, e.g., a Cauchy horizon and the possibility of 
extremal black holes with zero temperature. 

• Kerr-Newman: Spinning, obtained by an application of the Newman-Janis 
procedure to Reissner-Nordström by Newman et al. in 1965, two years after the 
Kerr solution was discovered. By the uniqueness theorems, the most general black 
hole in Einstein-Maxwell theory. 

• [Note that one can obtain magnetically charged versions of these solutions with a 
duality transformation.]
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A. Further details

A nice spin-weighted spherical harmonic expression:
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1. Explanation

Note that Eq. (1) and the results from [1]...

Electric potential



Overview of charged BH solutions: 
Beyond Einstein-Maxwell

• String theory-inspired charged black hole with rotation (and both electric charge and 
magnetic dipole) constructed by Sen, PRL, 1992. Satisfies most general low-energy 
string theory action with at most two derivatives, i.e., Einstein-Maxwell + dilaton and 
(vector) Chern-Simons terms. 

• No stationary Proca black holes with stationary Proca field, due to theorem by 
Bekenstein, PRD 1972, though there are stationary Proca black hole solutions with a 
Proca field with a harmonic time dependence, e.g., Herdeiro, Radu and Rúnarsson, CQG 
2016. 

• Yang-Mills charged black holes: Can be static and not spherically symmetric (e.g., 
Kleihaus and Kunz, PRL 1997), generally have to be constructed numerically, and are also 
generally unstable. There are also results in the rotating case, e.g., Kleihaus and Kunz, 
PRL 2001.  

• Higher-dimensional charged black holes (and rings, Saturns): Can be constructed 
analytically, even with rotation, as in Caldarelli, Emparan, and Van Pol, JHEP 2011; for 
rings and Saturns, see Grunau, PRD 2014 for solutions in Einstein-Maxwell-dilaton theory.



Comparison of causal structure (eternal BHs)
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FIGURE 26. Penrose diagram for the maximally extended Reissner-Nordstri:im
solution (el < ml). An infinite chain of asymptotically flat regions I
(00 > r > r+) are connected by regions II (r+ > r > r_) and III (r_ > r > 0);
each region III is bounded by a timelike singularity at r =O.

but unlike in the SchwarzBchild solution, is timelike and so can be
avoided by a future-directed timelike curve from a region I which
crosses r = r+. Such a curve can pass through regions II, III and II
and re-emerge into another asymptotically flat region I. This raises
the intriguing possibility that one might be able to travel to other

3 16 Black Holes

As shown by Boyer and Lindquist (1967) and Carter (1968a), the s ingularities in the
metric components at r = r + and (for a # 0 or e * 0) at r = r- are coordinate
singularities of the same nature as the singularity at r = 2M in the Schwarzschild
spacetime . Thus, we may extend the spacetime through these coordinate s ingularities
much as in the Schwarzschild case . When these extensions are patched together, a
remarkable global structure of the extended charged Kerr spacetimes is obtained . A
conformal diagram of the extended Schwarzschild spacetime is shown in Figure
12 .3, and a conformal- diagram: of the extended charged Kerr spacet ime with a . U
is shown in Figure 12.4 for the "non-extreme" ease a ' + e 2 < M2 . Region I of
Figure 12 .4 is the asymptotically flat region covered in a nonsingular fashion by the
original coordinates (12.3 .1) with r > r + . By extending through the coordinate
singularity at r = r + , we obtain region II - representing a black hole , region Iii
representing a white hole, and region IV representing another asymptotically flat
region, just as in the Schwarz schild case, Figures 6.9 and 12.3 . However, unl ike the
Schwarzschild case, instead of encountering a true singularity at the "top boundary"
of region H and "bottom boundary>, .of region III, we encounter merely another
coordinate singularity at _r , = r - . Thus, we can extend region II through r = r- to
obtain regions V and VI. These regions contain the ring s clarity at I = 0 and,
as described above, one can pass through the, ring singularity to obtain another
asymptotically flat region with r --> -flo . (In this asymptotically flat reg ion the ring
singularity is a : naked singularity of negative mass ,:... With respect to the. original
asymptotically flat region 1, the ring s ingularity ,, of course, lies-wi thin a black hole . )
One may then continue. to extend the cha,rged Kerr spaced "upward" ad infinitum
to obtain a region VII, identical in structure to region Ili, and obtain regions VIII and
IX, identical in , structure to regions IV and, 1, stc ., ; S imilarly, .: one may extend the
charged Kerr solutions "downward" ad infin itum. The structure of the extended
Reissner-Nordstrom apaeetime {a = 0 , e * Q) : is very similar excegt ; that the true
singularity atI =Ono longert a ring structure, and one cannot extend to-negative
values of r .1'he global structure of the "extreme" charged Kerr- ease e z + as =M 2
(where r + = r_ =.M) differs from Figure 12 . 4 but has a similar structure consisting
of "blocks" with r > M and, r . < .M patched together in an infinite chain .

Thus, a n- observer starting in region I of the extended charged Kerr spacetime of
Figs . 12 .4 may cross the event horizon at r T r+ .and enter the black hole region
U . However, instead of inevitably falling into a singularity within a finite proper time
as occurs in the SchwarzschiId spacetime, the observer may pass through the "inner

ion I~ I i o

M
Fig . 12 . 3 . A conformal diagram of the extended Schwarzschild spacetime (see Fig .
6 .9), represented in the same manner as used in Figure 12 .2 . Note that since the
extended Schwarzschild space has two distinct asymptotically flat regions , two
distinct confom at boundaries are shown .
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Fig . 12 . 4 . A conformal diagram of the extended charged Kerr spacetime in the
case n 0 0, a' + e2 < 1KZ .

horizon" r = r- (which is a Cauchy horizon for the hypersur# "ace S shown in dig .
12.4), thereby entering region V or VI. From , there , he may end his existence in the
ring singularity but he also may pass through the ring singularity to a new asymp-
totically flat region, or he may enter the "white hole region" VII and from there enter
the new asymptotically flat region VIII or IX . From there he may enter the new black
hole associated with theme : asymptotic regions, and continue his journey .

How much of this .exte Wed charged Kerr ,spacetime should be taken seriously?
What portion of th is spacetime would be produced by a phys ically realistic grav-
itatiunal collapse, starting from "won-ero tic" initial data, i .e . , from an asymp-
totically flat initial data surface S with topology R3? Unl ike the Schwarzsetrild case,
we have no reason to believe that the exterior gravitational field of:any physically
re able"cv s ng body will be described by the Kerr metric, since, as mentioned
above, in the nonsghericalcase :we would, in general, expect a complicated dynam-
ical evolution which only "setdes down" to a stationary geomet ry at late times in
J-(,O+) . Thus, we are not in a position to follow the dynamical evolution of the
gravitational collapse of a body which forms a Kerr black hole and thereby determine
the detailed spacet ime geometry inside the black hole . However, in the case of
spherical collapse of a charged body (e * 0), the spacetime geometry exterior to the
matter is described by the Reissner-Nordstrom solu tion since Birkhoff's theorem can
be general ized to show that the Reissner-Nordstrom spacetime is the _unique spherical
electrovac solution. The dynamical evolution of a simple system like a charged,
spherical shell of dust can b e obtained explicitly . In this case, spacetime is flat inside
the shell, and the fiat interior of the shell entirely "covers up„ regions II .i and IV of
Figure 12.4. Part or all of regions H and V (including, in all cases, the singularity
at r = 0 in region V) also are covered up. The behavior of the shell for the various
choices of total mass M, total charge e, and total rest mass .M , are chronicled in detail

Kerr(-Newman) 
nonzero a

Figure from Wald: 
General Relativity

Figure from Wald: 
General Relativity

Schwarzschild

Reissner-Nordström 
(nonzero q)

Figure from Hawking and Ellis: 
Large-scale structure of spacetime



Comparison of ISCO velocities

• While charge mimics some of the effects of spin, in at 
least one sense the effects of spin are more extreme.  
 
Considering the PN velocity parameter (from the angular 
velocity at infinity), v = (Mω)1/3 for a neutral particle at the 
ISCO, we have: 

• Schwarzschild: ~0.41  

• extreme Reissner-Nordström: ~0.48 

• extreme Kerr (prograde orbit): ~0.79



Applications: Astrophysics?

• For standard electric charge, likely no astrophysical applications: There is 
enough plasma in the universe that even if one manages to form a 
charged black hole, it will discharge to a dimensionless charge of ~10-21 
or ~10-18 (the inverse of the electron or proton’s charge-to-mass ratio) on a 
timescale of ~1 μs or ~1 ms. [See, e.g., Cardoso et al. JCAP 2016 for a 
nice review.] 

• People have tried various ways of circumventing these results over the 
years, to allow for the black holes to retain significant charge for a 
nonnegligible amount of time, but none of them are particularly 
compelling. 

• If one wants to consider magnetic monopoles [as in Liebling and 
Palenzuela, PRD 2016], then magnetically charged black holes could be a 
possibility.



Applications: Astrophysics?

• If black holes are charged under something other 
than standard electromagnetism (e.g., a “dark 
electromagnetic field”), then there is still the 
possibility that this could be astrophysically 
relevant. 

• One still has to worry that there would be 
associated “dark electrons” that would neutralize 
the black holes similarly quickly as in the standard 
electromagnetic field case. 

• However, as pointed out by Cardoso et al. (JCAP 
2016), if the particles that are charged under the 
dark EM field have much smaller charge-to-mass 
ratios than the electron, as in the millicharged dark 
matter scenario, then one can avoid the standard 
arguments about discharging black holes quickly. 

JCAP05(2016)054
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Figure 1. The parameter space of a minicharged DM fermion with mass m and charge q = e
p

✏2h + ✏2

(see main text for details). The left and right panels respectively show the planes ✏h = 0 and
✏ = 0 of the three dimensional parameter space (m, ✏h, ✏). As a reference, an electron-like particle
(m ⇠ 0.5MeV, ✏ = 1) is denoted by a black marker. In each panel, the red and blue areas below the
two threshold lines denote the regions where charged BHs with a charge-to-mass ratio Q/M > 10�3

and Q/M = 1 can exist [cf. eq. (2.23)]. The region above the black dashed line is excluded because
in this region extremal BHs would discharge by plasma accretion within less than the Hubble time
[cf. eq. (2.20)]. Left panel: the hatched region is excluded by the e↵ects of the magnetic fields of
galaxy clusters [21] and it is the most stringent observational constraint on the model (we also show
the region excluded by the direct-detection experiment LUX [24], cf. ref. [21] for details and other
constraints). Right panel: when ✏ = 0 our model reduces to that of DM with dark radiation [23] and
the region above the solid black line is excluded by soft-scattering e↵ects on the galaxy dynamics [23].
In the region above the dark red dot-dashed line hidden photons emitted during the ringdown of a
M ⇠ 60M� would be absorbed by hidden plasma of density ⇢DM ⇠ 0.4GeV/cm3 [cf. eq. (3.42)].

dark fermions do not possess (fractional) electric charge but interact among each other only
through the exchange of dark photons, the latter being the mediators of a long-range gauge
interaction with no coupling to Standard-Model particles [23].

Although rather di↵erent, both these DM models introduce fermions with a small (elec-
tric and/or dark) charge. It is therefore natural to expect that minicharged DM can circum-
vent the stringent constraints that are in place for charged BHs in Einstein-Maxwell theory.
In this work we will show that this is indeed the case and that even extremal Kerr-Newman
BHs are astrophysically allowed in the presence of minicharged DM.

Charged BHs are remarkably sensitive to the presence of even tiny hidden charges but
are otherwise insensitive to the details of their interaction. This is a consequence of the
equivalence principle of general relativity. We shall take advantage of this universality and
discuss BHs charged under a fractional electric charge or under a hidden dark interaction on
the same footing. Figure 1 summarizes the main results of section 2, showing the parameter

space of a minicharged fermion with mass m and charge q = e
q
✏2h + ✏2 in which astrophysical

charged BHs can exist (here and in the following ✏h and ✏ are the fractional hidden and electric
charges of the dark fermion, respectively). Interestingly, such region does not overlap with
the region excluded by direct-detection experiments and by cosmological observations.

Having established that charged astrophysical BHs can exist in theories of minicharged
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Applications: Mathematical/theoretical physics

• Another way of approaching extremality, and thus to test 
cosmic censorship [e.g., the study of self-force effects on 
the original overcharging scenario from Hubeny PRD 
1999 by Zimmerman et al. PRD 2013]. 

• Lack of separability of perturbations for Kerr-Newman 
black holes. 

• Existence of hair from non-EM charges. 

• Additional tests of isolated and dynamical horizon 
frameworks, and calculations of black hole entropy.



Applications: Toy models
• Charged black holes are excellent toy models for certain effects that it is difficult to calculate 

otherwise. 

• In particular, since Reissner-Nordström BHs exhibit several of the effects of rotation (e.g., 
extremal black holes and a Cauchy horizon), while retaining the technical simplicity of spherical 
symmetry, they have been used as a toy model for Kerr black holes 

• My primary interest in charged black holes is in using the charge as a proxy for possible 
beyond-GR effects in binary black holes. 

• In particular, generic charged black hole binaries will emit dipole radiation. And even in the case 
of equal charge-to-mass ratio, where there is no dipole radiation, the binary will have PN phase 
and amplitude coefficients that differ from those of vacuum BBH systems, in addition to 
changes to the quasinormal mode spectrum of the final black hole, except in the special case 
where they form an uncharged final black hole. 

• Thus, one can use charged BBH waveforms to check how sensitive current LIGO tests of GR 
are to completely consistent parameterized deviations from GR (and whether the parameterized 
test can recover the correct changes to the post-Newtonian coefficients).



Studies of charged black holes: 
Perturbation theory
• Post-Newtonian (actually charged point particles, but useful for studying binaries): 

• Conservative dynamics: 1PN [O(c-2)] N-body Lagrangian and Hamiltonian calculated [Bażański 
Acta Phys. Pol. 1956 and 1957 and Barker and O’Connell, JMP 1977]. [2PN 2-body Lagrangian 
EM-gravity terms have been calculated in Gaida and Tretyak, Sov. Phys. J., 1991, but using a 
method that seems a bit suspect.] 

• Dissipative dynamics: Fluxes have just been computed to Newtonian order, as far as I can tell.  
 
Newtonian-order gravitational waveforms are calculated in Cardoso et al. JCAP 2016. 

• Quasinormal modes: Difficult to compute for Kerr-Newman, as the equations are not separable, 
but finally computed in Dias, Godazgar, and Santos, PRL 2015 (plus calculations in the slow-rotation 
[Pani, Berti, and Gualtieri, PRL and PRD 2013] or weakly charged [Mark et al., PRD 2015] limits). 

• Self-force: The electromagnetic self-force is a standard toy model, and there are now self-force 
calculations for Reissner-Nordström black holes, both of the scalar self-force for circular orbits 
[Castillo, Vega, and Wardell, arXiv 2018] and the electromagnetic self-force for radial trajectories 
[Zimmerman et al., PRD 2013]. There are also calculations of inspirals of uncharged point particles 
around a RN BH in the adiabatic approximation [Zhu and Osburn, PRD 2018].



Studies of charged black holes: 
Numerical relativity
• Zilhão et al., PRD 2012 and 2014: Evolutions of head-on 

collisions of nonspinning charged black holes from rest, 
using either analytic equal charge-to-mass ratio initial data, 
or a simple numerical initial data construction to obtain 
opposite charge-to-mass ratios. 

• Zilhão et al., PRD 2014: Evolutions of perturbed Kerr-
Newman black holes to study stability. 

• Liebling and Palenzuela, PRD 2016: Evolutions of 
(weakly) electric and magnetically charged orbiting black 
holes, including force-free plasma, using metric initial data 
for uncharged black holes + boosted charges for the EM 
initial data. 

• Hirschmann et al., PRD 2018: Evolutions of orbiting 
binaries of weakly charged black holes in Einstein-Maxwell-
dilaton theory, with the same initial data construction as 
above (and a constant dilaton).

orders of magnitude smaller, only ϕ1 ≈ 10−3, and
one expects dynamical differences to scale with ϕ2

1.
And so perhaps it is natural that the differences we
see for these parameter choices are as small as we
report. Scalarization levels comparable to those
neutron star mergers would require BH charges
α0q2M ≈ 10−1 (qM ≃ 10−1) for small (very large)
values of α0.

Because EMD allows for scalar radiation, we can gain
additional understanding by extracting it in addition to the
gravitational wave signal. As discussed in Appendix B, the
computation of the Newman-Penrose scalar Φ22 indicates
that the scalar radiation is expected to scale as Φ22 ≈ α0ϕ;tt
(evaluated asymptotically). One can thus estimate that
this radiation in the early inspiral phase scales as
Φ22 ≈ α0ϕ1Ω2. This scaling is assumed in Fig. 7, which
shows Φ22 as a function of time for both the equal and
unequal mass cases. In particular, because the orbital
frequency differs only slightly with changes to α0, the
rescaling depends only on the coupling and scalar charge.
The coupling value is straightforward, but the black hole
scalar charge is chosen as the scalar charge of individual
black holes in isolation. Thus, the scalar charges for equal
mass binaries are chosen as ϕ1 ¼ f−4.8 × 10−7;−4 ×
10−4;−6.9 × 10−4g while for unequal mass binaries, we
choose masses and scalar charges to be (m1, m2): ϕ1¼
fð−3;−2Þ×10−7;ð−2.4;−1.6Þ×10−4;ð−4.2;−2.7Þ×10−4g
for α0 ¼ f1; 103; 3 × 103g respectively [which are well
approximated by the analytical expression Eq. (38)].
As shown in Fig. 7, reasonably good agreement with the

expected scaling is obtained during the inspiral phase, but
the scaling overestimates the magnitude of the radiation
during the merger. The failure of the scaling during the
merger indicates that the nonlinear behavior is less radiative

than otherwise expected from simple superposition argu-
ments and is consistent with the observations made in the
isolated black hole cases where the scalar charge shows a
trend toward saturation at high coupling values.
This saturation is evident in Fig. 8, which shows the

l ¼ m ¼ 1 and l ¼ m ¼ 2 modes for the scalar radiation
corresponding to the unequal mass binary for α0 ¼ 1000
and 3000. In contrast with Fig. 7, however, both cases here
are scaled linearly by their respective value of α0, ignoring
the dilaton charge. Focusing only on the merger, this simple
scaling in α0 works quite well, supporting our assertion that
the scalar charges saturate at large coupling.
An interesting aspect of gravitational radiation in EMD

is that it could contain a dipolar component in contrast to
GR, which disallows dipolar radiation. Although one
generally expects the dipolar component, when allowed
by the theory, to dominate over higher multipoles, here the
strength of the dipolar component depends on the differ-
ence in the scalar charges of the black holes. As a result, the
equal mass case produces no dipolar radiation. For the
unequal mass binary with m1=m2 ¼ 3=2 considered here,
the scalar charges are different but nevertheless are suffi-
ciently close to each other that the resulting
l ¼ m ¼ 1 mode is weaker than the l ¼ m ¼ 2 mode.
We comment on two further conclusions that can be

drawn from our studies as well as leave open a question
deserving of investigation. First, we find the ringdown of
the merger remnant appears largely insensitive to the value
of the coupling. As mentioned in the previous section
concerning the ringdown of the head-on remnant, small
values of the electric charge produce correspondingly small
differences in ringdown versus GR.

FIG. 7. The (real part of the) l ¼ m ¼ 2 mode of the scalar
gravitational radiation Φ22 of a binary black hole with an electric
charge qe ¼ 0.001 for different values of α0. Top: The equal mass
case. Bottom: The unequal mass case.

FIG. 8. The (real part of the) l ¼ m ¼ 1 and l ¼ m ¼ 2 modes
of the scalar gravitational radiation Φ22 of a binary black hole
with an electric charge qe ¼ 0.001 for different values of α0
corresponding to the unequal mass binary case. Here, we have
scaled up the case α0 ¼ 1000 by a factor of 3 in accordance
with expected scaling if the dilaton charge is ignored. Top: The
l ¼ m ¼ 1 mode. Bottom: The l ¼ m ¼ 2 mode.

BLACK HOLE DYNAMICS IN EINSTEIN-MAXWELL- … PHYS. REV. D 97, 064032 (2018)

064032-9

8

FIG. 2. The electric (left panel) and Hamiltonian (right panel) constraints along the collision axis at time t = 384M for model
q+-090_d32. The solid (black) curves display the result obtained for lower resolution hf = M/160 and the dashed (red) curves
that obtained for higher resolution hf = M/196 and amplified by 1.24 for the expected fourth-order convergence.

FIG. 3. Real part of the electromagnetic (l = 1, m = 0 mode) and gravitational (l = 2, m = 0 mode) waveforms. These have
been conveniently rescaled and shifted in time so that their peaks coincide.

radiated energies thus obtained are plotted in Fig. 4 as
functions of the charge-to-mass ratio and quantitatively
illustrate the scaling discussed in the previous paragraph.
These results contrast with the corresponding equal

charge collisions of Paper I, where the emitted gravita-
tional radiation decreases with increasing charge because
of its decelerating e↵ect and the correspondingly low col-
lision velocities, and the emitted electromagnetic radia-
tion peaks at around Q/M = 0.6. In the case of oppo-
site charges, in contrast, both gravitational and electro-
magnetic radiation increase with Q/M , and the electro-
magnetic radiation becomes the dominating channel for
|Q|/M & 0.37.
As already mentioned at the end of the last section, we

observe a good agreement between our simple analytic
model of Sec. III and the numerical simulations we have

just presented, for a range of cut-o↵s for the former. For
instance, setting zc = 1.5M , we make the following obser-
vations: i) For the configuration |Q|/M = 0.99, the ratio
of energy in electromagnetic to gravitational radiation
obtained in our numerical simulations is ⇠ 5.8 (cf. Table
I), whereas that obtained from our simple analytic ap-
proximation is 5.2; cf. Eq. (3.15). ii) Equal amounts of
electromagnetic and gravitational radiated energies are
obtained for |Q|/M ⇠ 0.37 in the numerical simulations
and |Q|/M = 0.31 in the analytic model. The analyti-
cal results thus reproduce the numerical values with an
error between 10% and 20%. A comparison of the ener-
gies emitted in gravitational and electromagnetic radia-
tion for the entire range Q/M is shown in Fig. 4. Even
though a discrepancy at a level of about 10 % is visible,
the analytic prediction captures the main features of the

Oppositely charged head-on collision 
waveforms from Zilhão et al. 

!
Scalar radation from Hirschmann et al.

EM waveform GW waveform



Initial data for orbiting charged black holes 
including spin and eccentricity reduction

• Generalize the superposed Kerr-Schild construction from Lovelace et al. PRD 2009 
to include charge, by superposing Kerr-Newman black holes (weighted by 
attenuating functions) and also solving for a correction to the superposed electric 
field to satisfy the divergence constraint; the magnetic divergence constraint is 
satisfied automatically due to superposing the vector potentials. 

• Specifically, solve the XCTS equations (with EM sources) for the geometry + 
 
 
and compute electric and magnetic fields using: 
 
 

• Have implemented this method in Wolfgang’s SGRID spectral code, and are 
currently improving boundary conditions and implementing computations of ADM 
quantities.

8

(4–6) and Eq. (21 –22) in to express x and ⇢ in terms of C±, and therefore in terms of �(B,�) and B:
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cos [B⇡]� cosh [�(B,�)]
, (62)

⇢ =
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We plug these expressions into the expression for the horizon surface, written in coordinate-free form:

(|x� ˆ

a · x|)2

r2 + a2/M2

+

(

ˆ

a · x)2

r2
= 1, (65)

where x = (x± b, ⇢ cos�, ⇢ sin�), depending on the location of the black hole, and then use a root-finder to numerically solve
for �±(B,�) at each (B,�). Note that �± = const for Schwarzschild for not x = x ± b, but x = x ± b

p
1 +R2/b2. This is

probably not the most elegant way of doinb this, but we haven’t found a fully analytical solution yet.

B. Linearized XCTS equations

The standard XTCS equations:
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After assuming ũ
ij

= @
t

K = 0, and including an additional equation to solve for �, we have (note that for metric quantities in
these XCTS equations, we use the conformal metric to raise and lower indices)
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where p
g is the square root of the determinant of the physical metric (g
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). We also solve for the correction to the
scalar potential (see Eq. 72), where the covariant derivatives are compatible with g
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Alternatively, one can write this in a slightly simpler form as
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where x = (x± b, ⇢ cos�, ⇢ sin�), depending on the location of the black hole, and then use a root-finder to numerically solve
for �±(B,�) at each (B,�). Note that �± = const for Schwarzschild for not x = x ± b, but x = x ± b
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ũij

◆
= 8⇡ 10J i, (67)

˜r2

(↵ )� (↵ )

"
˜R

8

+

5

12

K2 4

+

7

8

 �8

˜Aij

˜A
ij

#
+  5

(@
t

K � �k@
k

K) = (↵ )
⇥
2⇡ 4

(⇢+ 2S)
⇤
. (68)

After assuming ũ
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Boundary conditions
• Currently just using superposed fields to set boundary conditions for initial tests. 

• Will use proper isolated horizon (really non-expanding horizon) boundary conditions for the geometry 
(as in Lovelace et al.), and use a Neumann boundary condition for the scalar potential to fix 
the charge on the black holes. The current proposal is just to scale the superposed electric 
field to obtain the desired charge. 
 
 
 
 
However, we’re trying to think of better ways (where the boundary condition involves the 
horizon’s geometry). 

• [N.B.: The isolated horizon boundary conditions imply that  
 
It doesn’t seem simple to enforce this with a boundary condition, since it involves 
transverse derivatives of 𝜙. We are waiting to see how well this is satisfied in our data with 
the above boundary conditions before worrying too much about how to enforce this.]
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[see Eq. (2.2) in [25]].7 This is the Ricci scalar term in the Raychaudhuri equation [see, e.g., Eq. (20) in [13], which denotes our
`µ by kµ], so that term vanishes if we are considering a non-expanding horizon.

However, it is not clear how to implement this condition on R
µ⌫

as a boundary condition for � (and/or as a boundary condition
for a possible correction to the magnetic field). Specifically, as discussed in Sec. II C of [25] [see Eqs. (2.16) and (2.17) in
particular], the stronger condition that R

µ⌫

`µp⌫ , 0 for any p⌫ tangent to the horizon [from below Eq. (2.3) in [25]] gives
F
µ⌫

`µp⌫ , 0 , F ⇤
µ⌫

`µp⌫ on the horizon.8 Written in terms of the electric and magnetic fields [using Eqs. (2.28) and (2.29)
in [1]], these imply that Ek

a

, (s ⇥ B)

a

, as well as B
k
a

, �(s ⇥ E)

a

, but this follows from the first equation. Here the k
superscripts denote projection perpendicular to sa, the unit normal to (the 2d section of) the horizon. Note that one can replace
B

a

and E
a

with B
k
a

and E
k
a

on the right-hand sides of these equations if one so desires. Thus, these boundary conditions are the
same as those obtained for electric and magnetic fields on Kerr in the membrane paradigm viewpoint—see Eq. (4.10) in [26].

These boundary conditions do not involve the normal derivative of � and thus cannot be used to obtain a standard (Neumann
or Robin) boundary condition involving the normal derivative at the boundary. They thus also do not say anything about the
charge on the black hole, which can be computed by a surface integral of the normal component of E

a

(see the discussion in
Sec. IV C). We thus can thus fix the charge on the black hole with a Neumann boundary condition on  . Of course, just fixing
the total charge does not specify the normal derivative at every point, as needed for the boundary condition, just its integral over
the surface. A simple way to fix the normal derivative at every point is to just scale the superposed field by a constant such that
the total charge is the desired one. Specifically, we take
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, (53)
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and QH is the charge on the hole. This construction obviously will not work if the desired charge is nonzero and the superposed
field leads to zero charge (or a much smaller charge than the desired charge), but this sort of situation seems unlikely to occur in
practice.

However, while this is simple, it seems a bit kludgy and insufficiently flexible to provide the very best initial data. One would
rather have the boundary condition on sa@

a

� respond to the geometry of the horizon. In fact, for an unperturbed Kerr-Newman
black hole in a tetrad appropriate for the isolated horizon formalism, the derivatives of saE

a

and saB
a

are related to the intrinsic
Ricci scalar RH of (a 2d section of) the horizon. Specifically, from Eq. (56b) in [27] [useful definitions are in Eqs. (2) and (8)]
and Eq. (23) in Smarr [28] (noting that the Gaussian curvature of a 2d surface is half its Ricci scalar), one obtains
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where r
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is the radius of the outer horizon in Boyer-Lindquist coordinates, so we have
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(One can likely replace r
+

with some radial coordinate defined off of the horizon in the first partial derivative, but I have not
checked this explicitly.) To obtain the expressions for the normal components of the electric and magnetic fields, we have
noted that �NP
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:= � 1

2
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(na`n + mam̄b
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in the tetrad used in [27]. However, it’s not clear if this sort
of relation extends to perturbed Kerr-Newman, though it’s possible that one can obtain something useful in the general case from
the isolated horizon formalism using, e.g., (possibly just some of) Eqs. (86) and (89) in [29]. But even if one obtains something
useful in general, if it just constrains the normal derivatives of the fields, then it’s unclear how to turn it into a boundary condition
for the normal derivative of �.

Turning now to the non-expanding horizon condition on the parallel components of the fields, Ek
a

, (s ⇥ B)

a

, this can
presumably be satisfied by adding the curl of a to-be-determined vector field to the electric and/or magnetic field, since this does
not affect the value of the divergence. If we just consider adding the curl to the electric field, and call the vector field Za, it has
to satisfy
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(57)

7 Specifically, `µ = (nµ + sµ)/
p
2, where nµ is the unit normal to the spatial hypersurface and sµ is the unit normal to (the 2d section of) the horizon.

8 In the Newman-Penrose formalism, this can be written as �NP
0 , 0, where the Newman-Penrose scalar �NP

0 := Fab`amb, and ma is a complex null vector
that here is tangent to the horizon.

Normal to 
horizon 

(= excision 
surface)
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and QH is the charge on the hole. This construction obviously will not work if the desired charge is nonzero and the superposed
field leads to zero charge (or a much smaller charge than the desired charge), but this sort of situation seems unlikely to occur in
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However, while this is simple, it seems a bit kludgy and insufficiently flexible to provide the very best initial data. One would
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in the tetrad used in [27]. However, it’s not clear if this sort
of relation extends to perturbed Kerr-Newman, though it’s possible that one can obtain something useful in the general case from
the isolated horizon formalism using, e.g., (possibly just some of) Eqs. (86) and (89) in [29]. But even if one obtains something
useful in general, if it just constrains the normal derivatives of the fields, then it’s unclear how to turn it into a boundary condition
for the normal derivative of �.

Turning now to the non-expanding horizon condition on the parallel components of the fields, Ek
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presumably be satisfied by adding the curl of a to-be-determined vector field to the electric and/or magnetic field, since this does
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particular], the stronger condition that R
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on the right-hand sides of these equations if one so desires. Thus, these boundary conditions are the
same as those obtained for electric and magnetic fields on Kerr in the membrane paradigm viewpoint—see Eq. (4.10) in [26].

These boundary conditions do not involve the normal derivative of � and thus cannot be used to obtain a standard (Neumann
or Robin) boundary condition involving the normal derivative at the boundary. They thus also do not say anything about the
charge on the black hole, which can be computed by a surface integral of the normal component of E

a

(see the discussion in
Sec. IV C). We thus can thus fix the charge on the black hole with a Neumann boundary condition on  . Of course, just fixing
the total charge does not specify the normal derivative at every point, as needed for the boundary condition, just its integral over
the surface. A simple way to fix the normal derivative at every point is to just scale the superposed field by a constant such that
the total charge is the desired one. Specifically, we take

sa@
a

� , (⇣ � 1)sa(E
sp

)

a

, (53)

where

⇣ := 4⇡QH

I

S

exc

(E
sp

)

adS
a

��1

(54)

and QH is the charge on the hole. This construction obviously will not work if the desired charge is nonzero and the superposed
field leads to zero charge (or a much smaller charge than the desired charge), but this sort of situation seems unlikely to occur in
practice.

However, while this is simple, it seems a bit kludgy and insufficiently flexible to provide the very best initial data. One would
rather have the boundary condition on sa@

a

� respond to the geometry of the horizon. In fact, for an unperturbed Kerr-Newman
black hole in a tetrad appropriate for the isolated horizon formalism, the derivatives of saE

a

and saB
a

are related to the intrinsic
Ricci scalar RH of (a 2d section of) the horizon. Specifically, from Eq. (56b) in [27] [useful definitions are in Eqs. (2) and (8)]
and Eq. (23) in Smarr [28] (noting that the Gaussian curvature of a 2d surface is half its Ricci scalar), one obtains

saE
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, 2QH(r
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+

� a2 cos2 ✓)

(r2
+

+ a2 cos2 ✓)2
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, 4QHar+ cos ✓)

(r2
+

+ a2 cos2 ✓)2
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2(r2
+

+ a2)(r2
+

� 3a2 cos2 ✓)

(r2
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+ a2 cos2 ✓)3
. (55)

where r
+

is the radius of the outer horizon in Boyer-Lindquist coordinates, so we have
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, � 2QHr+
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RH,
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(One can likely replace r
+

with some radial coordinate defined off of the horizon in the first partial derivative, but I have not
checked this explicitly.) To obtain the expressions for the normal components of the electric and magnetic fields, we have
noted that �NP

1

:= � 1

2

F
ab

(na`n + mam̄b

) =

1

2

(saE
a

� (3)✏
abc

mam̄
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) =

1

2

(saE
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+ isaB
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), so saE
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= 2Re�NP
1

and
saB

a

= 2 Im�NP
1

. NKJ-M: I need to check the sign of (3)✏
abc

mam̄
b

in the tetrad used in [27]. However, it’s not clear if this sort
of relation extends to perturbed Kerr-Newman, though it’s possible that one can obtain something useful in the general case from
the isolated horizon formalism using, e.g., (possibly just some of) Eqs. (86) and (89) in [29]. But even if one obtains something
useful in general, if it just constrains the normal derivatives of the fields, then it’s unclear how to turn it into a boundary condition
for the normal derivative of �.

Turning now to the non-expanding horizon condition on the parallel components of the fields, Ek
a

, (s ⇥ B)

a

, this can
presumably be satisfied by adding the curl of a to-be-determined vector field to the electric and/or magnetic field, since this does
not affect the value of the divergence. If we just consider adding the curl to the electric field, and call the vector field Za, it has
to satisfy

(D ⇥ Z)

a

� s
a

sb(r⇥ Z)

b

, (s⇥B)

a

� Ek
a

=: S
a

(57)

7 Specifically, `µ = (nµ + sµ)/
p
2, where nµ is the unit normal to the spatial hypersurface and sµ is the unit normal to (the 2d section of) the horizon.

8 In the Newman-Penrose formalism, this can be written as �NP
0 , 0, where the Newman-Penrose scalar �NP

0 := Fab`amb, and ma is a complex null vector
that here is tangent to the horizon.

Charge of black hole 
used in superposition



Conclusions

• There are a wide variety of charged binary black hole solutions involving GR coupled 
to other fields (which could also be thought of as modifications to GR itself). 

• Even concentrating on just the Kerr-Newman family of Einstein-Maxwell theory, there 
is a possibility that these could still be astrophysically relevant if they are charged 
under some dark EM field or magnetically charged. 

• Regardless, charged black holes make excellent toy models for various effects, 
including spin and modified gravity effects. 

• There have been evolutions of charged black hole binaries with two codes (Lean 
and HAD), but only with very simple approximate initial data in the orbiting case. 

• We have implemented a generalization of the Lovelace et al. superposed Kerr-Schild 
construction to Kerr-Newman black holes in Wolfgang Tichy’s SGRID code and are 
currently testing the data with evolutions in the vacuum case and improving the 
boundary conditions.



Extra slides



Technical details about SGRID implementation

• Use Ansorg’s ABφ coordinates in their black 
hole excision version (to give a compactified 
grid with more resolution close to the black 
holes) with a Chebyshev-Chebyshev-Fourier 
spectral expansion. 

• Solve nonlinear equations using Newton’s 
method, and linear equations using 
dctemplates (+ BLAS & LAPACK) GMRES with 
block Jacobi preconditioner + UMFPACK (or 
just UMFPACK if you have enough memory). 

• OpenMP parallelized (for, e.g., setting the 
elements of the matrix to solve).

Figure 5.1: The z = 0 slice produced by the SGRID code for solving the
constraint equations. Lines of constant A and B are shown for b = 5, and the
black holes are located along the x-axis and excised by a spherical region at
A = 0. The grid is separated into two subdomains that meet along the yz-plane
(Seen here only as the line x = 0).

Figure 5.2: The � = 0 slice of the subdomain for the +x-axis black hole
produced by the SGRID code for solving the constraint equations. Lines of
constant A and B are shown and the excision boundary is located at A = 0.
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Illustration of the ABφ 
coordinates from George 

Reifenberger’s thesis


