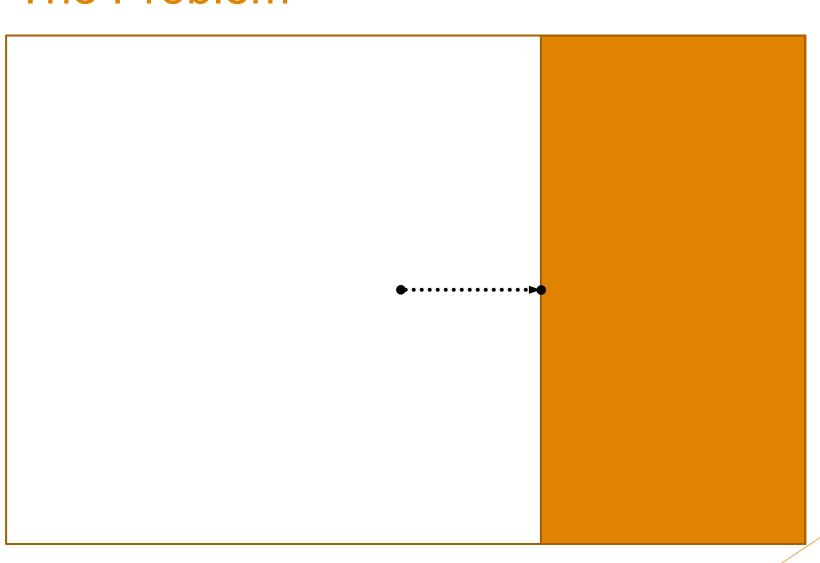
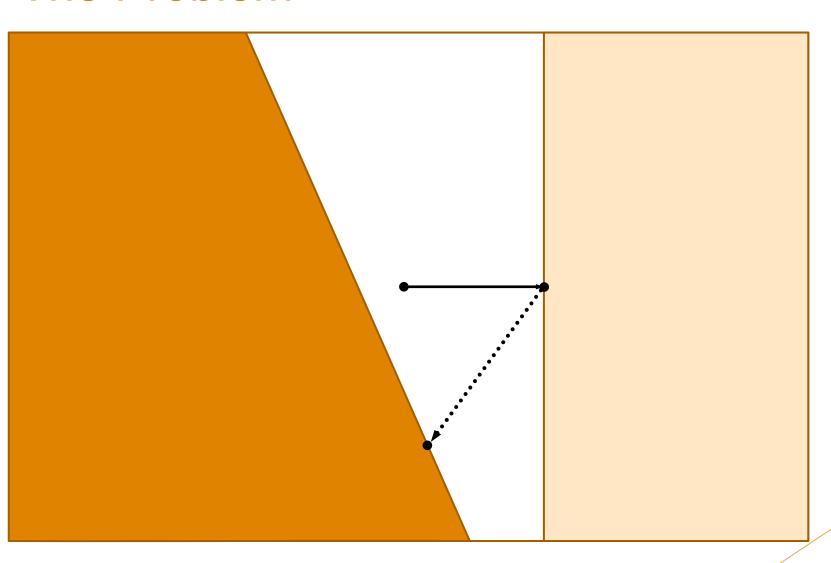
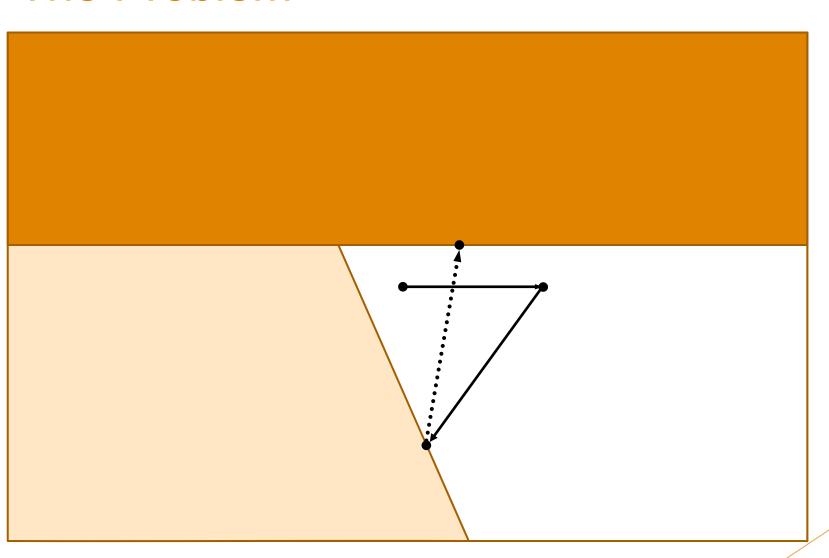
Chasing Nested Convex Bodies

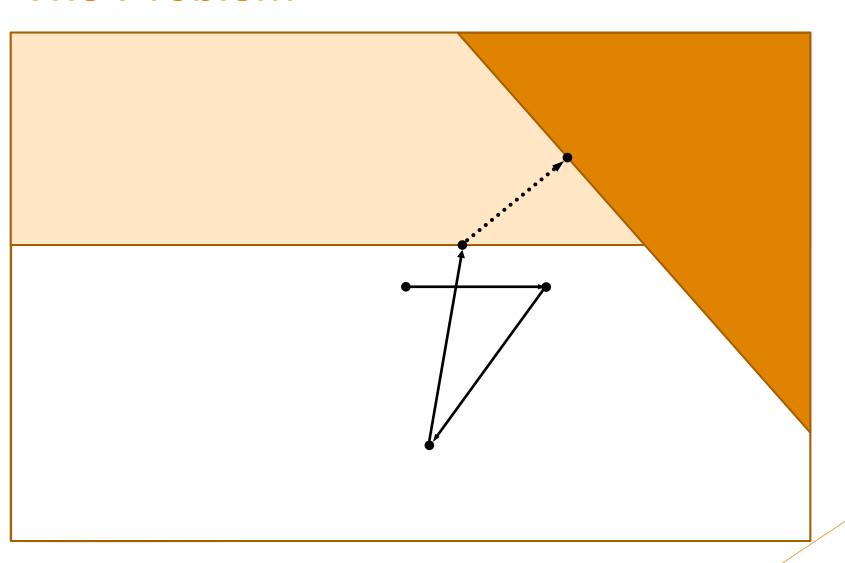
C.J. Argue

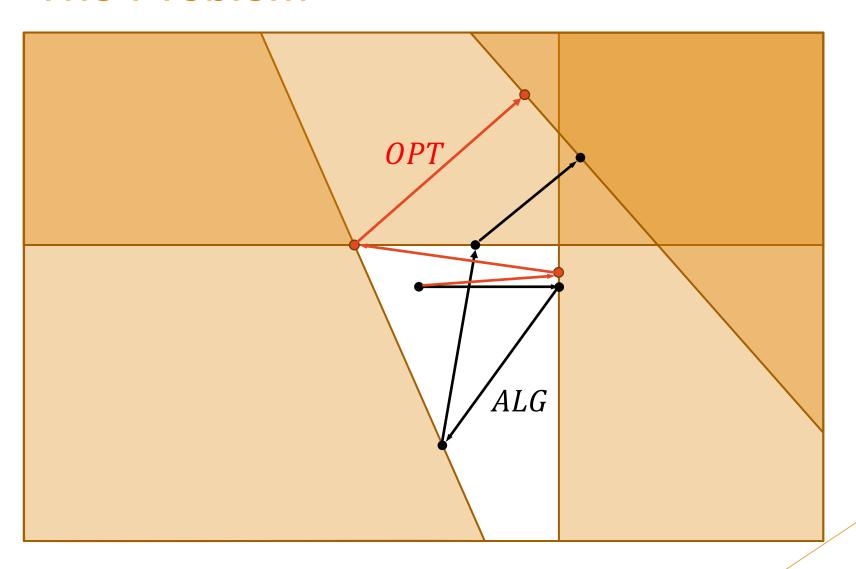
Joint with Sébastien Bubeck, Michael Cohen Anupam Gupta, Yin Tat Lee











The Problem – Formal Definition

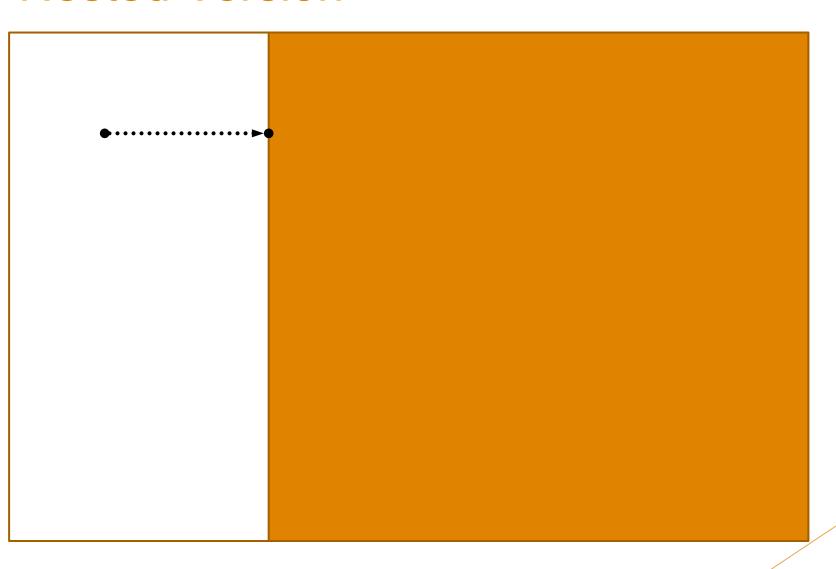
- ▶ Given convex sets $K^1, K^2, K^3, ...$ in \mathbb{R}^d
- ► Choose $x^i \in K^i$ online $(x^0 = 0)$
- $ightharpoonup \text{Cost } ALG^t = \sum_{i=1}^t ||x^i x^{i-1}||$
- ▶ Goal minimize competitive ratio

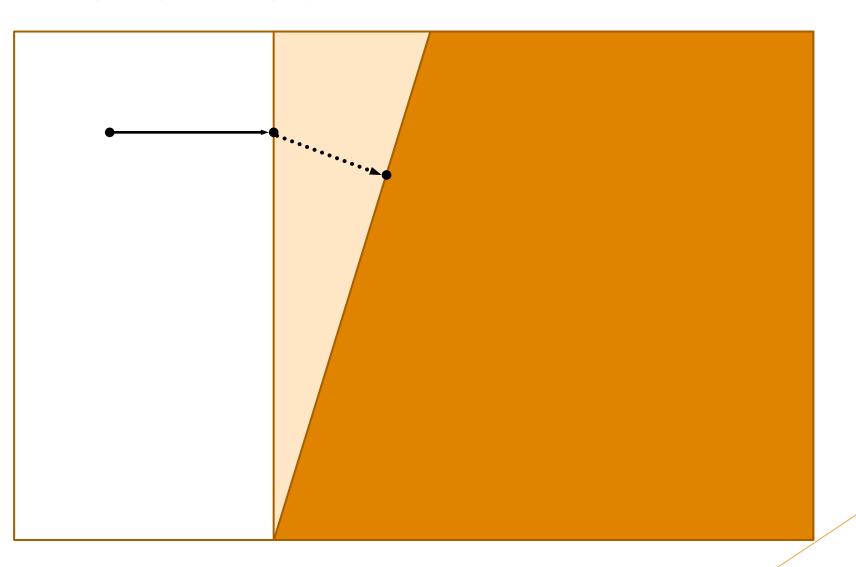
$$\operatorname{cr}(ALG) \coloneqq \max_{\sigma,t} \frac{ALG^t(\sigma)}{OPT^t(\sigma)}$$

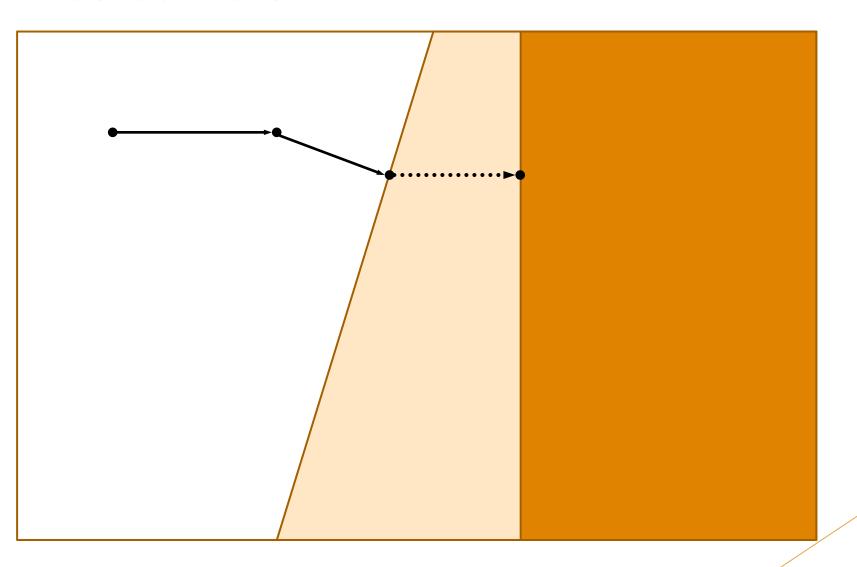
- $\triangleright \sigma$ arbitrary instance
- $ightharpoonup OPT^t(\sigma)$ optimal offline cost

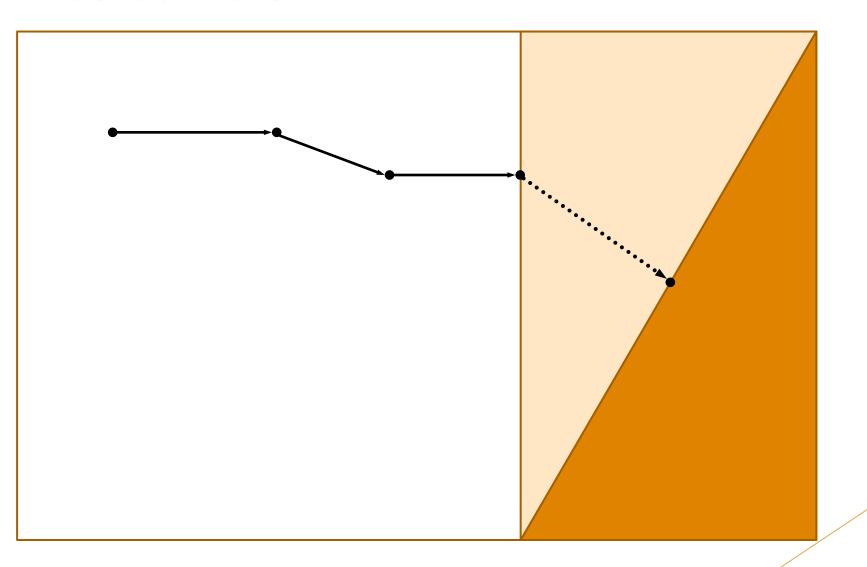
Motivation

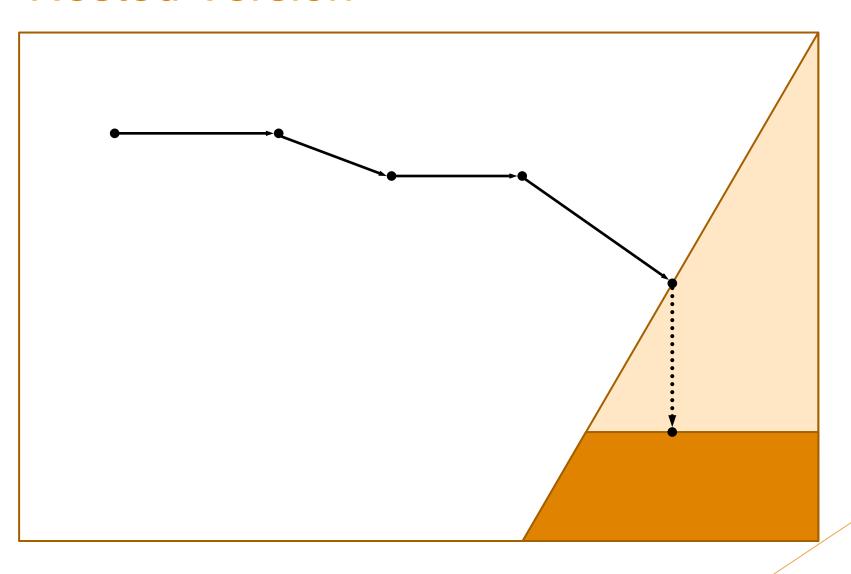
- Metrical task systems (MTS)
 - ▶ Given convex functions f_1 , f_2 , f_3 , ...
 - ► Choose x^i online $(x^0 = 0)$
 - $ightharpoonup \text{Cost } ALG^t = \sum_{i=1}^t ||x^i x^{i-1}|| + f_i(x^i)$
 - ► Convex body chasing: role of geometry in MTS
- Related to k-server

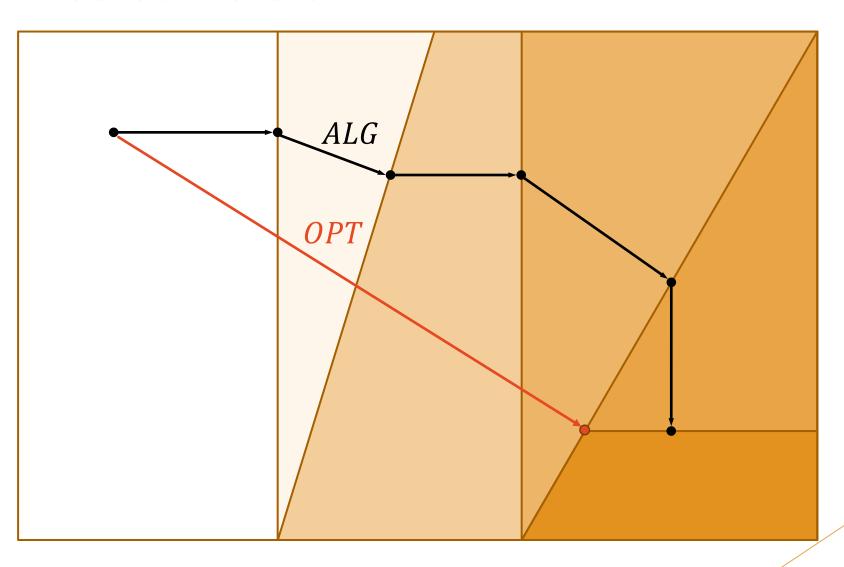












Results

- FL 93] \sqrt{d} lower bound, Competitive general chasing (d = 2 case)
- ▶ [BB+ 17] $d^{O(d)}$ -competitive nested chasing
- ► [AB+ 18] $O(d \log d)$ -competitive nested chasing
- ► [BL+ 18] $O(\sqrt{d \log d})$ -competitive nested chasing, exp(d)-competitive general chasing

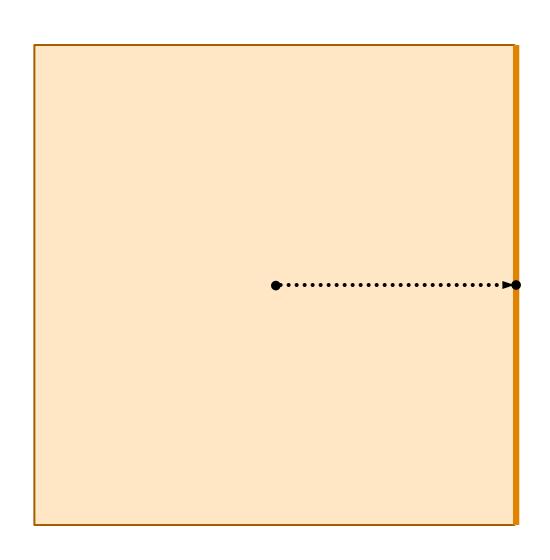
Talk outline

- 1. Warm-up ideas from general chasing
- 2. Centroid and Recursive Greedy two motivating ideas
- 3. Recursive Centroid $O(d \log d)$ -competitive, analysis

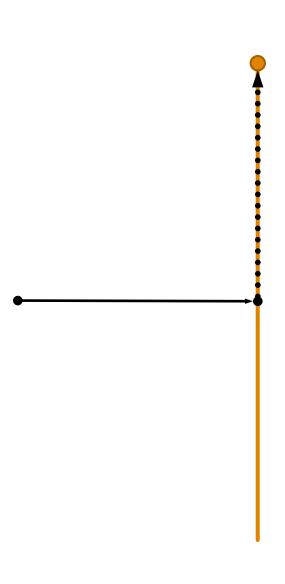
Part 1 – Warm-up ideas

A lower bound, a bad algorithm, and two reductions

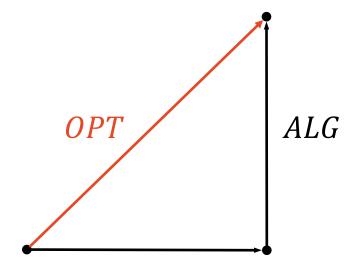
Lower Bound



Lower Bound

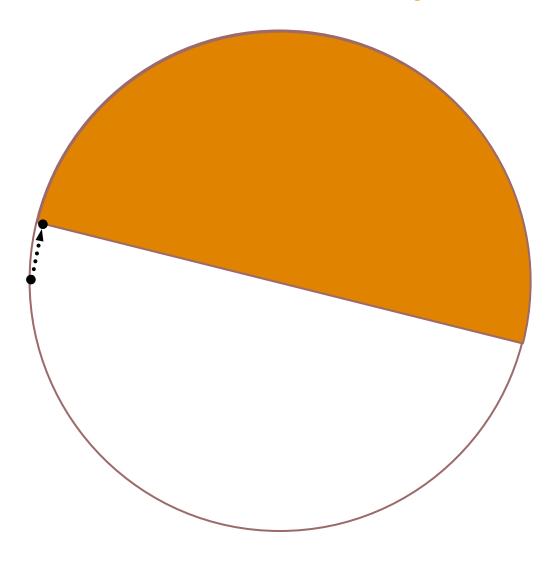


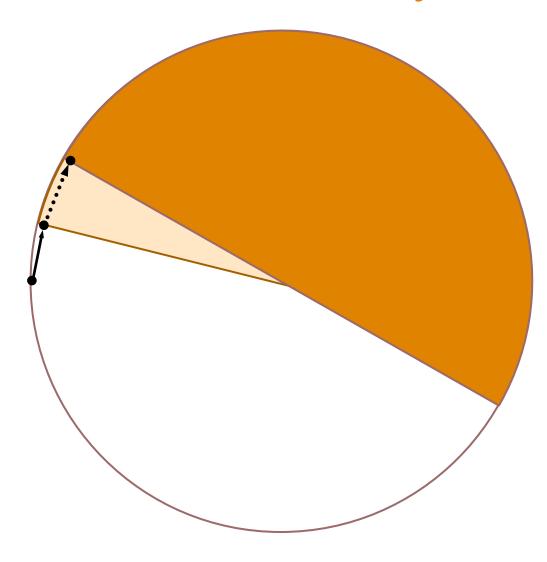
Lower Bound

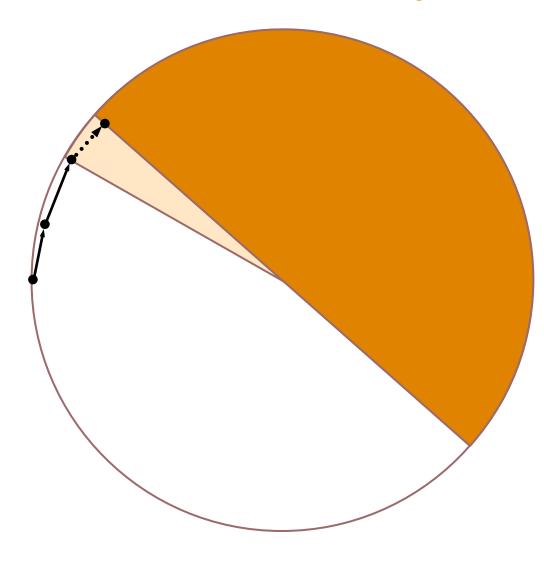


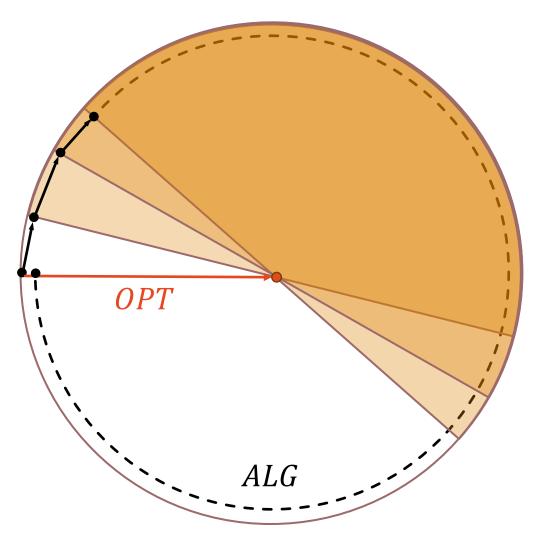
$$ALG \ge \sqrt{2} \cdot \frac{OPT}{C}$$

$$ALG \ge \sqrt{d} \cdot {\color{red}OPT}$$









- ► *ALG* unbounded
- ightharpoonup OPT = O(1)
- ► Not competitive ⊗
- ▶ Bounded: $d^{O(d)}$ -competitive

Reductions

- ▶ Bounded: $diam(K^1) = O(1)$, $OPT = \Omega(1)$
 - ► $f(d) \cdot diam(K^1)$ total cost $\Rightarrow f(d)$ -competitive
 - ► Guess-and-double
- ► *Tighten:* end when $diam(K^t) \le \frac{1}{2} diam(K^1)$
 - Apply repeatedly
 - Cost decreases geometrically

Recap of Part 1

- $ightharpoonup \sqrt{d}$ lower bound
- Greedy is not good
- Suffices to halve diameter with bounded cost

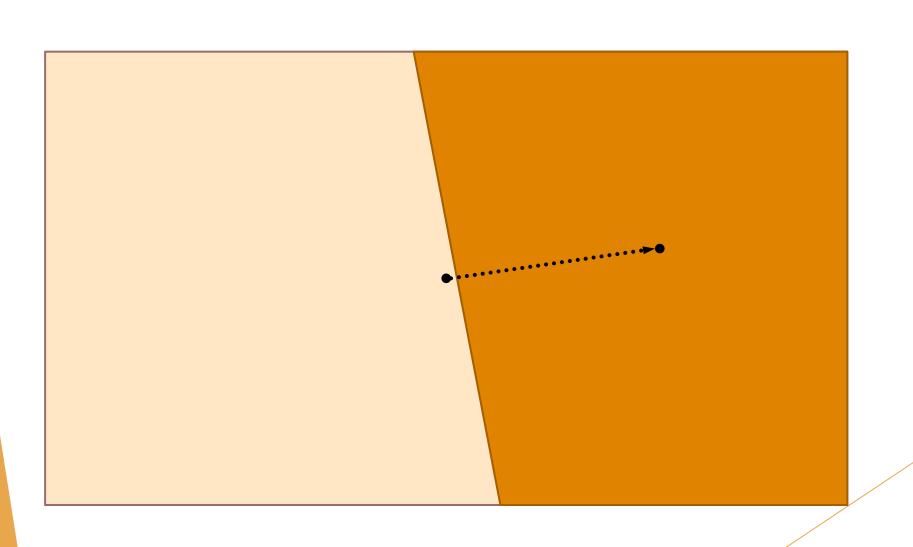
Part 2 – Two initial ideas

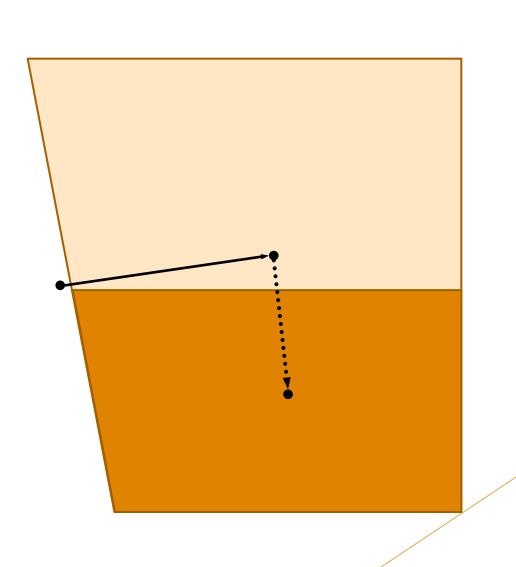
Centroid, recursive greedy, and why neither is good enough

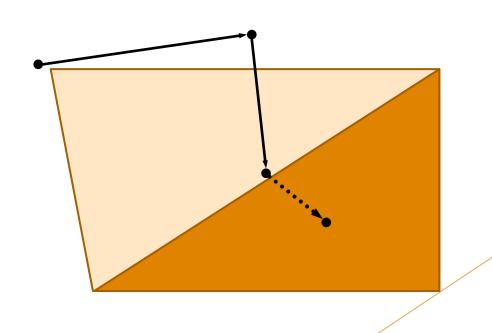
- \blacktriangleright Move to "center" of K^t
 - $ightharpoonup (K^t bounded)$
- ► Centroid of $A \subseteq \mathbb{R}^n$ is $\mu(A) := \int_A x \, dx$

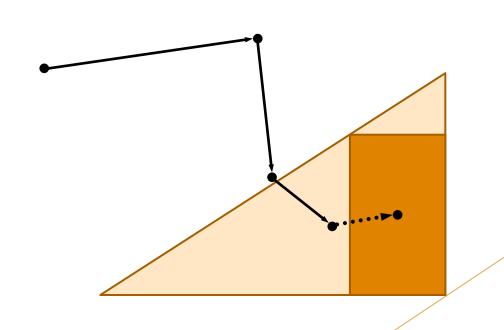
Centroid Algorithm:
$$x^t = \mu(K^t)$$

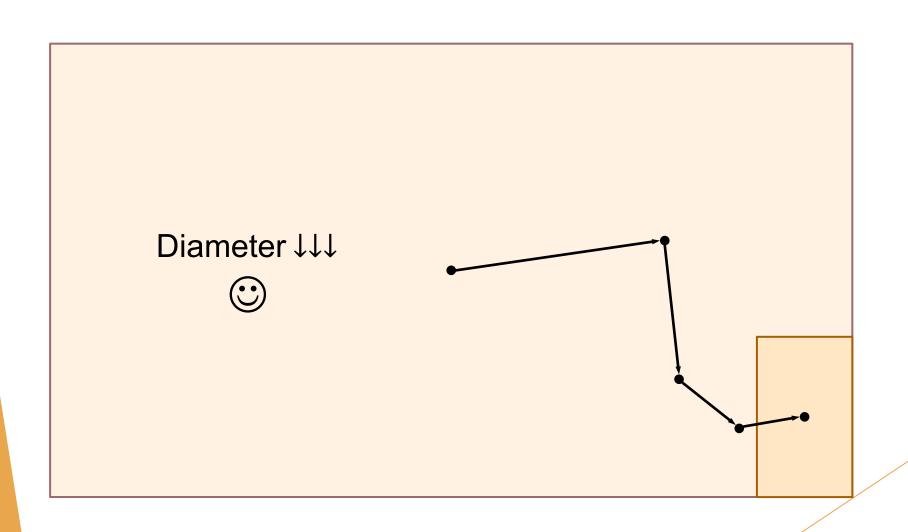
 \blacktriangleright Motivation: cut large portion of K^t each step







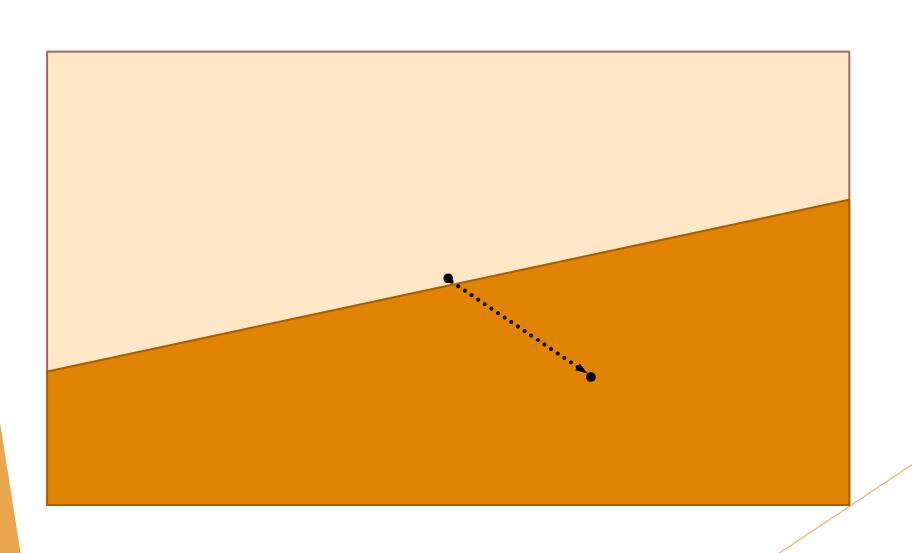




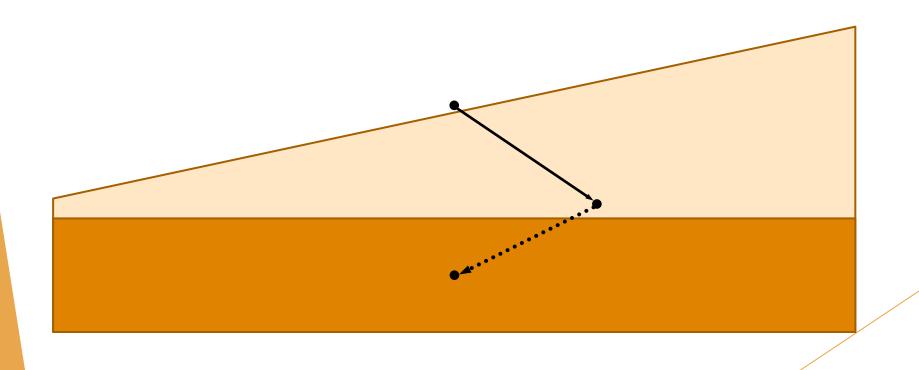
Advantage of Centroid

- Grünbaum ['60] $\Rightarrow Vol(K^t) \leq (1-c) \cdot Vol(K^{t-1})$ $\leq (1-c)^t \cdot Vol(K^0)$
- ▶ Volume drops $O(2^d)$ in O(d) steps
- ▶ Step cost at most $diam(K^t) = O(1)$
- ightharpoonup O(d) total cost?

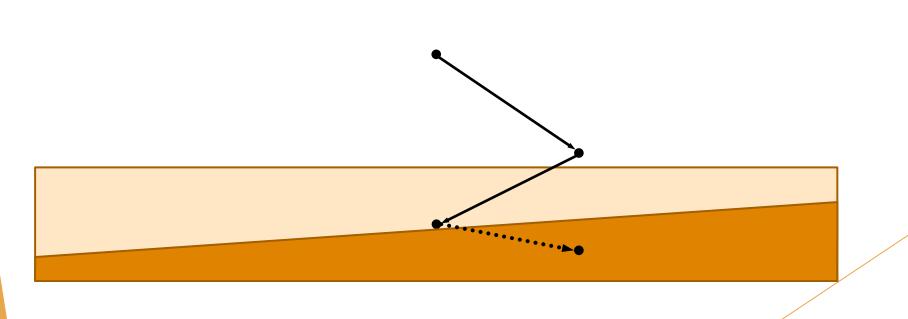
Problem with Centroid



Problem with Centroid

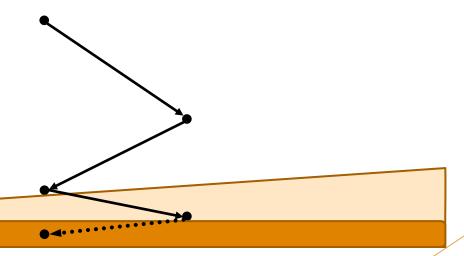


Problem with Centroid



Problem with Centroid

Diameter constant Not competitive

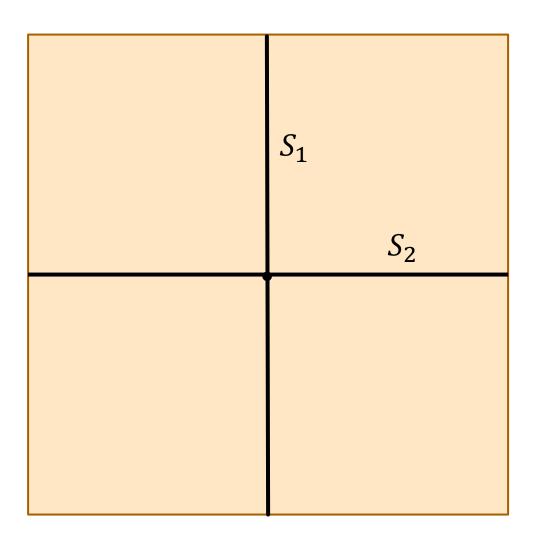


Summary – Centroid

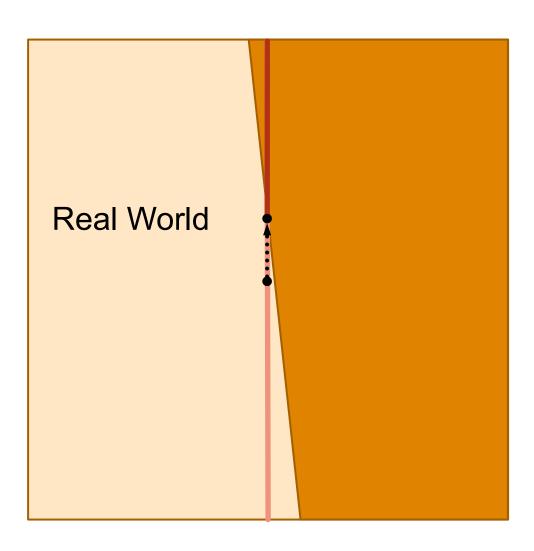
- $ightharpoonup Vol(K^t)$ drops quickly
- $ightharpoonup Diam(K^t)$ stays constant

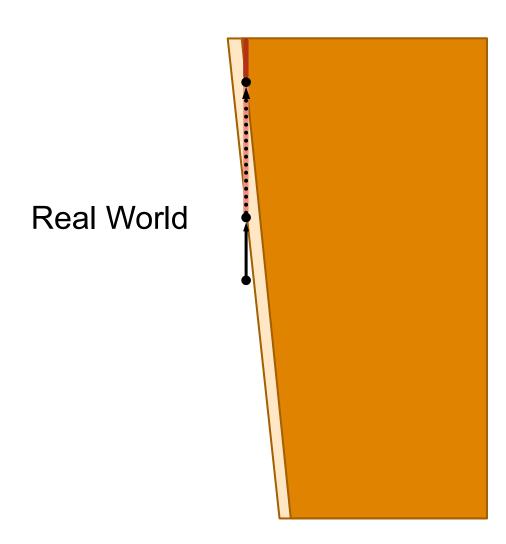
- "Refuse to move back and forth"
- ightharpoonup In \mathbb{R}^1 , run *Greedy*
- ightharpoonup In \mathbb{R}^d
 - Fix orthogonal hyperplanes $S_1, ..., S_d$
 - ▶ For i = 1, ..., d
 - ► Run RG^{d-1} on sets $S_i \cap K^t$

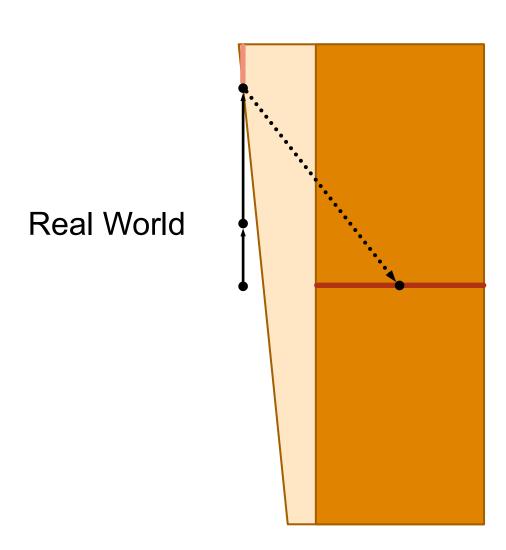
 RG^{d-1} – Recursive Greedy in (d-1) dimensions

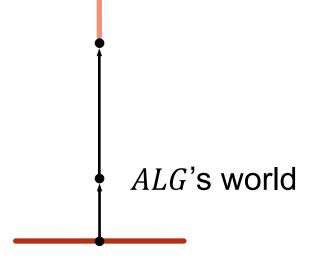


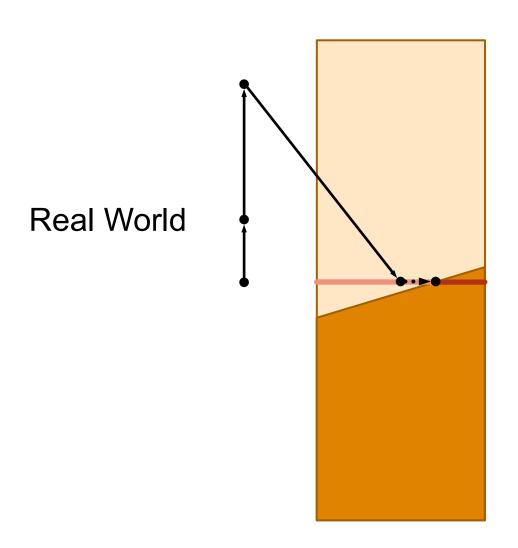
Real World

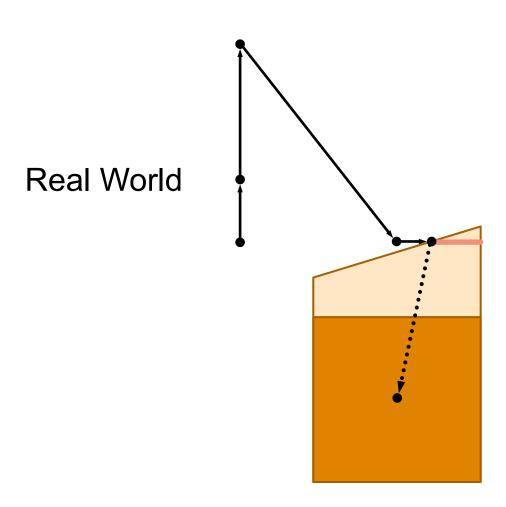


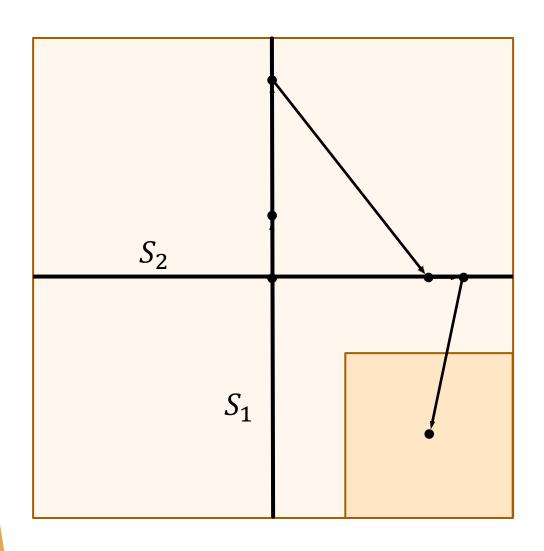












Diameter \| \| \| \|

Competitive algorithm [BB+ '17]

Problem with Recursive Greedy

- $ightharpoonup d^{O(d)}$ -competitive
 - ► Worse than *Greedy!*
- Expensive recursive calls
- ▶ Diameter \downarrow only $O\left(\sqrt{1-1/d}\right)$ after d recursive calls

Recap of Part 2

- Centroid
 - ► Volume drops quickly
 - ► Diameter stays constant
- Recursive Greedy
 - ► Controls individual dimensions
 - ► Expensive recursive calls
 - ▶ Diameter shrinks slowly

Part 3 – A better idea

Recursive Centroid: fusion of Centroid and Recursive Greedy

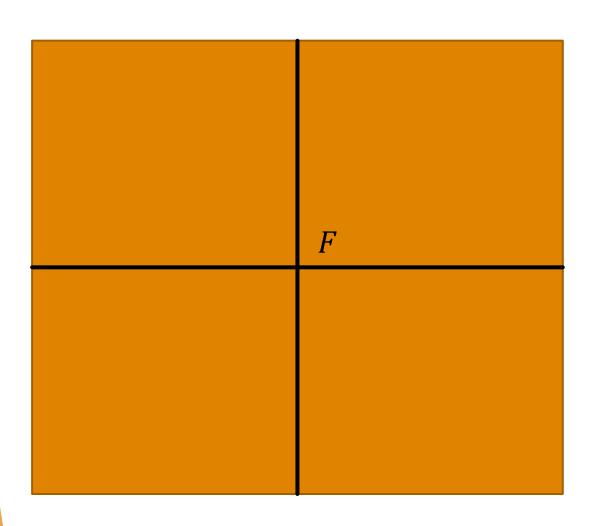
New Ideas

- ► Play centroid in recursion
- ► Recursion on skinny subspace
 - ► Cheap
 - ► Hyperplane separation ⇒ cut parallel to skinny subspace
 - ► Progress on fat subspace

Skinny subspace

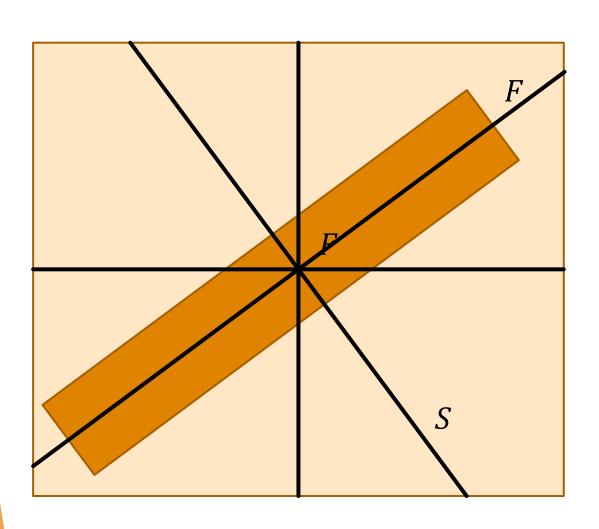
- ▶ Directional width $w(K, v) := \max_{x,y \in K} \langle x y, v \rangle$
- Skinny direction v such that $w(K^t, v) \lesssim 1/d^2$
- \triangleright S := span of k skinny directions
- $ightharpoonup F \coloneqq S^{\perp}$ (fat subspace)

Skinny and Fat subspace



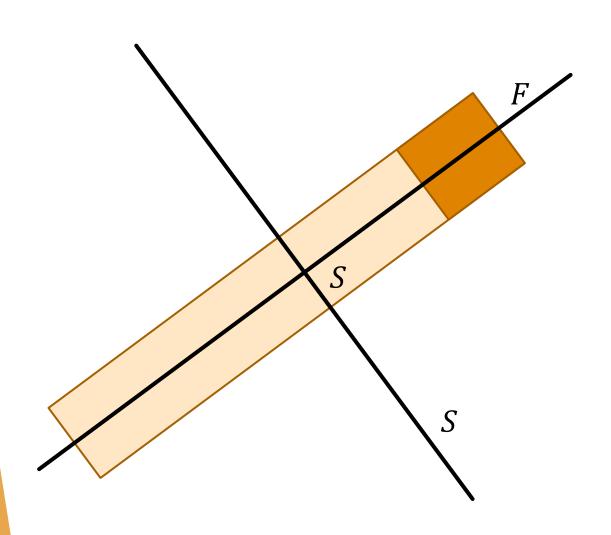
$$S = \{0\}$$

Skinny and Fat subspace



$$S = \{0\}$$

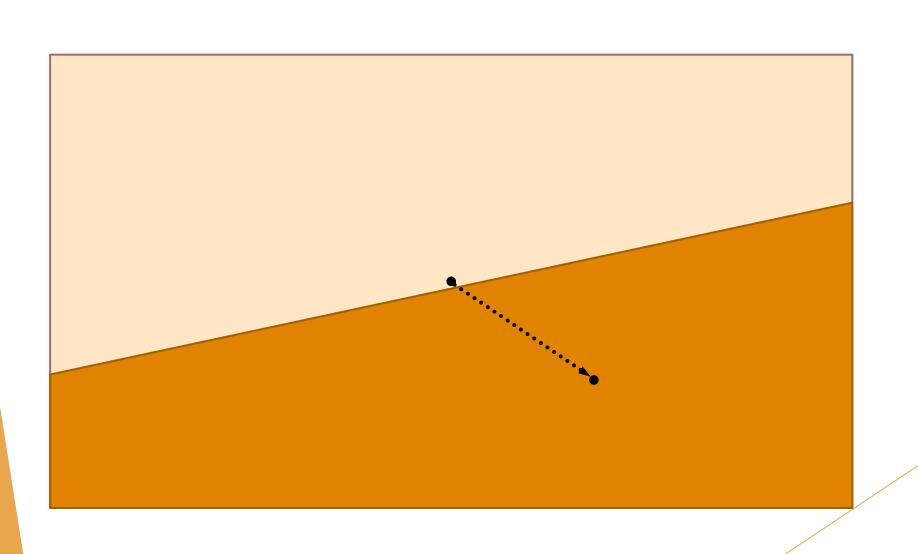
Skinny and Fat subspace

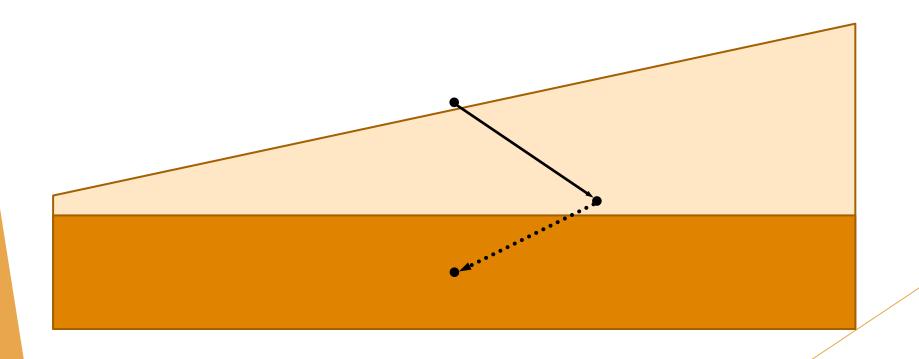


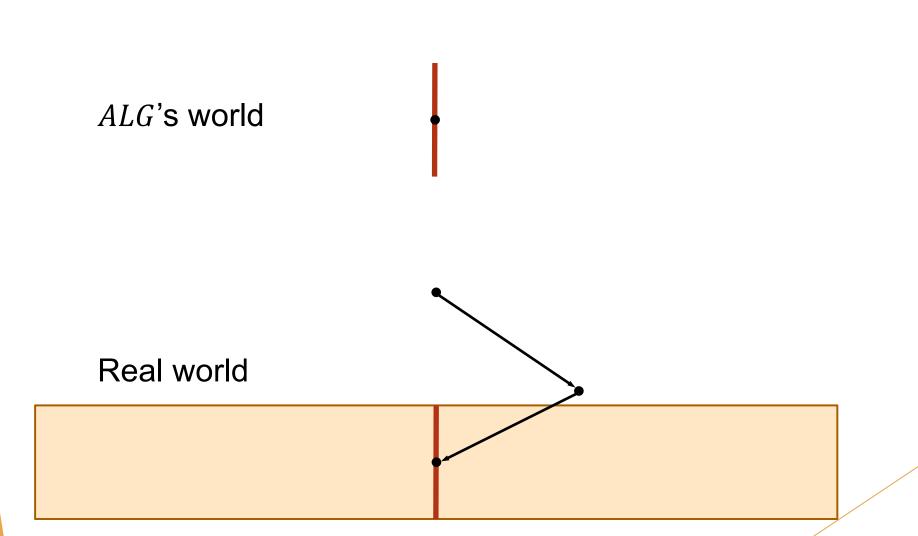
$$F = \{0\}$$

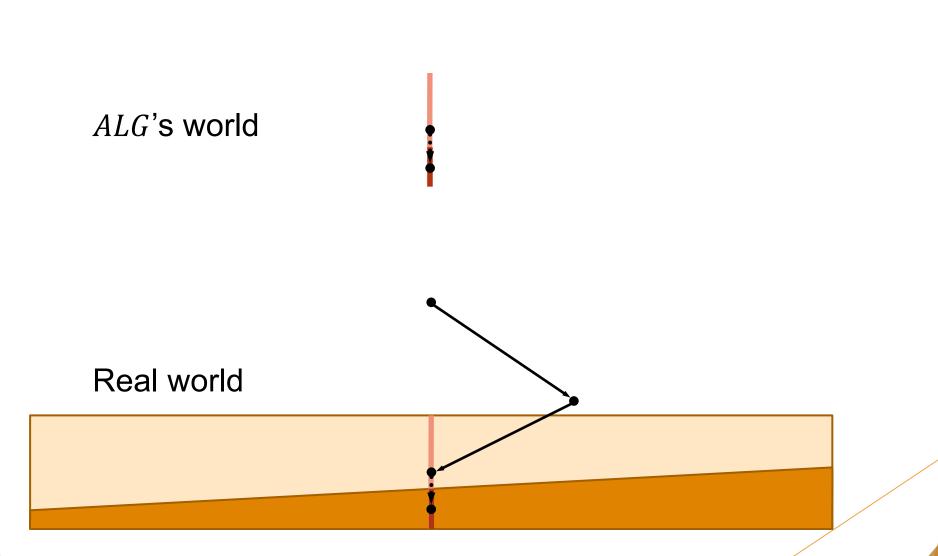
- ▶ While $diam(K^t) \ge 1/2 \cdot diam(K^1)$
 - $\blacktriangleright \mathsf{lf} \mathsf{S}_t \neq \{0\}$
 - $ightharpoonup \bar{t} \leftarrow t$
 - ► Run $RC^{\dim(S_{\bar{t}})}$ on $K^t \cap (x_{\bar{t}} + S_{\bar{t}})$ until empty
 - $\triangleright x_t \leftarrow \mu(K^t)$
 - ▶ While \exists skinny direction $v \in S_t^{\perp}$
 - $\triangleright S_t \leftarrow span(S_t, v)$

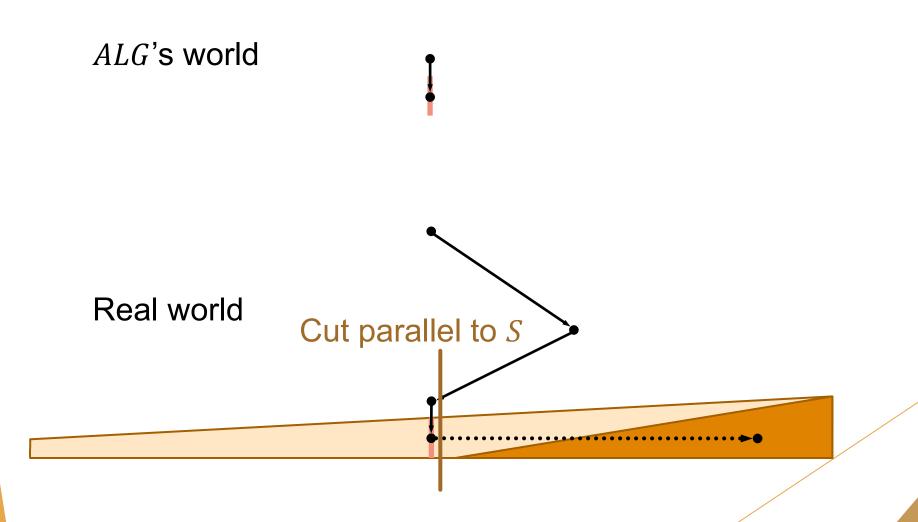
 $RC^{\dim(S_{\bar{t}})}$ – Recursive Centroid in $\dim(S_{\bar{t}})$ dimensions











Main theorem

Recursive Centroid is $O(d \log d)$ -competitive [ABCGL '18]

Recall \sqrt{d} lower bound

Proof outline

- ▶ Potential $\Phi^t := Vol(Proj_F(K^t))$
- ► 'Step' = Recursive call + move to centroid of K^t
- ightharpoonup Cost of 1 step = O(1)
- $ightharpoonup O(d \log d)$ steps
- $ightharpoonup O(d \log d)$ total cost

Proof part I – A single step

$$\Phi^t = Vol(Proj_F(K^t))$$

- ► Cost *0*(1)
 - ▶ Recursion: $O(d \log d) \cdot 1/d^2 = o(1)$
 - \blacktriangleright Move to centroid: O(1)
- $\blacktriangleright \Phi^t$ drops (1-c)
 - $ightharpoonup K^t$ cut by halfspace parallel to S

Proof part II – $O(d \log d)$ steps

$$\Phi^t = Vol(Proj_F(K^t))$$

- $\blacktriangleright \Phi^t \text{ drops} \ge (1-c)^m$
 - ► *m* steps
- $ightharpoonup \Phi^t$ increases $\leq d^{O(d)}$
 - ► F changes
- $\Phi^{T-1} \ge d^{-O(d)}$
 - ► $Proj_F(K^{T-1})$ contains ball of radius $1/poly(d) = d^{-O(1)}$

Proof part II – $O(d \log d)$ steps

$$\Phi^t = Vol(Proj_F(K^t))$$

- $\blacktriangleright \Phi^t \text{ drops} \ge (1-c)^m$
- $lackbox{}\Phi^t$ increases $\leq d^{O(d)}$

$$d^{O(d)}(1-c)^{m-1} \ge \Phi^{T-1}/\Phi^0 \ge d^{-O(d)}$$

$$m \le O(d \log d)$$

Recap of Part 3

- Recursion on skinny subspaces
 - ► Cheap, good cuts
- Play centroid
 - ▶ Volume drop
- $ightharpoonup K^t$ bounded, recursion cheap \Rightarrow step cost O(1)
- $ightharpoonup Vol(Proj_F(K^t))$ drops, bounded $\Rightarrow O(d \log d)$ steps

Open questions

- ightharpoonup poly(d)-competitive general chasing
- ightharpoonup exp(d) lower bound for general chasing
- Efficient algorithms

Thank you!

Questions?

In memory of Michael Cohen

References

- "A Nearly-Linear Bound for Chasing Nested Convex Bodies" Argue Bubeck Cohen Gupta Lee, SODA '19
- "Nested Convex Bodies are Chasable"
 Bansal Bohm Elias Koumoutsos Umboh, SODA '18
- "Chasing Nested Convex Bodies Nearly Optimally,"
 "Competitively Chasing Convex Bodies"
 Bubeck Lee Li Selke, *Preprints '18*
- "Chasing Convex Bodies and Functions"
 Friedman Linial, Discrete and Computational Geometry '93