
 

Cheating and Virtual Crimes in Massively 

Multiplayer Online Games 
 

Rahul Joshi 

 

 

 

 

 

Technical Report 

RHUL-MA-2008-06 

15 January 2008 

 

 

 

Royal Holloway
University of London

 
 

 

 

Department of Mathematics 

Roal Holloway, University of London 

Egham, Surrey TW20 0EX, England 
http://www.rhul.ac.uk/mathematics/techreports



    - 1 -

Cheating and Virtual Crimes in Massively Multiplayer 

Online Games 

          Rahul Joshi 

Supervisor: Andreas Fuchsberger 

 

Submitted as part of the requirements for the award of the MSc in Information Security 

at Royal Holloway College, University of London. 

 

I declare that this assignment is all my own work and that I have acknowledged all 

quotations from the published and unpublished works of other people. I declare that I 

have also read the statements on plagiarism in Section 1 of the Regulations Governing 

Examination and Assessment Offences and in accordance with it I submit this project 

report as my own work. 

 

 

 

 

 

 

 
 
 
 



    - 2 -

Table of contents 

1 Executive Summary ............................................................................................- 6 - 

2 Introduction .........................................................................................................- 7 - 

2.1 Project objectives....................................................................................................- 8 - 

3 How an MMORPG works.................................................................................- 9 - 

3.1 MMOG Architecture ...........................................................................................- 10 - 

4 Cheating in Online Games..............................................................................- 12 - 

4.1 The problem of cheating.....................................................................................- 12 - 

4.2 Defining cheating ................................................................................................- 12 - 

4.3 Motivations for cheating.....................................................................................- 13 - 

4.4 Types of cheating .................................................................................................- 14 - 

5 How cheats work...............................................................................................- 20 - 

5.1 Client side cheating .............................................................................................- 20 - 
Hacking the game client ..................................................................................................................- 20 - 

Decompilers ....................................................................................................................................- 21 - 
Disassemblers .................................................................................................................................- 21 - 
Debuggers .......................................................................................................................................- 21 - 
DLL Injection .................................................................................................................................- 22 - 

5.2 Data modification ................................................................................................- 22 - 
Client data modification ..................................................................................................................- 22 - 
Network data.....................................................................................................................................- 23 - 
Hardware data modification...........................................................................................................- 24 - 

Hacking OpenGL to create an aimbots ...........................................................................................- 24 - 
API level hacking............................................................................................................................- 24 - 
Hardware level hacking ..................................................................................................................- 25 - 

6 MMORPG specific bugs..................................................................................- 26 - 

6.1 Race conditions.....................................................................................................- 27 - 

6.2 Server lagging .......................................................................................................- 28 - 
Botnets for game lagging .................................................................................................................- 29 - 

6.3 State changing bugs.............................................................................................- 29 - 



    - 3 -

6.4 Bots..........................................................................................................................- 30 - 
Macros ................................................................................................................................................- 30 - 

How Macros work...........................................................................................................................- 30 - 
Controlling keystrokes ....................................................................................................................- 31 - 
Controlling mouse events ...............................................................................................................- 31 - 
Pixel sampling.................................................................................................................................- 31 - 
Looting............................................................................................................................................- 31 - 

Generic bot automation tools ..........................................................................................................- 32 - 
AC Tool ..........................................................................................................................................- 32 - 
Inner Space .....................................................................................................................................- 32 - 

Custom made automation tools......................................................................................................- 33 - 
Hiding bots from detection .............................................................................................................- 33 - 

Kernel resident bots ........................................................................................................................- 33 - 

6.5 Features of cheating in MMORPG ...................................................................- 33 - 

6.6 Conclusions...........................................................................................................- 34 - 

7 Cheating prevention methods ........................................................................- 35 - 

7.1 Client side cheating .............................................................................................- 35 - 
Preventing data exposure ................................................................................................................- 35 - 

Packing the executable....................................................................................................................- 36 - 
Packer weaknesses ..........................................................................................................................- 36 - 
Anti debugging measures................................................................................................................- 37 - 
Detection by timing.........................................................................................................................- 37 - 
Code obfuscation ............................................................................................................................- 37 - 

Preventing access to game client data............................................................................................- 38 - 
Reducing information on the client................................................................................................- 38 - 

7.2 Detecting game client integrity violations ......................................................- 39 - 

7.3 Preventing game bugs .........................................................................................- 39 - 
Designing secure software...............................................................................................................- 39 - 

7.4 Preventing race conditions .................................................................................- 41 - 

7.5 Bot detection .........................................................................................................- 42 - 
CAPTCHAS – Reverse Turing tests ...............................................................................................- 42 - 
Detecting mouse and keyboard movements.................................................................................- 43 - 

Hardware signing............................................................................................................................- 43 - 
Problems with hardware signing.....................................................................................................- 44 - 

Player monitoring .............................................................................................................................- 44 - 
Player reporting of cheats................................................................................................................- 45 - 
IDS type approaches.........................................................................................................................- 45 - 

Command timing ............................................................................................................................- 46 - 
Traffic burstiness ............................................................................................................................- 46 - 
Results of their research..................................................................................................................- 46 - 
Attacks against this method ............................................................................................................- 47 - 
Machine learning of player reactions..............................................................................................- 47 - 

8 Anti-cheating tools............................................................................................- 49 - 



    - 4 -

8.1 PunkBuster ............................................................................................................- 49 - 
How PB works...................................................................................................................................- 49 - 

Detecting modified variables ..........................................................................................................- 49 - 
Detecting modified game files ........................................................................................................- 50 - 
Detecting known cheating exploits .................................................................................................- 50 - 
Screenshots .....................................................................................................................................- 50 - 
PB use of digital signatures.............................................................................................................- 51 - 
Log files ..........................................................................................................................................- 52 - 
Screenshots and MD5 .....................................................................................................................- 54 - 
Remote logging facility...................................................................................................................- 54 - 

Attacks on PB ....................................................................................................................................- 55 - 
Hardware bans..................................................................................................................................- 55 - 

GUID computation..........................................................................................................................- 56 - 
Vulnerabilities in PB itself ...............................................................................................................- 56 - 
PB Summary......................................................................................................................................- 57 - 

8.2 The Warden – Blizzard’s approach to cheating ..............................................- 59 - 
What the Warden does.....................................................................................................................- 59 - 
Privacy issues surrounding the Warden .......................................................................................- 59 - 
Warden summary .............................................................................................................................- 61 - 

9 Novel cheating detection mechanisms .........................................................- 63 - 
Game statistics...................................................................................................................................- 63 - 
Economic statistics............................................................................................................................- 63 - 

10 Virtual crime ..................................................................................................- 65 - 

10.1 Virtual economies ................................................................................................- 65 - 
Making money from MMORPG .....................................................................................................- 65 - 

10.2 Stealing virtual property.....................................................................................- 66 - 
How identities are stolen .................................................................................................................- 67 - 

Phishing ..........................................................................................................................................- 67 - 
Shoulder surfing..............................................................................................................................- 68 - 
Malware ..........................................................................................................................................- 68 - 

10.3 Other virtual crimes.............................................................................................- 69 - 
Virtual item trading problems ........................................................................................................- 69 - 
Farming – sweatshops......................................................................................................................- 70 - 
Virtual mugging................................................................................................................................- 70 - 

10.4 Conclusions...........................................................................................................- 70 - 

11 Virtual crime prevention .............................................................................- 72 - 

11.1 Preventing Identity Theft ...................................................................................- 72 - 
Smart cards ........................................................................................................................................- 73 - 
One time passwords .........................................................................................................................- 74 - 
Password policies .............................................................................................................................- 75 - 
User awareness .................................................................................................................................- 75 - 



    - 5 -

Online scanning ................................................................................................................................- 75 - 
Phishing prevention .........................................................................................................................- 76 - 

11.2 Virtual item trading schemes.............................................................................- 77 - 
StationExchange................................................................................................................................- 77 - 

How it works...................................................................................................................................- 77 - 

11.3 Preventing other virtual item crimes................................................................- 80 - 
Virtual mugging................................................................................................................................- 80 - 
Auditing and logging.......................................................................................................................- 80 - 
Measures to prevent virtual sweatshops .......................................................................................- 80 - 

12 Conclusion......................................................................................................- 83 - 

13 References.......................................................................................................- 85 - 

14 Bibliography ..................................................................................................- 88 - 

14.1 Electronic sources.................................................................................................- 88 - 



    - 6 -

1 Executive Summary 

Massively Multiplayer Online Games (MMOG) have become extremely popular since 

the birth of the Internet, with many millions of players playing games such as Poker and 

World of Warcraft. However, they do not seem to be well understood, and academic 

research into them has been limited. This project explains the nature of MMOG, and the 

relationship between MMOG and information security. This project discusses the 

problem of cheating in MMOG – it explains what cheating is, how it occurs, and how 

information security can be used to prevent it. The nature of virtual economies in 

MMOG is discussed, and the virtual crimes that have affected MMOG along with 

preventative measures are examined.  



    - 7 -

2 Introduction 

The growth of the Internet over the last decade has led to the emergence of a multi 

billion dollar online gaming industry. A huge variety of games can be played on the 

Internet: chess, first person shooters, and casino games, such as poker and blackjack. 

Aside from casino games, Massively Multiplayer Online Games (MMOG) have become 

a driving force in the rapid growth of the online gaming industry. MMOG are games 

that are hosted on servers and played by hundreds or thousands of players using the 

Internet.  MMOG allow players to collaborate with, or pit their wits against, thousands 

of other players located across the globe.  The use of the Internet to play games has 

added an extra dimension to gameplay. Huge online gaming communities have 

emerged from MMOG, where players can interact with each other and form friendships.  

Research has shown that being part of such a community forms a major part of the 

enjoyment for some players [HN06]. There are a number of different MMOG genres, for 

example first person shooters such as World War II Online: Battleground Europe 

(www.battlegroundeurope.com) or real time strategy games such as ShatteredGalaxy 

(www.sgalaxy.com). By far the most popular genre is MMORPG (Massively 

Multiplayer Online Role Playing Games).  Blizzard Entertainment, publishers of the 

popular World of Warcraft (WoW) game, claim to have over 8 million subscribers 

[Bl07]. 

MMORPG involve players adopting the role of a fictional character who resides in a 

virtual fantasy world, designed and hosted by the game provider.  This world exists and 

evolves on a permanent basis, even when the player is away from the game. By 

controlling the actions of their character and roaming the fantasy world, players earn 

money and develop skills through the trading of items or completion of certain tasks, 

such as the killing of opponents.  Certain tasks may only be completed via co-operation 

with other players, which serves to develop the community spirit.  As touched on 

earlier, most MMORPG use a client-server architecture. The software that generates and 

maintains the virtual world is written by the game publisher and runs continuously on a 

server. Players connect to the server via client software provided to them in return for a 

fee.  Some MMORPG, such as WoW require payment of a monthly subscription to play. 



    - 8 -

This revenue stream helps publishers cover the maintenance and hosting costs of such a 

large scale operation. 

2.1 Project objectives 

The objectives of this project are to: 

• Examine the problems of cheating and virtual crimes in MMOG, paying 

particular attention to MMORPG   

• Describe the various forms that cheating and virtual crimes take, and examine 

their implications 

• Show how information security can be used to prevent cheating and virtual 

crimes 

• Analyse and evaluate real-world approaches taken by game publishers to these 

problems 

Although many people see them as just games, with little impact on the real world, I 

believe this attitude to be misguided. Items earned through gameplay, such as weapons, 

are bought for hard currency through websites, in order for players to increase the 

power of their characters, and thus progress through the game at a faster pace.  Trading 

of game items for real money has led to criminal gangs seeking to exploit MMORPG and 

the players who play them.  Such interlinking between the virtual world of an 

MMORPG and the real world is a feature not seen before in computer games, and is 

unique to MMORPG.   

The academic research into the relationships between MMOG and information security 

has been limited thus far. With increasing numbers of people playing MMOG, and the 

number of threats growing, it is important to analyse the security concerns that they 

present. 



    - 9 -

3 How an MMORPG works  

WoW is the most popular MMORPG, with its makers, Blizzard, claiming to have 8 

million subscribers worldwide. A look into how the game works will be useful for future 

discussions. To start playing the game, players must purchase the game software, and 

install this on their computer. Using the unique key provided with the installation CD, 

an online game account is created. Players must also pay a monthly subscription fee to 

continue playing. Successful completion of this phase allows a player to create a 

character and choose a faction to whom the character will belong. Two factions exist in 

World of Warcraft, and the purpose of joining a faction is to “make you feel like a 

member of one enormous team, while at the same time setting up the other faction as an 

enemy” [Wa07]. 

The character chosen resides within a virtual gameworld. Players explore the virtual 

world’s landscape, where opponents such as monsters are encountered and have to be 

fought. Players move through the game’s levels by gaining experience. Experience is 

gathered by killing opponents, exploring new locations and completing “quests”. A 

quest is a special task, such as the delivering of an item to a given person. Quests are 

given to players by computer characters (also know as non-player characters). 

Completion of quests results in rewards, such as money, potions or weapons. Some 

quests are designed to require co-operation with other players in order to be completed.   

A large component of WoW and other MMORPG is the player community. As the game 

has thousands of players, features have been created to enable in-game socialising. 

These include creating friends lists and online chat facilities. This enables players to 

team up with others to complete quests. The result of these in-game socialising features 

has led to the development of a strong player community and spirit within WoW as well 

as many other MMORPG.  

 

 

 



    - 10 - 

Screenshot of the popular WoW MMORPG 

 

3.1 MMOG Architecture  

Typically, MMOG use a client-server architecture. The clients are the player’s machines. 

They provide an interface to players in order to play the game, and pass commands 

issued by the player to the server. The server is owned by the game publisher and is 

responsible for receiving these commands, updating the game state according to these 

commands, and sending these updates to clients. The server must track and update all 

entities in the game constantly; entities are dynamic objects like monsters. This is a 

hugely computationally intensive task, with so many players constantly changing 

entities. To provide a view of the game to the client, the client possesses a graphical 

engine which uses a cache of the game state stored on the client and any updates it 

receives from the server to render a graphical representation of the virtual world.  



    - 11 - 

With the number of subscribers to WoW, it is impossible for everyone to play together in 

the same place in the virtual world. To ensure players do not play in the same place and 

therefore overload the server, causing lags in gameplay, “realms” are created by the 

game publishers. Realms are clusters of servers in which a few thousand players play 

the game. Players are tied to a realm, and cannot interact with players in other realms.  

Realms are exact copies of the game world, and support different types of gameplay. For 

example, some realms support Player versus Player gameplay (where players can be 

attacked and attack others), and others support Player versus Environment, where 

players do not play against other human players, just against the virtual gameworld.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    - 12 - 

4 Cheating in Online Games 

4.1 The problem of cheating 

A serious issue facing the developers of MMORPG is the issue of player cheating. 

Cheating by players giving them an unfair advantage over others results in the 

degradation of the gaming experience for legitimate players.  This problem is 

exacerbated if no adequate methods are found to detect and sanction cheating players. 

This will encourage more players to cheat as the chance of being detected or punished is 

negligible. Evidence has shown these legitimate players will quit the game, thus 

reducing the numbers of subscribers and the publisher’s revenues, and will affect the 

long term reputation of the game. This could have serious ramifications for the industry 

as a whole. Estimates have put industry revenues at $8bn a year, and growing. Cheating 

represents a serious threat to this. If cheating becomes rampant in MMOG, the reduction 

in player numbers will affect the whole industry. The detection and prevention of 

cheating thus represents a serious challenge to game publishers.  

4.2 Defining cheating 

Defining what is meant by the term cheating when applied to MMOG is an important 

and somewhat unclear issue.  It is vital for game publishers to provide a precise 

definition of the term in their service agreements to their subscribers, to ensure that both 

sides are clear on what constitutes illegal behaviour, and so disputes cannot occur later. 

However the definition will vary between games and their publishers. For example, 

some games allow play to be scripted (by using a macro to repeat a keyboard sequence 

for example) whilst others forbid this practice entirely.  Another complication of 

providing a precise definition is that it is sometimes extremely hard to tell the difference 

between a player who is cheating and a player who is using clever tactics or possesses 

exceptional ability. Yan [Ya02] demonstrates the difficulty of this distinction by using 

the example of “camping” behaviour in first person shooter games.  Camping involves a 

player hiding in a particular location (such as a hole or a dark corner) in the game 

waiting for other players to pass by, and then kills them. The location in which they hide 

is often hard for other players to spot at first glance, and is very hard (if not impossible) 

Comment [R1]: Facts needed on nos 
of players who quit cos of cheating



    - 13 - 

for the camper to be killed by other players. Camping spoils the game for many players, 

and as such is regarded by some as cheating. However, as Yan points out, in war games, 

hiding in locations to kill opponents is simply a simulation of real combat, and so 

camping can be considered legitimate behaviour.  This serves to underline the point that 

the definition of cheating varies between games, and even between players. Due to the 

problems discussed above, there is not a universally accepted definition of cheating 

when applied to MMOG.   

Yan [Ya05] believes cheating is “any behaviour that a player uses to gain an advantage 

or achieve a target in an online game is cheating if, according to the game rules or at the 

discretion of the game operator the advantage is unfair to his peer players or the target 

is one that he is not supposed to achieve”. 

I believe this is a sufficient definition as it covers situations where a player may not have 

cheated another player, but instead has cheated his way up a leaderboard, or has used a 

cheating exploit to defeat a computer controlled opponent. It also encompasses the fact 

that the definition of cheating varies between games. I will use Yan’s definition of 

cheating in my subsequent discussions. 

4.3 Motivations for cheating 

Traditionally, cheats in computer games were placed in the game code by the game’s 

developers to reward players. They could be activated by entering a special code whilst 

the game was running. They would give players privileges such as moving them up 

some levels, giving them unlimited lives or inflating their statistics in order to make 

them stronger. 

Developers of MMORPG are careful not to include cheat codes in the game code. This is 

because players who find the code will gain a significant advantage over those who 

don’t. It can also leave the developers open to accusations of cheating themselves – if 

they play the game and know (and use) the cheat code then this is clearly unfair on other 

players. Instead, cheating has taken a different form in MMORPG. The primary 

motivation for cheating in MMORPG stems from the concept of virtual economies that 

exist in these games, such as Entropia Universe and EverQuest. Items earned through 



    - 14 - 

gameplay, such as weapons and gold, are sold for real money on websites.  For example, 

the currency in Entropia Universe, Project Entropia Dollars (PED), could be bought and 

redeemed for real-world money at a rate of 10 PED for $1 (US).   

Online marketplaces such as IGE (www.ige.com) exist in which players can buy and sell 

gold for a number of different MMORPG. This may seem strange: how can items which 

don’t exist in the real world be bought for money? However, this concept may be easier 

to understand when you consider the fact that these items are earned over many hours 

of play. Other players, who wish to possess these items but do not want to invest the 

time, are willing to pay money to own them. Virtual economies have added an extra 

dimension to gameplay – money can be earnt through playing MMORPG. This financial 

reward is a powerful incentive for players to look for ways to cheat to accumulate 

virtual property which they can then sell on. I believe this is the principal driver behind 

cheating in MMORPG.   

Another reason why some players cheat is to cause “grief” to other players. These types 

of players are known unsurprisingly as “griefers”. Their sole purpose in playing the 

game is to harass other players. They claim they do so in order to make the game 

interesting after completing the game themselves. Others “grief” simply to cause misery 

to other players. Some “griefing” behaviour is within the game rules (such as insulting 

players using the online chat facility), but griefers also exploit cheating exploits, for 

example, to steal player’s virtual items. 

4.4 Types of cheating 

There are many different ways of cheating in online games. Some methods only occur in 

MMORPG, others only in other online games such as poker or chess. Yan, who has 

written several papers on cheating in online games, has classified cheating into 15 

different categories [Ya05]. This was a thorough description and encompassed all the 

types of cheating I could find whilst conducting my research. This section will explain 

his definitions, with examples I have found of each type, as this will provide an excellent 

foundation for understanding the diversity of cheating. 

 



    - 15 - 

Yan defines the following categories:  

1. Cheating by Exploiting Misplaced trust 

The game client supplied to the player in order to play the game performs a number of 

functions - it passes commands to the server, receives commands from the server and 

contains a graphical engine to render a graphical representation of the game on the 

player’s screen.  The game client is a very attractive target for a cheater who has the 

ability to modify the client using a disassembler. It can be reverse engineered passively, 

as it is in the cheater’s possession. One of the ways in which a client has been modified is 

to perform cheats known as wallhacks and maphacks. Maphacks typically occur in real 

time strategy games. In these games, a player is given a map that shows him the 

areas/locations he controls, and no others. A wallhack is the first person shooter version 

of a maphack. This cheat allows players to see through walls – a huge advantage in such 

a game.  Servers send information to the clients, and it is up to the client program to hide 

information that should not be seen by the player. Maphacks and wallhacks can be 

performed by modifying the graphical engine in the game client to initialise map control 

values differently, thus allowing a player to see parts of the map he shouldn’t.  A 

detailed explanation of how map and wall hacks are achieved is discussed later. 

 [Ya05] believes that this form of cheating is due to misplaced trust – too much trust is 

placed on the client side, and because of the possibility that the client may be a cheater, 

this trust is misplaced.  

2. Cheating by collusion 

This form of cheating occurs between players who combine to attempt to gain an unfair 

advantage over others. An example of this was Blizzard’s StarCraft game. Two players 

would take turns to win and lose to each other. As points would be awarded for a win, 

the players would be able to advance up the leaderboard. Both players would thus be 

able to climb up the leaderboard, event though the results of each game had been pre-

determined.  

 

Comment [R2]: Move to MMOG 
cheating section 



    - 16 - 

3. Cheating by Abusing the Game procedure  

Flaws in a game’s operating procedures or rules can also be exploited by cheaters. [Ya05] 

states that this type of cheating requires no technical sophistication. An example of this 

is escaping: a cheater disconnects himself from the game when he is about to lose. This 

behaviour is common in games where wins and losses are recorded on a player’s 

account. To prevent the loss from being recorded, a player will disconnect from the 

game. This type of cheating was noticed on Battle.Net, an online gaming service 

provided by Blizzard which allows players to initiate multiplayer games. Battle.Net 

records the wins and loss of every game in Warcraft 3. Hackers took advantage of this 

fact and used a disconnect hack to disconnect from the server legally (within the rules 

set by Battle.Net and Warcraft 3) without having Battle.Net record the loss. Recently, 

Blizzard has deleted the accounts of all players using this cheat. 

4. Cheating relating to virtual assets 

When a player purchases a virtual item from a site such as IGE, the player selling the 

item agrees to meet the buyer at a pre-defined location in the game. This form of 

cheating can occur when the seller never turns up to deliver the item to the buyer. 

5. Cheating by exploiting machine intelligence 

This type of cheating relates to the ability of a player to use artificial intelligence in some 

online games. For example, in a game of chess against a human opponent, a cheater may 

decide his next move by simulating the game on a computer chess program and then 

using the chess machine’s artificial intelligence to choose his next move.  

6. Cheating by modifying client infrastructure 

In this type of cheating, there is no modification of game programs, or data on the client 

side.  Instead, client infrastructure, such as device drivers or the operating system, is 

tampered with. For example, one way to perform a maphack is to modify the 

computer’s graphics card driver.  By doing this, it is possible for a cheater to make walls 

transparent and gain an advantage over other players.   



    - 17 - 

7. Cheating by denying service to peer players 

A cheater may delay the responses from an opponent in a real time game by flooding his 

network connection.  

8. Timing cheating 

An example of timing cheating is the “look-ahead” cheat. A cheating player can delay 

his own move until he knows all his opponents’ moves, thereby gaining a big advantage 

of his opponents.   

9. Cheating by compromising passwords 

By stealing another player’s password a cheater can gain full access to that player’s 

character in the game. This gives him possession of that character’s virtual assets, which 

he can choose to sell. A large scale case of password stealing occurred in China where 44 

people were arrested after stealing almost $90,000 of virtual items from players whose 

passwords they had stolen. [Pl06] 

10. Cheating by exploiting lack of secrecy 

Packet sniffing programs allow users to examine, modify, send or block packets to and 

from their computers. Such programs, such as tcpdump, can be used by a cheater to 

their advantage. Packets which affect a player negatively, such as a loss of life, may be 

blocked. Packets can be replayed (such as the shooting of an enemy player, especially 

when ammunition is low).  

11. Cheating by exploiting a lack of authentication 

Massively multiplayer First Person Shooter (FPS) games such as Quake allow players to 

host the game on their own servers, which can be customised according to how they 

want the game to be played. Some of these player-hosted servers allow any players to 

connect to them (some of these servers are just created for the hoster’s friends to connect 

to). Player hosted servers give rise to the possibility that a cheater could create his own 

game server and harvest valid user’s login credentials. This is more powerful than the 



    - 18 - 

password stealing form of cheating, as the cheater can harvest many users details in one 

go  

12. Cheating by exploiting a bug or loophole 

This type of cheating involves exploiting a bug or loophole in the game. There is no 

modification of client code or data. An example of such a bug occurred in the game 

Habitat. A programming error meant that players were able to sell virtual items to a 

pawn shop for more than they paid to buy them from a vending machine. By purchasing 

from the vending machine and selling in the pawn shop, some players became overnight 

millionaires!  

13. Cheating by compromising game servers 

Game server programs and their configurations can be altered by a cheater to their 

advantage, for example to give certain players, such as the server administrators friends, 

an advantage over others. 

14. Cheating related to Internal misuse 

Game server administrators and other company insiders have access to servers and 

databases in which the game and its data is stored. This gives them power to modify this 

data. For example, according to [AP06], in a case in China in 2006, three employees from 

Shanda Interactive, who supply the MMOG Legend of Mir II, were found guilty of 

embezzlement relating to virtual assets. An employee at the company who was 

responsible for maintaining and updating the game database created a large number of 

copies of some rare game items. These rare game items were then sold to players for a 

huge profit. Although they were caught and players who bought the items of them had 

them confiscated, this example shows how insiders are able to use their position to cheat 

or help others to cheat. 

 

 

 



    - 19 - 

15. Cheating by social engineering 

Cheaters use “phishing” techniques, such as sending forged emails pretending to be 

from the game provider, asking players for their account details. Many game providers 

provide detailed guidelines to their players to ensure they are not duped by such tricks.  

Yan’s fifteen categories represent a thorough description of the types of cheating that 

exist in all genres of online games. They are useful in order to show how diverse the 

methods used to cheat can be. The grouping of cheats into categories helps in a number 

of ways. It helps to provide a systematic and structured way to look at online cheating. 

By doing this it can enable information security experts who may have a limited 

knowledge of online gaming to understand the threats posed by cheating, and thus 

enable them to propose countermeasures to cheating. 

 

 

 

 

 

 

 

 

 

 

 

 



    - 20 - 

5 How cheats work 

5.1 Client side cheating 

For players to have a realistic and enjoyable gaming experience, any actions a player 

performs should appear seamless. There should not be a lag or delay when a player 

issues a command – when a player issues a command, they should see the results of the 

action immediately. If there was a delay between issuing a command and seeing the 

result this would lead to a poor gaming experience. For lags not to occur would require 

the server to take the client’s commands, process them, update the game state 

accordingly and transfer the new state to the player instantaneously.  Unfortunately, this 

is not possible. The reason is that the Internet is used as the communications medium. 

The Internet is not designed to allow the game state to be transferred to all clients in 

parallel. [FC05] studied the traffic that is generated by online games, such as Quake and 

Half-Life.  They found that game traffic consists of large, periodic bursts of short 

packets, which they state is fundamental in all highly interactive online games due to 

their nature. They state that “short packets are required for low latency, while highly 

periodic traffic allows for the game to provide uniform interactivity amongst all of its 

clients. Unfortunately for games, network devices are not necessarily designed for this 

type of traffic.” 

To overcome this problem, the client must share some of the work with the server. This 

is accomplished by allowing the client software to store and manage some of the game’s 

state.  Allowing the game client to store some of the game state means that it is a very 

attractive target for cheaters. Typically, the client stores information about the landscape 

and map, as well as the location of opponents who may not currently be visible to the 

player. 

Hacking the game client 

By reverse engineering the game client, a cheater is able to gain access to the data it 

hides from the player. This data may contain locations of other players or items that the 

player cannot yet see. Possessing this information gives a cheater a significant advantage 



    - 21 - 

over other players.  There are a number of tools available to a cheater to help him 

compromise the game client.  

Decompilers 

Decompilers allow binary code to be decompiled into human readable source code. By 

decompiling the game client executable file, an attacker can see the source code, variable 

names and programmer comments. Knowing this information can give an attacker an 

insight into how the code works. Decompilers make the code a lot easier to read and 

understand. Decompilers are not 100% accurate in the source code they generate, but 

they can help significantly.   

Disassemblers 

A disassembler is used to transform binary code into assembly language. Assembly 

language can be understood more easily than binary code, and by tracing through the 

disassembled code allows a cheater to understand how the program works.  

Once the attacker understands how the code works, he can make changes to the values 

of important variables which could give him more ammunition, for example. He may 

also be able to read the values of variables designed to be hidden – thus leaking sensitive 

information that is used to provide an advantage over other players.  

Debuggers 

Debuggers are an extremely useful tool – they allow a cheater to step through the game 

client code whilst the program is running. This allows them to determine the state of the 

program and its variables during program execution. Values of variables can also be 

changed during execution, and breakpoints can be inserted into the code to allow 

execution to stop at the breakpoint. Using the variety of tools a debugger contains can 

allow a cheater to discover the inner workings of the game client.  

 

 



    - 22 - 

DLL Injection 

A Dynamic Link Library (DLL) is Microsoft’s implementation of the shared library 

concept, and is called by an executable program at run time when it needs to access 

library functions. DLL injection is a mechanism for introducing new code into an 

executable, and is a common way for attackers to get game clients to execute code of 

their choice, thus allowing them to develop and run cheating exploits. There are two 

types of DLL injection: static and dynamic. Static DLL injection occurs before any code is 

executed, when an attacker inserts a jump instruction in a file that points to the address 

of his code that he wants to be executed. Dynamic DLL injection occurs after a program 

has been executed.  When a program has been executed, a process is created in the 

operating system.  Dynamic injection occurs when an attacker attempts to load his code 

into the process’ memory space. 

5.2 Data modification 

Client data modification 

Any data that is sent to the game client by the server is susceptible to access or 

modification by a cheater. Much of this data is designed to be hidden from the player by 

the game client software. Game client software displays information to the player 

through the user interface. The user interface only displays to the player information 

they are authorised to see, which is only a fraction of the information that the client 

actually possesses.  

McGraw and Hoglund [MH2007] use an example of a magic potion, which can be drunk 

by a player to give them extra powers. If this potion’s strength is more than 100, the 

player receives an extra bonus. The code to check if the potion’s strength is greater than 

100 is in the client software, and so is the variable that stores the potion’s strength. 

Therefore, these are liable to modification by a cheater. By using a debugger, when the 

program is running, the variable that contains the potion’s strength can be changed to be 

greater than 100, and a bonus gained. Finding the location within the program of where 

this variable is stored is not a trivial task. However skilled use of disassemblers and 

debuggers simplify the task considerably.  



    - 23 - 

Network data 

To communicate with the game client, the game server sends packets of data to the client 

across a network connection, and vice versa. As this data passes along the Internet, there 

is no guarantee of the route it takes, leaving the data vulnerable to sniffing and 

modification. Cheaters can examine these packets, and packets which may harm the 

cheater can be blocked (such as being attacked by an opponent), whilst others which 

have positive effects (such as the drinking of a magic potion) can be replayed. This 

interferes with the integrity of these packets, and hence the game itself.  

An example of packet sniffing in practice is WoWSniffer.  This program has been written 

for WoW which enables a cheater to sniff chat messages over the network.  Chat 

messages are a WoW “instant messaging” service allowing players to communicate with 

each other whilst playing. WoWSniffer allows messages exchanged between rival 

players to be read. This can lead to vital information being exposed to a cheater.  

Screenshot of WoWSniffer 

 

 



    - 24 - 

Hardware data modification 

High quality graphics are a vital part of any MMOG. They provide for a quality gaming 

experience and a colourful and realistic looking virtual world. Many MMOG use the 

OpenGL specification to create their graphics. OpenGL is a specification for a cross 

platform, cross-language API for writing applications that produce 3-D computer 

graphics. OpenGL is implemented on a graphics card by a driver, and hence the 

rendering of graphics is done on the graphics card itself. Games instruct the driver what 

to draw on the screen such as walls, and their location.   

Hacking OpenGL to create an aimbots 

Aimbots are cheats that allow players to automatically aim and fire their weapon at 

opponents. This is regarded as cheating as it gives a player superhuman killing abilities. 

Aimbots work by detecting the 3-D coordinates of an opponent, then automatically 

calculating where and at what angle the weapon should be positioned in order to take 

the best possible shot at an opponent. As the game instructs the OpenGL video library 

on the graphics card what to draw on the screen, the 3-D coordinates of an opponent can 

be intercepted from the communication between the game and the OpenGL library, and 

can be used to create an aimbot.  

API level hacking 

OpenGL and Direct3D are publicly available specifications that define the format which 

graphical data must be presented to the graphics card for rendering. They define API’s 

that developers must use for rendering in game graphics. Several forms of cheating can 

be accomplished by replacing a DLL which deals with graphical rendering in the game 

client with a Trojanised version. This Trojan DLL has the ability to intercept and alter 

any rendering function call. This can be used to make enemies appear in fluorescent 

colours, for example. This was the method used by the notorious XQZ cheat for Counter 

Strike. This cheat was an aimbot, with an optional wallhack feature. It relied on 

replacing the OpenGL DLL file with a hacked version, so that the rendering of any 

objects on the screen could be modified, either to make them transparent for use in a 

wallhack, or to find their coordinates which could then be used by an aimbot. 



    - 25 - 

Hardware level hacking 

It is the job of the graphics card itself to convert the data it receives into objects on the 

display. To do this, the graphics card is supplied with the locations of all objects that 

need to be rendered. As mentioned before, this data conforms to a standard such as 

OpenGL or Direct3D, as detailed above. However, the graphics cards themselves 

possess a video hardware standard. For example, all graphics cards produced by 

NVIDIA use their own documented format for video information.  This means that at 

some point in the graphics rendering process, there will be data that will be in a known, 

documented format which is used by the graphics card. Getting at this data will allow a 

cheater to find out coordinates of objects, allowing him to aim and kill them with 100% 

accuracy. 

Sensitive data which should be kept from players is sent to, stored in, and used by an 

MMOG game client resident on a player’s machine.  This requires the game publishers 

trusting players to not attempt to gain access to this data, as well as taking measures to 

ensure cheaters cannot get at this data. If this data is leaked, it can lead to cheating. 

 
 

 

 

 

 

 



    - 26 - 

6 MMORPG specific bugs 

Some of Yan’s cheating types are uncommon or not used at all in MMORPG, such as 

cheating by using artificial intelligence. This section will focus in detail on the types of 

cheating most common in MMORPG, and attempt to explain the relationships between 

information security and cheating. 

A MMORPG is hosted on a realm (or bank) of servers which communicate with client 

machines that belong to players.  The role of the client is to receive commands from the 

player and communicate them to the server, using the Internet as the communications 

medium. The client software provides the player with a view of the game, allowing 

them to interact and issue commands.  

Screenshot of the popular Lineage 2 MMORPG 

 



    - 27 - 

When a player performs actions on his game client, the game server takes these actions 

and updates the game in response to these actions. In other words, the state of the game 

is changed – from the player’s view, the landscape may change, opponent’s locations 

and actions also change.  

To support the vast number of players playing MMORPG, games are often hosted across 

a number of servers (realms). This prevents a single server from being overloaded by 

client connections.  In addition to multiple servers, MMORPG systems will also contain 

a number of databases, to hold information such as player account and virtual item data. 

With thousands of client processes running on a server, maintaining and updating the 

state of all these players playing in real time across the Internet becomes a headache.  

6.1 Race conditions 

According to [Wh04], “a race condition occurs when a program doesn’t work as it is 

supposed to because of an unexpected ordering of events that produces contention over 

the same resource.”  

With MMORPG there are a huge number of client processes running on a server 

concurrently, and these processes will each be running a number of different threads. If 

these processes and threads share any resources, there is a chance they may interfere 

with each other – this is how a race condition may occur. In a MMORPG server, the 

game state is determined by the data being used. This data may be in memory, 

databases and other secondary storage.  Changing an MMORPG state, involving the 

access and manipulation of this data by thousands of client processes, is an environment 

that is extremely susceptible to race conditions.   

McGraw and Hoglund [MH07] describe race conditions and other state problems 

(discussed later) as the primary source of bugs in online games.  They describe the 

problem using the example of MMORPG databases.  Transactions which involve 

multiple databases they believe are vulnerable to race conditions.  In WoW for example, 

different parts of the virtual world are stored on different servers. When a player wants 

to move to another part of the world, he may be transferred from one server to another. 

McGraw and Hoglund believe that events that cause these transfers (such as moving 



    - 28 - 

from one dungeon to another) are well tested during the software development process, 

and work correctly when a player does what they are supposed to do. However they 

suggest that by performing actions not expected by the programmers, cheaters can get 

unexpected results.  They give the example of WoW, in which several “item duping” 

bugs exist around the entrances to dungeons – each dungeon is handled on a specific 

server, and when a player enters a dungeon, data is transferred from one server to 

another – raising the possibility of a race condition. Certain dungeons are more popular 

than others, meaning that server can become overloaded, leading to latency. This latency 

can be exploited to create an item duping bug in the following way. (The following was 

an actual WoW bug). Two players collude to duplicate gold; Player 1 gives Player 2 a 

quantity of gold outside the entrance to the Maruadon instance.  Player 1 goes into the 

instance, which because of the heavy load, will not allow him to enter, and will throw 

him back out. After being kicked out, the gold Player 1 gave to Player 2 has not been 

deducted from him, but has been added to Player 2. 

As the exact sequence of events and how WoW is coded is not known, only a likely 

scenario as to how this occurred can be proposed. The main problem is that trading gold 

is not an atomic operation. Rather than the gold being debited in one step, several steps 

are involved. This means that an attacker can insert actions of his choice in between 

these steps of the gold debiting operation.  One such action is the entering of the laggy 

Maruadon instance. This delays or interrupts the trading operation, causing the debiting 

of gold from Player 1 to be delayed.  Therefore the gold debiting operation takes longer 

than the gold crediting operation to Player 2. When the player cannot enter the instance 

because of the excess load, the gold debiting operation is cancelled and causes him to be 

reset to the state he was in before entering the instance.  However as the gold crediting 

operation to Player 2 is much quicker and has already been completed, Player 2 keeps 

the gold.  

6.2 Server lagging 

A key element of the gold duping bug detailed above and other item duping bugs is 

lagging of the server. If a server is lagged, or delayed, it takes longer to perform 

operations. This exacerbates a race condition – it gives more opportunity for a cheater to 



    - 29 - 

perform actions such as gold duping, increasing the likelihood of a successful race 

condition attack.  

Botnets for game lagging 

One of the most effective ways to cause lag on a server is to use a botnet. A botnet is a 

network of compromised computers controlled by an attacker. A botnet can be used to 

send a vast number of packets to a given game server, causing lags as the server deals 

with the extra load it faces.  Other techniques such as logging into a server multiple 

times with the same account can also be used to cause delays on the server. Multiple 

logins with the same account are not allowed, but processing these multiple logins uses 

computational power and thus increases computational delays. 

6.3 State changing bugs 

In many MMORPG, certain activities can cause a character to change into a different 

state. For example, in WoW, casting a spell called “Aspect of the Beast” allows a player 

to take on the characteristics of a beast, allowing them to become untrackable. Again, 

performing spells in ways in which the game developers don’t expect can lead to bugs. 

An example is enabling Aspect of the Cheetah spell before joining a battleground, then 

straight away enabling Aspect of the Hawk – this can lead a player to gaining both 

aspects simultaneously. The crux of this problem is that with MMORPG there are many 

different states which interact, and certain unexpected combinations can lead to players 

getting an advantage over others.  Such combinations were not envisaged by the game’s 

developers, hence performing these combinations can cause unexpected behaviour. 

 

 

 

 

 



    - 30 - 

6.4 Bots 

Accumulating virtual items and moving up levels in MMORPG can be a long and 

monotonous process for many players. This has led to the growth of bots – programs 

that play the game on behalf of a player.  In FPS, aimbots can automatically aim and fire 

at opponents. In MMORPG, bots are commonly used to automate the boring parts of the 

game. There is an additional incentive for the use of bots in MMORPG – virtual assets. 

Due to the fact that virtual assets can be traded for currency, it can become financially 

lucrative for players to accumulate as many virtual assets as possible. By creating bots 

which “farm” virtual assets, this goal can be achieved. Although bots can are used in 

other MMOG such as FPS, their use is widespread in MMORPG. 

Using a bot provides a clear advantage to a player. Bots can run forever, without getting 

bored or tired like a human. The use of bots has become widespread in MMORPG, with 

a continuous “arms race” between bot developers and game publishers. Game 

publishers have taken drastic measures to counter bots. The publishers of the Lineage 

MMORPG, employ 150 game “minders” who monitor the game for bot use, and then 

issue bans to players they find who are using bots. According to [Si06], it is reported that 

500,000 Lineage accounts had been suspended between 2004 and 2006 due to bot 

activity. 

Macros 

A macro is a set of commands (keystrokes and/or mouse clicks), that can be written to 

automate a task. In MMORPG, opponents such as monsters appear at certain locations 

in the game at periodic intervals. A macro can be written to get a character to stand in a 

location and automatically kill monsters when they appear. There are many websites in 

which macros similar in function to the above can be obtained. 

How Macros work 

Macros work by issuing commands using the user interface provided by the game client. 

Macros send commands to the client that appear to be normal keystrokes, mouse clicks 

or other game messages.  



    - 31 - 

Controlling keystrokes 

By controlling keystrokes, a character can be moved around, and keyboard shortcuts 

which lead to quests and other events can be generated. It is simple to generate 

keyboard events – programming languages contain keyboard API’s which can be called 

to generate the keystream sequence desired.  

Controlling mouse events 

Mouse clicks and movements can also be simulated using standard API functions, 

giving the impression that a player is actually playing.  

Pixel sampling 

By sampling the colours of pixels on the screen, some vital game information can be 

obtained.  An excellent example of this is determining character health. A character’s 

health bar is usually located in a fixed place on the screen. By sampling pixel colours 

from this area, the health of the character can be judged. This is typically done by 

sampling the rightmost, centre and leftmost pixels on the health bar. If a character has 

little health left, the bar will usually be red in colour, whereas full health is indicated by 

green pixels.  

Other measures, such as opponent’s health (useful when in a battle) can also be obtained 

by pixel sampling.  

Looting 

Once an opponent is killed, it can be looted, to gain any valuable items it may possess. 

The loot can be taken by right clicking on the loot dialog box that comes up when an 

opponent is killed. As it is not known exactly where this dialog will appear, looting can 

be automated by getting the mouse to right click in a number of different locations on 

the screen.  

 

 



    - 32 - 

Generic bot automation tools 

There are a number of different programs and engines available for players to create 

their own macros.  

AC Tool 

AC Tool is a free macro creation tool that can be used in a number of MMORPG. It can 

be used to list a sequence of keystrokes and mouse clicks, save them, and then send 

them to the game at a later time, thus allowing simple tasks to be automated.  

Inner Space 

Inner Space is a platform developed by Lavish Software that allows the development of 

programs that can be used to perform a multitude of tasks within a game.  The following 

quote from [La07] neatly summarises Inner Space’s capabilities:  

“Inner Space is a layer between Windows and games. Within this layer, programs 

written for Inner Space can safely perform nearly any task inside the game, with access 

to both standard Windows API and libraries, as well as the systems built into Inner 

Space. Inner Space provides systems for automation (scripting), input emulation, 

customizable user interfaces, bindable input (hotkeys), dual monitor support, and that's 

just scratching the surface!”  

A detailed discussion of the architecture of Inner Space is beyond the scope of this 

paper. Simply, Inner Space allows programs to be developed in the .NET language. 

MMORPG are launched with Inner Space attached, which inserts the layer between the 

game and Windows. The introduction of this layer allows interactions with the game to 

be programmatically controlled. This means that programs can be created that allow key 

strokes and certain tasks within the game to be automated. A number of such programs 

have been developed using Inner Space for several different MMORPG.  These 

programs perform tasks such as automatic fighting of monsters, or collection of gold. 

Websites, such as www.ismods.com, exist to allow players to upload scripts and 

programs for a variety of different MMORPG. Other useful cheating utilities exist, such 



    - 33 - 

as a program that automatically performs searches on a well known WoW cheat website 

whilst the game is running, to allow the player to find the latest exploits. 

Custom made automation tools  

MMORPG specific tools have been written by some developers to automate play in 

certain games. Examples are Glider for World of Warcraft and MacroQuest2 for Sony’s 

EverQuest II game. [Mm07] describes Glider as “A tool that plays your World of 

Warcraft character for you, the way you want it. It grinds, it loots, it skins, it heals, it 

even farms soul shards... without you.”  

With respect to the 15 categories of cheating defined by Yan, I believe use of third party 

programs for cheating is a type of cheating in itself and should be added to Yan’s list. 

Although it could be classified as cheating relating to virtual assets, I have shown that 

external programs are not solely used for this purpose.  

Hiding bots from detection 

Kernel resident bots 

As alluded to earlier, cheaters are trying to develop bots that are harder to detect. One of 

the ways this is done is by creating a bot that resides in the kernel. To detect a kernel 

resident bot, anti cheating tools would need to scan the kernel to detect the bot. This 

would require the anti cheat tool to possess special access privileges. Another obstacle is 

that a kernel resident bot has full access to the kernel - this means that it can manipulate 

any function call the anti cheating tool makes, and therefore can hide itself from 

detection. This kind of behaviour is basically the same as a rootkit, and leads to the 

conclusion that a bot which acts like a rootkit would be very hard to detect.   

6.5 Features of cheating in MMORPG 

The very nature of MMORPG gives rise to particular features of cheating not seen in 

other online games. One aspect of this is that bugs which lead to cheats are often kept 

secret by the people who discover them. The reason for this is simple: these cheats can 

lead to financial reward, and if other players learn of the bug and try it for themselves, 

Comment [R3]: How to detect these 
bots?? P.181 Hog 



    - 34 - 

the more likely it is that the game operators will learn of it. They will then fix the bug, 

cutting off any further opportunities for exploitation.  

The way gameplay works in some MMORPG can also have an effect on the nature of 

cheating. For example, in WoW, players must choose between two factions when they 

enter the game. If a clan finds a cheat which allows them to kill opponents easily, they 

are highly unlikely to pass this onto members of the other clan. Not passing the cheat on 

increases the power of their clan. Thus certain cheats may only be propagated to certain 

groups within a MMORPG.  

6.6 Conclusions 

There are some forms of cheating that are more prevalent in MMORPG than other 

MMOG. MMORPG often involve the repetition of certain tasks, which has led to 

cheaters developing bots that automate boring parts of the game as well as working to 

accumulate virtual assets. Tools which help the creation of bots exist, and rootkit like 

techniques are being used to hide bots from detection.  

The sheer complexity of MMORPG – they are huge distributed systems – leads to the 

possibility of race conditions and state conditions which are unexpected by the 

developers. If players can find these conditions it can lead to them gaining an advantage 

over other players – in other words, it leads to cheating. 

 

 

 

 

 

 

 



    - 35 - 

7 Cheating prevention methods 

There are a number of different techniques employed to cheat in MMOG. The most 

popular method is to use bots to automate gameplay with the aim of accumulating 

virtual items which can be sold later.  

Other methods seek to exploit weaknesses inherent in massively distributed systems 

such as MMOG, for example the storage of sensitive data on the client’s machine, and 

race conditions. The next section will discuss some methods that can be used to mitigate 

cheating. 

Information security has a vital role to play in preventing cheating in MMORPG. 

MMORPG are basically massively distributed systems. This means the lessons learned 

here can be applied to the development of other massively distributed systems in the 

future. Such systems could include company web applications that are used by all the 

employees of global organisations, who may be located across the world. 

7.1 Client side cheating 

A game client installed on a player’s machine is vulnerable to reverse engineering by an 

attacker. By reverse engineering the game client code, the inner workings of the code can 

be scrutinised and bugs which may exist in the code can be found and exploited. There 

are several methods that can be used to prevent client side cheating. 

Preventing data exposure 

Game clients come as executable files, and with the help of a disassembler and 

debugger, an attacker can attempt to reverse engineer the game executable. Measures 

must be taken to ensure that reverse engineering is made as difficult as possible for an 

attacker. If an attacker can successfully reverse engineer the game client, he can begin to 

identify any vulnerabilities, which if they exist and the attacker can exploit them, can 

lead to cheating. Values of sensitive variables can be found and tweaked. An example of 

this is a buffer overflow vulnerability discovered in the PunkBuster remote web 

administration tool discussed later. Another reason to make reverse engineering as hard 



    - 36 - 

as possible is to protect intellectual property rights. If code is reverse engineered, its 

algorithms can be studied and imitated by a competitor. This can lead to a firm losing its 

advantage over its rivals.   

Packing the executable 

Packers compress and encrypt the contents of executable files. Packers also perform 

some anti-disassembly and anti-debugging techniques. These techniques can include 

removing all comments inserted into the code by programmers. Programmers often 

leave debugging comments in their code, which can provide valuable clues to reverse 

engineers. A packer modifies the contents of the executable on disk.  When the program 

is run it is decompressed in memory, and starts at a section that contains the 

decompression and decryption code.  

Using a packer means the executable on disk cannot be disassembled without being first 

unpacked, as it is in a compressed and encrypted state.   

Packer weaknesses 

A number of universal packers exist, and due to their widespread use, people have 

created unpackers for them. Unpackers decompress and decrypt packed code, reversing 

the transformations of the packer. It is important for game developers to make sure they 

do not use a universal packer to pack their code. If a universal packer was being used, it 

could be unpacked easily using the corresponding unpacker, making the original use of 

the packer meaningless. 

This has lead to the development of custom packers, which are designed to pack 

individual executables. Using a custom packer introduces an element of security 

through obscurity. Custom packers are not exposed to wide peer review. This leaves the 

risk that software bugs, ill-thought out use of encryption, and design errors which exist 

in packers, may not be found. Consequently, this can lead some packers to give a false 

sense of security.  

Packers possess one inherent weakness which can be exploited to defeat them – reading 

the program from memory. When the program is executed, it is decompressed in 



    - 37 - 

memory. Therefore an unpacked version of the program is in memory and can be 

analysed. Analysing the program in memory is a more complicated task, but one that 

can be achieved. 

Anti debugging measures 

Using a debugger allows an attacker to step through code line by line and examine the 

values of variables as he does so. Debuggers run by attaching themselves to the client 

program, so detection involves checking the target system to see if a debugger is 

present.  

Detection by timing 

This method is based upon the game program reading the system time at defined 

intervals. If the time between samples is above a pre-defined threshold, the program 

assumes it is being debugged. This is a reasonable assumption as debuggers pause and 

slow down the execution of a program. This measure is crude, and is easy to defeat, by 

simply avoiding pausing the program and avoiding any activity that may considerably 

slow the game down.  

Code obfuscation 

This is process of “converting a program into an equivalent one making reverse 

engineering uneconomical” [Co98].  

Obfuscation is designed to make source code hard to understand and read. There are a 

number of different techniques that can be used to accomplish this. Variable names can 

be changed to symbols, such as the underscore (_) symbol. Control loops are also 

modified to make them harder to understand. The problem with obfuscation methods is 

that although they make things harder to understand, a determined attacker will 

eventually figure out how the code works. 

 

 



    - 38 - 

Preventing access to game client data 

There are two ways in which a cheater can gain access to game data – either by 

intercepting packets sent from the game server to the client, or by accessing data stored 

by the game client itself or in memory whilst the game client is running. If a player can 

get access to data, he can perform cheats such as maphacks.  

One way to prevent the leakage of sensitive game data is to use encryption. If packets 

sent from the server to the game client are encrypted, an attacker would have to break 

the encryption scheme to obtain the data. However, the encryption scheme used cannot 

not be computationally intensive, as this would increase the load on the server when it 

encrypts each packet. As hundreds of thousands of packets are sent simultaneously, this 

would increase the load on the server greatly, causing packet delays, which would ruin 

the player’s gaming experience.  

A problem with using encryption to protect game data is that the client must know how 

to decrypt the data sent to it. This means the decryption key must be sent to the client, or 

stored in it. If the key is sent to the client, it can be sniffed by an attacker, as it is sent in 

the clear. If the key is stored in the client, if the client program is reverse engineered, the 

key may be exposed, meaning that all the data encrypted with that key can be 

decrypted.   

Sensitive game values that are stored in the client and in memory when the program is 

running should be encrypted. Otherwise they can be read simply by using a debugger. 

However this suffers from the same problem that the decryption key must be stored or 

sent to the client program.  

Reducing information on the client 

With the risk that any information stored on the client may be exposed, an alternative 

approach would be to reduce the amount of information stored on the client. This could 

mean that the game server handles all graphical rendering and then pushes this to the 

clients. This means that sensitive values, such as the locations of enemies or special 

weapons, are not sent to the client at all. This solution would require a re-design of the 



    - 39 - 

game’s software and architecture, which would be an expensive process. Another 

significant obstacle is that the load on the server becomes too great. Constantly updating 

each client’s game state and sending this back to all connected clients is a difficult task. 

Doing so would undoubtedly lead to laggy gaming experiences for players, resulting in 

end user dissatisfaction with the game.  

7.2 Detecting game client integrity violations 

Attackers will modify the game client to their own advantage. This can be done by either 

replacing a file in the game client with their own version, or by DLL injection. 

A file that has been modified violates the integrity of its data. A modified file can be 

detected using a modification detection code (MDC), a hash function. By calculating an 

MDC on each legitimate (untampered with) game file and then comparing with MDC’s 

calculated on game files on the client’s machines, if any MDC does not match, this 

indicates the file has been tampered with.  An advantage of using hash functions as 

MDC’s is that they are easy to compute, therefore there is little computational overhead 

in computing and sending hashes of files on the player’s machine to a server for 

checking. Hash functions are second pre-image resistant, which means an attack in 

which an attacker creates a file in such a way that the file he creates possesses the same 

MDC as a legitimate game file, is very hard to perform.  

7.3 Preventing game bugs 

Designing secure software 

The importance of creating secure bug free game code cannot be underestimated. 

MMORPG are played by hundreds of thousands of players, and with this number of 

players, the number of threats that the software is exposed is huge. MMORPG represent 

a challenge which is unlike other software projects. MMORPG are massively distributed 

systems, with hundreds and thousands of users playing simultaneously. Using the 

Internet to connect to the game increases the security risk, as malicious users can gain 

access to the game easily. Sharing game state with so many users concurrently just 

augments the complexity. These factors serve to make MMORPG one of the hardest 



    - 40 - 

types of software to produce. This means that security cannot just be bolted on as an 

afterthought – this increases costs and complexity. Therefore security must be 

considered from the very beginning.  

Awareness of security should be extended to people involved at all stages of the 

software development process – developers, testers, architects and managers. This raises 

awareness and increases knowledge throughout the organisation. Having a 

development process in which security is an integral part offers several benefits. Bugs 

are found and fixed earlier, which reduces costs and increases the quality of the end 

product. Player confidence in the game is increased as there are fewer bugs.  

The software development process 

 

Diagram taken from www.uksh.com/about/software-development-life-... 

The design phase of the software development process must consider threats to the 

security of the system. If it does not, the design may be insecure, resulting in a system 

that has many vulnerabilities. Considering security from this stage means the system 

can be designed to address any threats it faces. Threats to the system can be modelled by 

documenting “abuse cases” – behaviour which is designed to break the system, and also 

by undertaking a risk analysis. 



    - 41 - 

The results of these analyses are fed into the system design stage, which after 

completion may be reviewed by security experts.  After thorough review of the design, 

the system is coded. Mistakes during the programming phase can lead to bugs later. 

Therefore programmers should be educated about how to write secure code, and secure 

coding guidelines should be defined to ensure a uniform approach. By educating 

developers, bugs caused by malformed inputs, for example, should be reduced - 

reducing the opportunity for cheaters to exploit them later.  

The testing phase of MMORPG development plays a vital role. It is at this stage that 

potential cheats are discovered.  Testers should not just focus on standard “use cases” or 

functional testing of the system. They should try and do unexpected things in the game 

to see its response. As discussed previously, state bugs in which unexpected interactions 

cause unusual behaviour are a prime example. With so many players, the chance of a 

bug caused by a player doing something the developers did not expect becomes a real 

possibility. Therefore testers have an integral role to play in finding such bugs. In 

MMORPG these are the bugs that can lead to item duping, and thus to rampant 

cheating.  

7.4 Preventing race conditions 

Race conditions can be prevented by careful design and coding of game software. 

Preventing race conditions involves ensuring that any thread which is manipulating 

data does so exclusively. This can be done by making sure the thread obtains a “lock” on 

a resource, which means the thread has exclusive rights to access or modify the resource. 

Ensuring that threads obtain the right locks in the right order, and preventing 

“deadlocks” in which threads may get stuck waiting for each other to release a locked 

resource, is not an easy task. With the complexity and multitude of resources and 

processes in an MMORPG, it becomes an even more complicated task. Therefore careful 

design, coding and testing is vital to ensure the number of race conditions is minimised. 

 

 



    - 42 - 

7.5 Bot detection 

CAPTCHAS – Reverse Turing tests 

The goal of bot detection is to see if a human is playing the game or not. One of the 

simplest ways to do this is to use a challenge-response test. A challenge-response test for 

exactly this purpose is the CAPTCHA – an acronym for "Completely Automated Public 

Turing test to tell Computers and Humans Apart”. 

The principle behind CAPTCHA’s is simple. A server generates and sends a test to the 

user’s computer. The user’s computer is not able to solve the test on its own – solving it 

requires a human. The test usually requires the user to type the letters of a distorted 

image. 

Example of a CAPTCHA 

 

CAPTCHA’s can be used to detect MMORPG bots by having the game server send a 

CAPTCHA to random players. If the test is not answered correctly within a certain time 

period, then it can be assumed that the player is using a bot. The response must be given 

within a certain time period to ensure liveness of the player. This is to ensure that the 

CAPTCHA is not circumvented in the following way: the CAPTCHA is sent to the 

player, who has a bot running. The player comes back a few hours later and finds the 

CAPTCHA on his screen. He then responds to the CAPTCHA and is not considered a 

cheat. If a requirement that the CAPTCHA must be completed within two minutes (for 

example) is implemented the opportunity for this type of circumvention is greatly 

reduced. There is still a possibility that a player who is using a bot happens to see the 

CAPTCHA within the two minutes of it being issued, stops the bot, and responds to the 



    - 43 - 

CAPTCHA correctly. Periodic sending of CAPTCHAs to player’s machines will help to 

catch bots which evade detection first time round.  

As with any challenge response system, the challenges that are issued should not be 

repeated or predictable. If they are, cheaters will realise this and write programs which 

are able to predict and generate responses to CAPTCHA’s automatically, allowing them 

to use bots undetected. 

Detecting mouse and keyboard movements 

When a bot is used, there are no keyboard presses or mouse movements – everything is 

scripted. When a human plays, keys are pressed and the mouse is moved. This 

distinction forms the basis of a method that could be used to detect bots. If key presses, 

mouse movements and clicks could be recorded somehow and sent to the server, proof 

that a human was playing would be established.  

Hardware signing  

This measure is based upon an idea by Wu-Chang Feng of Portland State University 

[Fe07]. It is based upon new hardware - secure mice and keyboards. It revolves around a 

mouse, when it moves, or is clicked, producing data that says it has moved or been 

clicked. For the moving of a mouse, this could be the co-ordinates of its movement, for 

example. The mouse needs to possess a unique private cryptographic key. This key 

could be used by the mouse to produce a digital signature on its movement or click data.  

The idea is to use “hardware signing” to prevent bot use. The game client could be 

configured to pass digitally signed data about mouse clicks/moves or keyboard presses 

by players to a monitoring server hosted by the game publisher.  A public key 

certificate, provided by the mouse manufacturer, could then be used by the publisher to 

verify the digital signature on this “movement” data. A unique identifier would need to 

be possessed by the mouse and keyboard. This must be done as keyboards and mice are 

portable, and can be moved to other computers. This allows the mouse to be associated 

with another player at a future time.  



    - 44 - 

The monitoring server would store the player’s id, keyboard/mouse ids and the 

digitally signed movement data messages from the mouse and keyboard. If over a 

certain period, there are no digitally signed messages for a given player, it can be 

assumed that they are using a bot, as bots do not generate mouse clicks or key presses. 

This period must not be too short – it is possible that a player has paused the game 

temporarily, so mouse and keyboard movements would not be expected.  

Using a digital signature provides data origin authentication which is necessary in order 

to be sure that the movement came from that particular device. It also provides data 

integrity, which means that if any modification is made to the movement data it will be 

detected.  

To address privacy concerns, it is obvious that the data signed by the keyboard should 

not reveal any personal information. Therefore only data that a key has been pressed 

(and not the particular key that was pressed) should be revealed.  

Problems with hardware signing 

This method would require new hardware devices capable of generating information 

and signing it. These devices are likely to be costly, and hence only a small percentage of 

the game’s players will obtain them. If details of such a cheat detection scheme were 

made public, cheaters would definitely not buy these devices! Game makers could force 

players to buy them by not allowing them to play the game without them, but this could 

be a public relations disaster if they were seen to be forcing players into this. 

Player monitoring 

This approach involves scanning the running processes of players’ machines to see if 

they are running known bot programs. This could work by taking a certain number of 

bytes in memory from running processes, hashing them, then sending the hashes to a 

detection server. The detection server would have precomputed and stored hashes of 

the same data from these known cheating programs, and if a hash obtained from a 

player’s machine matches a stored hash, that player is known to be running a bot 

program.  



    - 45 - 

This approach requires the bot program to be known before it can be detected. Thus 

effort is required to find new exploits. Cheating exploits are often shared between closed 

user groups, so obtaining bot code is not a simple task.  

One advantage of this approach is its simplicity. Computation of hashes is relatively 

fast, and simple comparison is needed. Scanning a player’s machine to find known 

cheats is easier than defining IDS type models to detect bots (discussed later). Detection 

using player monitoring means cheats can be found and banned quickly, keeping player 

confidence that the game is “clean”. Player monitoring  is used in the Warden, Blizzard’s 

anti cheating solution, and PunkBuster, a standalone cheating detection tool, discussed 

later. 

Player reporting of cheats 

Some MMOG include facilities for players to report gamers who they suspect are 

cheating. Eve Online allows players to file “petitions” in which they report suspicious 

player behaviour to the game administrators. The administrators then use game logs to 

investigate the player’s actions to see if the petition is justified. A similar mechanism can 

be used by honest players to report bugs to the developers.  

It can be argued that this method places too much reliance on players to report cheaters. 

Players must be prepared to spend their own time filing a petition. It also relies on 

players not abusing the system by maliciously reporting others. Players may be tempted 

to report an opponent who they may bear a grudge against, even though they may not 

even be indulging in cheating behaviour. This would lead to the game administrators 

wasting time investigating a false complaint.   

IDS type approaches 

The principles upon which anomaly based Intrusion Detection Systems (IDS) are based 

can also be applied to detection of MMORPG cheats. Anomaly based IDS works by 

observing and collecting data on legitimate user behaviour, and then using statistical 

tests on observed user behaviour to determine whether the behaviour is legitimate.  



    - 46 - 

One such measure that has been researched is the timing of client commands in 

MMORPG. This was proposed in research conducted by Chen, Jiang et al [CJ06]. Client 

commands are, for example, attacking a monster or casting a spell. Humans initiate 

client commands by mouse clicks and/or keyboard strokes. They distinguish this with 

the behaviour of bots, in which triggering of client commands is decided by 

programming logic in the bot program. They postulate that the design of when to issue 

the next command is important as it can lead to major discrepancies in traffic patterns 

between bots and humans, and these patterns can be analysed to detect bots.  

They propose two possible measures that can be used to detect bots by traffic analysis – 

command timing and traffic burstiness.  

Command timing 

This refers to the time difference between a client packet departure and the most recent 

server packet arrival time. [CJ06] found that some of the bots they examined, after 

receiving a server packet, use a scheduled intentional delay time before issuing their 

client commands, leading to regularity in response times. Other bots would respond 

extremely promptly (within 10ms) to a server command. As a result they created a bot 

identification scheme based on prompt responses and regularity in response times.  

Traffic burstiness 

Traffic burstiness is the variability of the number of packets sent in successive periods, 

and indicates how traffic fluctuates over time.  Chen, Jiang et al hypothesise that as a 

result of the bots periodicity (scheduling a delay before issuing commands), they exhibit 

smoother traffic patterns compared to player traffic. Bots take action based on server 

packets, which are periodic for smooth screen updates. As a result this periodicity filters 

through into bot traffic. Therefore they were able to find lower traffic burstiness around 

times when the game state was updated.  

Results of their research 

Chen, Jiang et al collected traffic data on MMORPG traffic which was generated by bots 

and human players alike. Using the command timing and traffic burstiness approaches, 



    - 47 - 

Chen, Jiang et al achieved correct decision rates (ratio that the client type of the trace 

was correctly determined) higher than 95% and false negative rates (fraction of bots 

judged to be human players) less than 5%, with an input size of more than 10,000 

packets.  

They propose a conservative approach to bot detection which states that a traffic stream 

can be considered to come from a bot only if the command timing and traffic burstiness 

tests agree. By doing this, they reduced the false positive rate to zero, and achieved a 

90% correct decision rate, within an input size of 10,000 packets.   

Attacks against this method 

Chen, Jiang et al acknowledge that a bot which adds random delays to the release time 

of its commands renders the command timing scheme ineffective, as this method relies 

on the regularity of bot reactions.  They reason that the traffic burstiness scheme is 

immune to random delay attacks because bots take action in response to packets from 

the server which are periodic in nature. Random delays do not affect the burstiness of 

the traffic, just when that burst occurs.  

The bursty nature of player generated traffic can be simulated by a bot, by turning itself 

“on and off”. This means that traffic is not sent in one go, but rather in bursts. The 

authors argue using this “on and off” behaviour in a bot reduces its effectiveness, as it 

may be idle for long periods of time – defeating the purpose of the bot playing 

constantly while the player is away.   

Machine learning of player reactions 

Another approach that can be used to detect aimbots is to learn player reaction times. 

Player reaction times to opponents in FPS can be recorded. These measurements could 

include the time it takes for a player to kill an opponent who suddenly appears. 

Measurements should be taken from the best players, as this will give indications as to 

the quickest possible human reaction times. This measurement can be used for a 

threshold detection mechanism. If a player during gameplay is recorded as having a 



    - 48 - 

reaction time quicker than the threshold level, that player can be flagged and assumed to 

be using an aimbot.  

I believe IDS-like approaches represent a good way to detect bots. Bots can be 

distinguished from players in terms of playing ability (for example aiming and killing 

opponents) and in the way bots respond to server commands. The research undertaken 

by Chen, Jiang et al represents a promising start to the use of IDS type measures to 

detect bots, but there is still a lot of work to be done before this can be used as a bot 

detection mechanism by game publishers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    - 49 - 

8 Anti-cheating tools 

There are a number of approaches game publishers have undertaken to combat online 

cheating. Software manufacturers have designed standalone anti-cheating tools, such as 

PunkBuster, which work in conjunction with many different MMOG. Game publishers 

such as Blizzard have also designed proprietary anti-cheating tools, such as the Warden, 

which are designed for a particular MMORPG - the Warden is designed specifically for 

World of Warcraft.  

8.1 PunkBuster 

Tools which fall into this category include PunkBuster (PB), an anti cheating tool 

designed by Even Balance.  PB is based on a client/server architecture. The client runs 

on the player’s machine whilst they are playing the game, and the server software runs 

on the game publisher’s server. PB operates in a similar manner to anti-virus tools: it 

scans the player’s computer whilst they are playing the game, looking for known cheats 

and exploits. Periodic status reports are sent to the PB server, and if suspicious 

behaviour is detected, a violation is raised at the server, which can cause a player to be 

removed from the game. To ensure that the latest exploits are caught, PB includes an 

auto update feature which allows the client to connect to a master server and download 

the latest version of PB without interrupting gameplay. 

How PB works 

There are three types of cheating that PB aims to detect: modified client variables, 

modified game files and use of known cheating exploits.  

Detecting modified variables 

Due to the proprietary nature of PB, the details on how it operates have been taken from 

EvenBalance’s official documentation, and precise implementation details are unable to 

be provided as they are not revealed by EvenBalance.  

PB examines player’s computers for modified client variables (known as cvar’s). Cvars 

are variables that are modified by cheaters to change the way things are displayed (i.e. 



    - 50 - 

to perform wallhacks). Each game server which hosts PB has its own configuration file, 

that allows game server administrators to define the permitted values for cvars for 

clients using that server. Detection of irregular cvars occurs by the sending of regular, 

encrypted status reports from the PB client to the server.  These cvars are then compared 

against the permitted cvar values, and any deviation can lead to a player being banned 

for cheating.  

Detecting modified game files 

To detect if a player has tampered with their game files, PB computes an MD5 hash of 

certain key files (chosen by the PB server admin) contained in the game installation 

directory. The MD5 hash acts as a modification detection code, or checksum. The PB 

server stores MD5 checksums computed on the game’s files. The stored hashes are 

compared with the ones taken from the player’s computer. If they differ, it can be 

deduced that the player has tampered with his game files. A warning or ban can then be 

issued to the player.  

Detecting known cheating exploits 

To detect known exploits or 3rd party programs that are used to cheat, PB performs 

random memory scans on the player’s machine in order to see if the player is running 

any known cheat programs on their machine.   

Screenshots 

PB also has a facility which allows administrators to request screenshots of currently 

connected players.  These screenshots are then transmitted and stored on the PB server. 

Screenshots can provide evidence of player cheating, such as use of wallhacks. The 

ability to take screenshots of player’s screens raises privacy issues. Apart from capturing 

a screenshot of the game, does an admin need to know what else a player has on their 

screen? They may be able to find out a player’s bank account details if they are using an 

Internet banking service, for example. What is to stop a rogue admin repeatedly taking 

screenshots from a player’s screen, and gaining sensitive personal information?  



    - 51 - 

To address such concerns, PB has two different safeguards. PB limits how many times a 

PB server can request a screenshot, to prevent server administrators from taking 

screenshots one after another. To stop confidential non game information being leaked, 

if a screenshot is taken but the player has minimised the game, the screenshot will be 

blank. Hence only screenshots of the game only can be taken, not of any other windows, 

such as web browsers. 

Example of a screenshot produced by PB 

 

PB use of digital signatures 

Another concern is the manipulation of screen shots by administrators to ban players for 

malicious reasons. Administrators could swap screenshots between players, or even 

doctor them using image editing tools to concoct evidence of cheating. To prevent this 

from happening, EvenBalance claim a digital signature is computed on the screenshot 

before it is stored in a log file on the server. They also claim that a digital signature is 

also calculated and stored with the log file itself. The name of the log file along with the 

digital signatures are sent to all players.  



    - 52 - 

Using a digital signature should prevent several different threats to screenshots and 

logs. Alteration of logs or screenshots after they have been created can be detected, as 

the digital signature sent to the player will not match a signature calculated on the 

modified log file. By signing them provides data origin authentication – players can be 

assured that they came from the PB server.  

After reading in detail the information on EvenBalance’s website about how they use 

digital signatures, it became apparent to me that they were in fact not using digital 

signatures at all to protect their log files. [Ev06] states that “We have for download, on 

our website a free utility called pbmd5 that will compute the Digital Signature (also 

known as MD5) of any file.”  

MD5 cannot be used on its own to compute a digital signature, and stating that it can is 

incorrect. MD5 is a hash function, not a digital signature scheme. By using MD5 to 

protect their log files only provides them with weak data integrity.  The reason why they 

only provide weak data integrity is because there is nothing to stop someone with access 

to the logs from changing the log files contents, then computing a new MD5 hash value 

for the log file, and storing it. When someone wants to verify the integrity of the log file, 

they recompute this hash, which will match. Therefore even though the file has been 

altered, the person verifying the files will believe they have not been tampered with as 

the MD5 they compute on the file matches the one stored for the file.  

Log files 

The way PB transmits information about log files to players is in my opinion, 

unsatisfactory. At the end of the game session, the PB server reports the filename of the 

log files and their MD5 checksum (digital signature in EvenBalance’s language) to 

players. To capture this information for future use, EvenBalance’s website recommends 

“bringing down the game console and then taking a screenshot of your playing screen 

while that information is displayed”. I believe this method places far too much reliance 

on the player to record this information. What happens if a player simply forgets? The 

following situation becomes possible. As a player has no record of the checksums of the 

log files, a malicious admin could modify the logs to show that a player has used a 



    - 53 - 

known cheating tool last time they played the game. The admin could then recompute 

the checksum, and store it with the log file. This could then be used as evidence to ban 

that player from the game.  The banned player then has no redress – he cannot argue 

with the checksum on the log file as it computes correctly and he has no evidence that 

the log file has been modified.  

The use of MD5 to provide data integrity for the log files is also a cause for concern. 

MD5 has shown to be vulnerable to a collision attack. In 2005, a Chinese cryptographer, 

Xiaoyun Wang, demonstrated a method in which collisions could be found for MD5 in 

as little as 15 minutes. Using MD5 opens up the possibility of an attack where an 

attacker creates a number of minor modifications to a log file. The birthday paradox tells 

us that collisions in MD5 hash functions are found with complexity 264.  With Wang’s 

collision attack, collisions in MD5 can be found with much less complexity: 239.  Due to 

the fact that collisions in MD5 can be found with less complexity, the following attack 

becomes possible. This attack is based on one conducted by Daum and Lucks.  Based on 

Wang’s work in finding collisions in MD5, Daum and Lucks “implemented an attack 

which found random collisions in MD5. It took just a few hours on a customary PC” 

[DL05]. Using this method, they were able to create two postscript files that produced 

identical MD5 hashes. The original postscript file contained a letter of recommendation 

for an employee, while the other contained a letter that granted security clearance.  I 

believe a similar approach can be used against the PB log files. If an authentic log file is 

taken then a number of possible log files can be created. After 239 different log files have 

been created, there is a greater than 50% chance that one of these log files will produce 

the same MD5 checksum as the original log file. The log file the admin has produced 

may show that a player has been banned for violating game rules, for instance.  The 

admin may then replace the original log file with his version. The admin can then ban 

the player from the game, and can claim to have evidence to back up the claim that the 

player has been cheating. However this evidence has been fabricated. The admin may 

then even confiscate the banned player’s virtual assets and then sell them. If such 

behaviour was to occur, this would have a severely detrimental effect on the game 

operator’s business. Trust that legitimate players had in the operator would be eroded, 



    - 54 - 

and the negative effect on the operator’s reputation would inevitably lead to players 

quitting the game.  

Screenshots and MD5 

As PB uses MD5 checksums to verify the integrity of screenshots it captures from 

players, a collision attack can also theoretically be carried out to produce a screenshot 

that has an identical MD5 checksum to an authentic screenshot stored on the server. A 

screenshot could then be produced to show evidence of a player indulging in cheating. 

Screenshots could be changed fairly easily using image editing tools such as Paint Shop 

Pro.  

Remote logging facility 

EvenBalance is in the process of offering players and server administrators the chance to 

remotely log their information. This involves screenshots and logs being stored in 

password protected files on EvenBalance’s servers. If EvenBalance continue to use MD5 

hashes and do not instead use digital signatures based on public key cryptography with 

supporting public key certificates, there could be problems. One problem with relying 

solely on MD5 checksums is the fact that they provide no data origin authentication. 

With remote logging, there is nothing to stop an attacker from creating a screenshot or a 

log file, computing an MD5 checksum and then simply storing it in the user’s file. Such 

an attack could be prevented by using digital signatures. EvenBalance could sign the 

screenshots and log files with a signing key, and players could then use the 

corresponding public verification key and public key certificate to verify EvenBalance’s 

signature. This would provide the log files and screenshots with data origin 

authentication, data integrity and non-repudiation. Log files may be used by 

administrators to check if there has been any cheating behaviour on their servers. If 

digital signatures are not used to protect the log files, cheaters would be able to delete 

evidence of cheating behaviour from the log files, compute a new checksum and thus 

avoid detection completely. Therefore I believe PB must use digital signatures to protect 

log files in their new remote logging facility.  

 



    - 55 - 

Attacks on PB 

As a powerful anti-cheating tool that is used in a number of MMOG, PB is an obvious 

target for attackers who aim to circumvent it. Circumventing PB usually involves one of 

two things: using an exploit or cheat that PB cannot detect, or attacking PB itself.  

As mentioned before, cheats are propagated through limited membership, private 

cheating groups. PB does not use a heuristic approach to cheat detection - it relies on 

memory scanning of player’s machines to detect cheats, therefore the cheat must be 

known before it can be detected. Due to the private nature of cheating groups, 

discovering cheats is not always an easy task.   

Attacks on PB itself are a much harder task to accomplish.  PB checks to ensure that the 

files it uses have not been altered, which makes replacement of PB files detectable. PB 

also uses “hardware bans” to deter would be cheaters. A player receives a hardware ban 

if memory scans show that a cheat that is known to circumvent or disrupt PB's normal 

operation or its facilities is activated.  

Hardware bans  

Players caught cheating on a PB enabled server would be banned from that game server 

by the admin. They would then go to another game server and attempt to cheat there 

until they are caught. This was not an ideal situation, as cheaters were just transferred 

from one game server to another rather than being removed from all game servers 

permanently. To address this, PB introduced the concept of hardware banning. This 

involves the creation of a GUID (Globally Unique Identifier) to uniquely identify each 

cheat.  

Tools can automatically record information about cheating players, including the GUID, 

and other information such as the cheater’s IP address and any known game aliases. 

These tools then automatically feed this information into a Master Ban list. PB servers 

can be configured to automatically update their own banning lists with this master ban 

list.  This system greatly reduces the overhead for server administrators, as they no 

longer have to rely on banning cheaters manually. By automatically updating servers 



    - 56 - 

with banning lists means that cheaters will only have limited opportunity to switch to 

playing on servers they have not been banned on, as the server’s banning lists will 

quickly be updated.  This system allows cheaters to be banned from all PB enabled 

servers quickly and effectively. 

GUID computation  

The GUID is used to identify a cheat, and is computed by using unique hardware 

identifiers and the game installation CD key as inputs to a hash function.  Such 

hardware identifiers include the serial number of the hard drive on the cheater’s 

machine, and the MAC address of the network interface card (if one exists). By using a 

hash function means that no serial numbers for individual computers are stored. For a 

cheater to overcome a hardware ban, they would have to change their hard drive, and 

other hardware components. (It is not known exactly which hardware identifiers are 

used to compute the GUID, but each hardware device that is used to compute the GUID 

would have to be replaced). Although this may represent a degree of “security through 

obscurity” by not revealing what hardware components are used to compute the GUID, 

changing many hardware items is an expensive and prohibitive process for many 

cheaters, and as such the process of overcoming a hardware ban is a costly process. This 

represents a deterrent to players who are wishing to cheat.  

However the practice of hardware banning does raise some issues. For example, if a 

computer is purchased second hand, it may have a hardware ban caused by a previous 

owner. This means that the new owner will not be able to play any MMOG that use PB. 

EvenBalance states that hardware GUID bans are permanent and cannot be reversed, 

which makes this situation worse for an innocent player, as there is no redress. 

Vulnerabilities in PB itself 

As stated before, PB is an attractive target for players wishing to cheat. Would be 

attackers can attempt to find vulnerabilities by reverse engineering the PB code. Skilled 

attackers can examine this code to see how it works, and if there are any ways to attack 

or circumvent it. Avenues for attacks would include looking for buffer overflow 

vulnerabilities. These occur when an attacker constructs an input which the code does 



    - 57 - 

not handle correctly, and allows an attacker to execute his own code.  A buffer overflow 

vulnerability was found to exist in PB’s WebTool utility. This utility is an HTTP Server 

that allows administrators to remotely administer their PB Server via a web browser.  

This tool requires a key parameter and a password to authenticate the user. However, 

the length of the key parameter is not checked before it is copied to a buffer, and if a 

long key is entered, the buffer can overflow and lead to remote arbitrary code execution 

by an attacker, allowing him to gain control over the PB server.  Detailed information 

about this vulnerability can be found at 

http://www.symantec.com/avcenter/attack_sigs/s21892.html  

This could lead to a whole host of potential attacks: the PB server could be disabled, and 

the cheater could then connect to the game server and run cheating exploits without fear 

of being caught. Log files could be deleted to remove any trace of illegitimate activity. 

There is no documented evidence of such an attack taking place, but it underlines the 

importance of ensuring there are no bugs in anti-cheating programs. It is imperative that 

makers of anti cheating tools test them thoroughly to ensure there are no input 

validation errors. As attackers can find these bugs by disassembling the executable code, 

obfuscating the code by renaming variables, removing code comments and making 

program logic harder to follow all serve to make a would-be attacker’s task tougher and 

more time consuming. However, obfuscation will not stop an attacker who is 

determined enough. 

PB Summary 

PB uses the concept of player monitoring to detect MMOG cheats. By scanning a 

player’s machine and verifying the integrity of game files and cvar’s, PB hopes to catch 

cheaters. EvenBalance’s idea to use hardware bans to permanently ban cheaters from all 

PB supported MMOG is an excellent idea which should stop the problem of cheaters 

jumping from one MMOG to another.  

I am concerned about PB’s use of MD5 as the hash function to verify the integrity of 

files, as MD5 has shown to be vulnerable to collision attacks. Also of concern is 

EvenBalance’s belief that MD5 can be used to produce a digital signature. This, in my 



    - 58 - 

view, represents an alarming lack of understanding of basic cryptography. I have shown 

that not using digital signatures correctly could have adverse consequences on PB’s 

remote logging facility.  



    - 59 - 

8.2 The Warden – Blizzard’s approach to cheating 

The Warden is Blizzard’s anti cheating tool that is used in a number of their games, 

including WoW. The Warden was reverse engineered by Greg Hoglund in 2005, which 

exposed how it functioned. Much of the subsequent discussion is based on Hoglund’s 

work. 

What the Warden does 

Hoglund [Ho05] states: 

“The Warden is downloaded on the fly from Blizzard's servers, and it runs about every 

15 seconds. It reads information from every DLL loaded in the 'World of Warcraft' 

executable process space. The Warden then uses the GetWindowTextA function to read 

the window text in the titlebar of every window. These are windows that are not in the 

WoW process, but any program running on your computer.  

Once these strings are obtained, they are passed through a hashing function and 

compared against a list of 'banning hashes' - if you match something in their list, I 

suspect you will get banned. Next, Warden opens every process running on your 

computer. When each program is opened, Warden then calls ReadProcessMemory and 

reads a series of addresses - usually in the 0x0040xxxx or 0x0041xxxx range - this is the 

range that most executable programs on Windows will place their code. Warden reads 

about 10-20 bytes for each test, and again hashes this and compares against a list of 

banning hashes. These tests are clearly designed to detect known 3rd party cheating 

programs, such as WoW Glider. Every process is read from in this way.”  

Privacy issues surrounding the Warden 

The functions of the Warden raise several privacy issues. Reading the name of each 

window that is currently open on the player’s machine can expose sensitive personal 

information.  To quote Hoglund’s experience:  

“I watched the Warden sniff down the email addresses of people I was communicating 

with on MSN, the URL of several websites that I had open at the time, and the names of 

all my running programs, including those that were minimized or in the toolbar. These 



    - 60 - 

strings can easily contain social security numbers or credit card numbers, for example, if 

I have Microsoft Excel or Quickbooks open with my personal finances at the time.” 

These strings are passed through a one-way hash function, which produces a digest 

which is hard to reverse. By “hard to reverse” this means that it would be 

computationally infeasible for Blizzard to try and obtain the original strings from the 

hashed values. However, I do not believe hashing these strings is a strong enough 

safeguard for personal data. The reason for this is that the Warden itself could easily be 

modified to not hash these strings, and simply transmit them to Blizzard in cleartext 

form. This would lead to the leak of hundreds of thousands of players’ sensitive 

personal data. It is not an easy task to ensure this does not happen. The Warden is 

Blizzard’s proprietary software and would have to be reverse engineered by an outsider 

to determine how it works. Blizzard could make reverse engineering extremely hard by 

obfuscating their code, for example by encrypting it. This would make determining 

exactly what the Warden was doing a tough task. This is exacerbated because the 

Warden is downloaded on the fly from Blizzard’s servers while the game is running. 

This raises the possibility that the Warden code could be changed to capture sensitive 

strings in cleartext form for a period of time (by not hashing them), then be changed 

back to hash these strings at a later time. Even if this was done for a period of a few 

hours, the amount of personal data collected would be huge, as the Warden runs every 

15 seconds and WoW has thousands of players playing at any one time.   

I also do not believe that collecting data about which windows are currently open is a 

useful exercise. Presumably the purpose of collecting these strings is to see if a player is 

running a cheating program that is not currently on Blizzard’s banning list. If the 

program was on the banning list, it could be detected by Blizzard by comparing the hash 

of the first 10-20 bytes of the cheating program to the hashes of known cheating 

programs. In my opinion, by capturing the window text of each toolbar window 

Blizzard hope to catch cheaters who are “obviously” using cheating programs – i.e. if 

one of the windows is named WoWCheatTool, then this player will be assumed to be 

cheating and will be banned. I think this is a facile approach. People who write cheating 

programs will naturally be aware of the Warden and how it functions. So one of the first 



    - 61 - 

things they will do is to make sure the window text of the cheat tool in the toolbar is 

given a name that has no cheating connotations, rendering the collection of window text 

data useless. 

The Warden has been classified as spyware by some, including the Electronic Frontier 

Foundation (EFF) who brandished it as spyware and said its use constituted "a massive 

invasion of privacy".  

The Anti Spyware coalition defines spyware as: 

“Technologies deployed without appropriate user consent and/or implemented in ways 

that impair user control over: 

Material changes that affect their user experience, privacy, or system security; 

Use of their system resources, including what programs are installed on their 

computers; and/or collection, use, and distribution of their personal or other sensitive 

information.” 

The Warden does collect sensitive data and can affect a user’s privacy. However, it is not 

deployed without the user’s consent - in the WoW license agreement, there is a “consent 

to monitor” clause which states that the game may monitor a player’s memory to detect 

“unauthorised third party” programs. The full text of the license agreement can be 

obtained here: http://www.worldofwarcraft.com/legal/eula.html. 

Critics such as the EFF argue that this information is “buried in license agreements 

which few people read”, but this is the case with almost all types of software. Players 

who are concerned about privacy issues will read license agreements in detail and 

choose whether or not to proceed with installation. Others will simply accept these 

terms as they wish to play the game and are not concerned about any privacy issues.  

Warden summary 

The Warden, like PB, is based upon monitoring of player’s machines to ensure they are 

cheating. This is an efficient and fast process which ensures players are not using known 

cheating tools.  



    - 62 - 

The Warden has aroused controversy in some quarters regarding the private nature of 

some of the information it captures from player’s machines. I do have some concerns 

regarding the possibility that the Warden could be modified to capture sensitive data in 

the clear, but I feel the issue of collection of sensitive data depends on an individual’s 

trust in Blizzard. If a player believes Blizzard’s word and thinks they are trustworthy 

and will not capture sensitive personal data in cleartext, they will feel comfortable with 

the Warden’s actions. However it must also be noted that privacy concerns are not a 

major issue for most players. Many players in fact welcome the use of the Warden, as it 

helps to catch cheaters who impair the gaming experience of fair players. Fair gameplay 

is more important to these gamers than any potential privacy issues.  

 
 
 
 



    - 63 - 

9 Novel cheating detection mechanisms 

Game statistics 

Game publishers could gather statistics about elements of their games in order to help 

with detecting cheats. This is similar to the concept of threshold detection used by some 

anomaly based intrusion detection systems, in which certain behavioural attributes, such 

as the number of times a file is accessed, is recorded, and if it exceeds a certain threshold 

value an alarm is raised. 

In a FPS game, statistics on each player’s total number of shots fired and the number of 

hits registered can be used to calculate the percentage of successful shots a player fires. 

This statistic could be used to detect aimbots.  Aimbots give players “superhuman” 

aiming abilities, allowing them to automatically shoot directly at a target. Any player 

using an aimbot is likely to have a very high shot success percentage, perhaps 95% or 

more. If such a statistic is calculated any players who have a shot success percentage of 

95% or over could be flagged as a potential cheat.   

Economic statistics 

A novel way of detecting that gold duping bugs are being exploited by cheats is to 

examine economic statistics from the virtual world. When gold duping occurs, the 

supply of gold in the virtual world increases, and this consequently reduces the virtual 

money to real money exchange rate. Websites exist which track the exchange rate 

between real money and virtual gold, such as GameUSD (www.gameusd.com). The 

currency devaluation may also be detected by seeing whether the price of gold on gold 

selling websites (such as IGE) has decreased. Everquest suffered from a gold duping bug 

which caused hyperinflation in its virtual economy. The impact that gold duping and 

the resultant hyperinflation have on an MMORPG can be catastrophic. Hyperinflation 

causes the price of virtual items to rise astronomically, with basic items costing huge 

sums of gold. The high price of basic items means that players who are new to the game 

and possess little gold, cannot afford to buy anything, making it impossible for them to 

progress in the game. Analysing economic statistics to detect any devaluation of game 



    - 64 - 

currency can be used to detect the symptoms of a gold duping bug, but the statistics that 

are used must be reliable.  



    - 65 - 

10 Virtual crime 

10.1 Virtual economies 

The phenomenon of virtual economies was first discussed by Castronova [Ca02]. His 

research focused on measuring in economic terms the value of virtual economies.  He 

studied the Everquest MMORPG and found that the Gross Domestic Product (GDP) of 

the Everquest virtual world was larger than Bulgaria’s.  This may seem completely 

bizarre – how can a computer game world have a GDP greater than a country with 

approximately 7 million people? 

Everquest players take on a profession within the game, and once they have acquired 

sufficient skill in their profession they can produce virtual items which can be traded 

with other players. For example, iron ore can be smelted into iron, then a sword made 

out of it, which can be sold.  This mirrors economic activity in the real world, and leads 

to “virtual world GDP”. 

However the relationship between virtual and real economies runs deeper than this. 

Players of MMORPG invest considerable time and effort in order to accumulate virtual 

items and move up levels. To use an age-old adage, “time is money”.  Virtual game 

items possess real economic value – players who don’t wish to spend hours playing the 

game in order to get virtual items or progress levels, can buy these for “real” money.  

For example, ILevelU http://www.ilevelu.com will increase a player’s level from level 1 

to 50 in the Lineage II MMORPG for a price of $325. There have been cases of virtual 

items being sold for thousands of dollars – an island in the Project Entropia game was 

sold for $26,500! It has been estimated that worldwide annual sales of virtual items 

exceeded $800m in 2005 – so virtual item trading is big business and will only continue 

to grow as MMORPG grow. 

Making money from MMORPG 

In some MMORPG, virtual item trade is encouraged and supported. A good example of 

this is Second Life (http://secondlife.com). The makers of Second Life, Linden Labs, 

allow any virtual items created by a player to belong to that player. This allows players 



    - 66 - 

to trade and profit from virtual items as they please. Linden Labs’ approach to virtual 

items is in contrast to other game developers, who explicitly state in their End User 

Licence Agreements that virtual property belongs to them. 

Many game publishers have attempted to ban virtual item trading in their games, as 

many legitimate players believe it gives an unfair advantage to richer players. After 

much pressure from game publishers, eBay, the largest trader of online game articles, 

agreed to ban virtual item trading in 2007.  However, this has not stopped virtual item 

trading from flourishing in other places.  

Much of virtual item trade is done through middlemen, with Internet Gaming 

Entertainment (IGE), being the largest. IGE has an agreement with Blizzard to sell gold 

and levelling facilities for WoW. IGE has around 100 suppliers – experienced gamers 

who accumulate virtual items and sell them to IGE. IGE’s customers are players wishing 

to buy virtual items or move up levels. Lots of other less legitimate middlemen websites 

appear and disappear with regularity. These websites are less scrupulous about the 

source of their virtual items. Using middlemen makes it easy for players to indulge in 

what is known as Real Money Trade (RMT) – making real money through playing 

MMORPG and selling the virtual items accumulated to the middleman in return for 

cash.   

The potential for RMT through playing MMORPG has attracted the attention of people 

eager to make a fast buck. This has led to criminals looking to exploit MMORPG and 

their players. This section will focus on how criminals attempt to profit from virtual 

economies, and how information security can help to prevent this.  

10.2 Stealing virtual property 

Rather than spending many hours playing the game trying to accumulate virtual items, 

why not steal them off someone else? The easiest way to do this is to capture someone’s 

online identity, by stealing their User Id and password. Once these are obtained, that 

player’s character can be stripped of their all possessions which can then be transferred 

to the thief and sold.  



    - 67 - 

How identities are stolen 

Phishing  

[We07] describes phishing as “the act of sending an e-mail to a user falsely claiming to 

be an established legitimate enterprise in an attempt to scam the user into surrendering 

private information that will be used for identity theft.”  

[Hu05] gives an example of a phishing email used to steal account details from players 

of the Eve MMORPG , shown in full below. 

From: Eve Team "suspension@eve-online.com" Date: September 3, 2005 10:20:26 PM EDT To: 

hunterd@wharton.upenn.edu Subject: Limited Account Access - Eve-online  

We are contacting you because on 2 Sep 2005 our Account Review Team 

identified some unusual activity in your account. In accordance 

with Eve's User Agreement and to ensure that your account has not 

been compromised, access to your account was limited. Your account 

access will remain limited until this issue has been resolved. 

To secure your account and quickly restore full access, we require 

you to login in you account .This process is mandatory, and if not 

completed within the nearest time your account may be subject for 

suspension or will be banned 

To securely confirm your Eve-Online information please click on the 

link bellow: 

[Redacted to avoid mistaken logins] 

We encourage you to log in and perform the steps necessary to 

restore your account access as soon as possible. Allowing your 

account access to remain limited for an extended period of time may 

result in further limitations on the use of your account and 

possible account closure. 



    - 68 - 

Thank you for using Eve-online! 

The Eve Team 

 
 
The email contains what seems to be a perfectly valid request, and looks extremely 

authentic. The from: address in the email has been spoofed to make it appear that it 

comes from the makers, Eve. Clicking on the link led to the following URL: 

www.portatildirecto.com/secure.eve-online.com/login.htm which was not a website 

run by Eve online. This URL contained a faked login screen in which the user’s 

credentials were entered. These were then stolen by the phisher and used to gain access 

to the player’s account.   

 
Shoulder surfing 

Many MMORPG players, especially in Asia, play in Internet cafes. According to [CS04], 

there have been cases of Internet cafes installing hidden cameras to monitor players 

when they entered their login credentials. This is a more sophisticated form of 

traditional “shoulder surfing” which occurs when someone observes a user entering 

their credentials. 

Malware 

Malware, such as Trojans and keyloggers are used by attackers to steal player’s 

credentials. [CS04] note the case of twenty players having their credentials stolen in an 

Internet café after the owner of the café had installed keyloggers on the machines.  

Trojans have been specifically created to obtain credentials for MMORPG. An example is 

Infostealer.Lingling.B which tries to obtain the user’s ID, password and WoW server 

name, and then sends this information to a website.  See 

http://www.symantec.com/security_response/writeup.jsp?docid=2007-030914-4716-

99&tabid=2 for further information. More sophisticated Trojans, such as 

InfoStealer.Multigame, exist that work to steal credentials for a number of different 

MMORPG. To make information useful to the attacker, this Trojan sends the player’s 



    - 69 - 

level and amount of virtual money to the attacker, allowing them to focus on player’s 

accounts with large amounts of virtual money. 

A group of Korean hackers were arrested after stealing 50,000 user ids by installing 

Trojans on websites they had compromised. By visiting these websites users would 

inadvertently be infected with the Trojan. According to [So05], one of the perpetrators is 

estimated to have made $150,000 from the scheme.  

These examples serve to illustrate the popularity and potency of malware as a method to 

steal MMORPG player’s credentials. Players can be infected with malware without their 

knowledge, and have their credentials stolen from under their nose.  

 

10.3 Other virtual crimes 

Virtual item trading problems 

This sub-section discusses a few scams that have been used by people indulging in 

virtual item trade. Sellers in unsanctioned auctions would “sell” an account to a player, 

receive payment, and immediately change the password on the account and contact the 

customer service department to regain control of the account. The player who paid the 

seller was left empty-handed. 

Another scam involves winning bidders who would be “stood up” by the seller who 

would not appear to complete the transaction.  With unsanctioned auctions, there is no 

accountability for sellers to actually deliver what they claim to be selling. 

In unsanctioned auctions of items, what is bid on is not always what is received. A 

dishonest seller might offer one sword for sale, but after the exchange of money takes 

place, a player receives a completely different one - not the one that was bid on. 

 



    - 70 - 

Farming – sweatshops 

Due to the ease at which virtual items can be traded for real money, there is a clear 

incentive for people to attempt to accumulate as many virtual items as they can. This has 

led to the rather alarming growth of “virtual sweatshops”. These are gangs of people 

employed specifically to play MMORPG for often little money, with the sole purpose of 

farming as many virtual assets as possible. Some of this farming is done for RMT, to 

supply middlemen with gold. Other sweatshops are run for the purpose of providing 

gold and levelling facilities for players, whilst for some profit is the goal.  

The sweatshops which provide levelling use their employees to take the player’s 

character and play the game for them until a higher level, (specified by the player when 

he purchases the levelling) is reached. This is done by playing the character constantly 

for a fixed period to increase the player’s level or amount of gold as soon as possible.  

Game publishers and players frown upon virtual sweatshops - although playing the 

game 24 hours a day, 7 days a week is not a violation of the rules, virtual sweatshops 

can spoil enjoyment for other gamers. Sweatshops which provide levelling and gold 

facilities are considered unfair by legitimate players, as a player’s financial position can 

be used to advance them through a game. There are also concerns of exploitation of 

people who work in virtual sweatshops. 

Virtual mugging 

This term was first coined when a Chinese man was arrested in 2005 on suspicion of 

using a bot to carry out a series of muggings in the Lineage II MMORPG. He used a bot 

to beat up and rob characters, and then sold their possessions for real money. There 

have also been reports of virtual extortionists who threaten weaker players into handing 

over virtual or real protection money to avoid negative consequences.  

10.4 Conclusions 

Bruce Schneier [Sc05] noted that “every form of theft and fraud in the real world will 

eventually be duplicated in cyberspace", and from the examples I have described, he 

may be right. Fraud in virtual item trading represents a serious problem for game 



    - 71 - 

publishers. Players who lose confidence in virtual item trading may quit the game as 

they may not have the time to progress through the game, and cannot buy virtual items 

to help them progress, due to fraud. Due to RMT, the incentive to steal player accounts 

is large, which has led to a number of security threats to MMORPG players, such as 

phishing and malware. These threats erode player confidence as they may not want to 

become targets of online criminals.  It is vital for game publishers to address these issues 

to make sure that these threats do not spiral out of control and player confidence is 

maintained. The next section discusses some measures that might be used to achieve 

this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    - 72 - 

11 Virtual crime prevention 

This section focuses on how information security measures can be used to help prevent 

virtual crimes.  

11.1 Preventing Identity Theft 

Players log into MMORPG using a username and password authentication mechanism. 

This is a traditionally weak authentication mechanism, for a number of reasons. WoW 

gives players the following advice when choosing passwords:  

• Do not share the account information with anyone. This includes both the User 

Name and password. Most compromised accounts turn out to be the work of friends, 

family, guild members, or others that you “thought” you could trust.  

• Do not write your password down. If you must, then do not keep it where others can 

find it. Places such as your wallet, under your keyboard, or with your World of 

Warcraft CDs are not good places to store it.  

• Choose a secure password. Your password should be difficult to guess, but easy for 

you to remember. Here are some tips to make your password more secure:  

• Be certain to use a combination of numbers and letters (a mix of upper and lower 

case letters is recommended).  

• Avoid using words found in any dictionary or names of friends, family, pets, etc.  

• Avoid using your character or account name in your password.  

• Never share the “Secret Question” and answer you defined when creating your 

account with anyone. 



    - 73 - 

This is basic password advice, but there is no enforcement of it in WoW. There is no 

requirement for a player to choose a password which is a combination of letters and 

numbers; they can choose any password they like, as long as it is greater than 6 

characters long.  

Many users choose weak, easy to guess passwords – passwords that are short in length 

and common words or names and hence are very easily guessed by attackers. Password 

based authentication mechanisms are also vulnerable to Trojan programs, which can be 

designed to steal passwords. I believe that using a username and password 

authentication mechanism, with no enforcement of password strength, is a wholly 

inadequate way to protect player accounts. Although Blizzard emphasise that it is the 

user’s responsibility to choose a strong password, when a user’s account is 

compromised, according to [Wo07] “It takes an extensive amount of time for Blizzard’s 

Customer Support Staff to investigate and attempt to resolve the consequences of an 

account compromise”.  

I believe that by using a stronger authentication mechanism, Blizzard could save time 

and money investigating account compromises, as stronger means of authentication 

should reduce the instances of account compromise. A few alternative authentication 

mechanisms are discussed below. 

Smart cards 

Smart cards are tamper resistant cards which possess microprocessors and memory that 

can be used for secure storage. Smartcards could be used in conjunction with a 

password to provide two factor authentication for MMORPG players. The smartcard 

could contain the user’s account number, and a default password, loaded by the game 

publisher. This default password is also emailed to the user. When the user first wishes 

to play the game, they must insert the smartcard into a card reader, and enter the default 

password. This ensures that the correct person is in possession of the smartcard. Once 

authenticated, they are free to choose their own password.  

Whenever the user wants to play the game, the user must insert the smartcard into a 

card reader, plus enter their password. If the player’s smartcard is lost or stolen, they 



    - 74 - 

can report this to game support, and their account can be suspended until a replacement 

is sent. If an attacker wishes to compromise the player’s account, he must physically 

obtain the smartcard as well as guess the password. This makes compromising a 

player’s account harder, as he has two barriers to cross to gain access to the account. 

There are obvious problems with this method. The first is cost. This method is far more 

costly than password based authentication, as smartcards have to be bought and 

distributed, as well as replaced in the event of theft or loss. This could be mitigated by 

making players liable for replacement costs. For this scheme to work, players would 

need to possess smart card readers, which come at a price. This can be prohibitive for 

many players, who may decide to switch to another MMORPG which does not require 

smart cards. Many players play in Internet cafes, and if their Internet café does not have 

any smart card readers, they will be unable to play. 

One time passwords 

This method involves the use of password generators, such as an RSA SecurID token. 

The password generator generates dynamic passwords, which change periodically. The 

generator is synchronised with the MMORPG server. When a player wishes to log in, 

they must enter their User ID and password, as well as the password currently 

displayed on their password generator. By using a dynamic password, if passwords are 

obtained by a Trojan they are of limited value, as the password is different every time a 

user logs in, hence the term one-time. This prevents old passwords being re-used. 

Passwords cannot be guessed or brute forced either, as the password generator produces 

random, unpredictable passwords.  

This method requires players to possess a password generator token, which could be 

included in the price of purchasing the game. It is also a portable solution, as the player 

can simply take the password generator anywhere they like and be authenticated. It 

does not rely on Internet cafes to possess any special equipment, unlike the smart card 

approach.  

 



    - 75 - 

Password policies 

Policies that force the user to change their password periodically could also be enforced, 

for example by not allowing them to logon to the game until they have changed their 

password. Better enforcement of a user’s password choice is another method that can be 

used to strengthen account security. This can be done simply and quickly by including 

validation code in the software that checks that the user’s chosen password has a 

mixture of letters and numbers, and is of a minimum length. Although this method can 

help users to choose stronger passwords, it does not overcome the inherent weaknesses 

of a password authentication mechanism.  

User awareness 

Educating players about the need to ensure they have strong passwords can go a long 

way to preventing stolen player accounts. If players are made aware of the need to have 

strong passwords, and how to choose them, they are likely to choose stronger 

passwords. Advice can be give on how to choose strong, but easy to remember 

passwords. Research by [YB00] has shown that a good method of choosing strong but 

easily recalled passwords is to use passphrases, which are passwords formed by 

choosing certain features of well known phrases. For example, if the first letter of each 

word of the phrase “the quick brown fox jumps over the lazy dog” is chosen, the 

password becomes “tqbfjotld” – an easy to remember but hard to guess password.  

Online scanning 

A mechanism that can be used to prevent malware from stealing user ids and passwords 

could be to provide a scanning facility from within the MMORPG, maybe as part of the 

game client. For example, when a player starts an MMORPG, the client could scan the 

player’s machine for any keyloggers, Trojans, viruses or worms, in the same way anti-

virus software operates. I believe this is a good and viable solution to malware. By 

performing an automatic scan, players without anti-virus software, or with little 

knowledge about malware, can be alerted to the presence of malware on their machines, 

without having to do anything whatsoever. This is of great benefit to players who play 



    - 76 - 

in Internet cafes – if someone has compromised their machines then players are 

forewarned.  

The privacy issues of the MMORPG scanning the entire contents of a player’s machine 

may pose a problem for some players. However, anti cheating tools, such as the Warden, 

are more invasive, as they send data about processes and memory to a remote server. In 

the case of malware scanning, there should be no transfer of data – the scan should take 

place on the player’s machine and there should be no transfer of data. Another 

difference is that malware scanning is designed to help players, and most players will 

realise this.  

Phishing prevention 

The most effective way to stop players becoming victims of phishing attacks is to 

educate and make them aware of how phishers operate. There are a number of pieces of 

advice which can be given:  

1. Encouraging players to learn to recognize fraudulent phishing emails – emails that  

are almost always not personalised, asking for user id’s and passwords, being aware of 

unexpected messages that require urgent action to avoid "imminent problems" with an 

account.  

2. Warning players not to click on links in e-mails from unknown senders. Instead 

players should only navigate to an address that is known to be authentic or a support 

number that is listed on the publisher’s website. 

3.  Security updates for browsers should be downloaded regularly. This will help 

prevent potential hackers from gaining access to information by exploiting known 

security issues. 

MMORPG publishers state that they never ask for a player’s password either in email or 

telephone communication, and emphasise this fact on their websites. If players can 

assimilate this knowledge the instances of phishing to obtain player’s passwords should 

be reduced. An approach which could be used is to periodically display a popup during 

game play with a message stating (for example) “Blizzard never asks for user id and 

password in correspondence – any communication which does is NOT from Blizzard”.  



    - 77 - 

Although this may annoy some, it should help to get the message across to other less 

aware players. 

11.2 Virtual item trading schemes 

Many MMORPG publishers have tried to use litigation to close down middlemen 

websites which trade virtual items, with limited success.  Despite some players disliking 

RMT as giving an unfair advantage, the fact remains that there is a huge demand to 

purchase virtual items.  

Using middlemen websites has led to a number of problems such as non-delivery of 

items and virtual sweatshops, discussed previously. This section discusses a scheme, 

StationExchange, that has been implemented by Sony for their MMORPG Everquest, 

which I believe can be used as a model for safe virtual item trading. 

StationExchange 

[So07] define Station Exchange as “the official Sony Online Entertainment auction 

service that provides players a secure method of buying and selling the right to use in 

game coins, items and characters in accordance with SOE’s license agreement, rules and 

guidelines. This service provides players a way to take part in this growing secondary 

market in a more secure manner.”   

StationExchange was developed in response to the growing number of virtual item 

frauds that were taking place involving EverQuest players. 40% of Sony’s customer 

service calls were to deal with virtual item disputes. Also, by developing a secure 

trading environment, Sony could encourage growth in virtual trade, and cash in on the 

lucrative RMT market themselves. 

How it works 

When a player wants to sell an item, that item is immediately removed from the game 

world, and stored in a StationExchange server.  It is then listed as an item for auction, 

and cannot be accessed by the seller.  The Station Exchange server will provide statistics 



    - 78 - 

on the item or character that is listed so that potential bidders can see exactly what they 

will be bidding for.  

When an auction is won, the successful bidder receives a notification and makes 

payment, which is conducted via the StationExchange server through PayPal. The item 

is then transferred to the buyer’s game account, and sent to the buyer as an email 

attachment. 

The StationExchange interface 

 



    - 79 - 

StationExchange acts as a trusted third party (TTP) in the exchange between buyer and 

seller. StationExchange is trusted as it is owned by the game publisher. This is in 

contrast to middlemen like IGE. If there was fraudulent behaviour perpetrated by Sony, 

their reputation would be affected, and so would EverQuest as a result. Middlemen do 

not have this concern, as most of them are fly-by-night operations. Both buyer and seller 

have confidence that they will not be defrauded by Sony, as it is in Sony’s interest to 

encourage and secure virtual item trading, as they take a slice of each sale.  

As the TTP stores the item until the amount has been paid, there is no chance that the 

seller can renege on the deal, a problem that occurred in the past. Also, as the item is 

withdrawn from use when it is offered for sale, it cannot be altered by the seller to 

reduce its value. For example, if a player account was being sold, it cannot be altered by 

selling gold to make the character of less value.  

Players who do not like the fact that virtual items can be bought and sold do not have to 

participate – StationExchange is only on two of Sony’s Everquest servers, so players who 

don’t wish to trade can play on any of the remaining Everquest servers.  

If a TTP based trading scheme is the only way players can trade virtual items, and other 

virtual item trading websites are shut down, the impact of player identity thefts can be 

reduced. If criminals who steal players’ accounts are only able to sell the items through 

the game publisher’s trading scheme, when a player realises they have been 

compromised they will be able to inform the publisher and should have their items 

returned to them. With less trustworthy middlemen there is no redress in this situation, 

as the middlemen have no formal connection with the game. 

Using a TTP based trading scheme should reduce the instances of virtual item trading 

fraud. Sony have experienced a 30% fall in virtual item trading related calls to their 

support helplines since adopting StationExchange. I believe using a TTP is a win-win 

situation for both players and game publishers. Publishers gain financially by promoting 

trade, and players who wish to trade can do so securely. 

 



    - 80 - 

11.3 Preventing other virtual item crimes 

Virtual mugging 

The instances of virtual mugging that have been documented have been performed by 

bots, which can issue player fight commands quicker than human opponents, and hence 

can defeat them easily. Therefore bot detection methods, such as scanning of player 

machines, can be used to detect virtual muggers. Auditing and logging facilities can also 

help. Important game related information needs to be stored for a period of time so that 

complaints which arise can be investigated.  

Auditing and logging 

With the amount of virtual item fraud and theft that occurs in games, it is imperative 

that game publishers keep track of virtual items – who owns what, who has traded to 

whom and so on. Daily snapshots of the game databases should be taken and kept for a 

period of time to help with complaint resolution. This type of information is necessary to 

investigate and verify a player’s complaints. For example, if a player claims they have 

been mugged by another, then several pieces of evidence are required, such as which 

player mugged him and which of his possessions were stolen.  

This kind of evidence will only be available if there is adequate logging and storage of 

game data. Associating unique identifiers with each virtual item can help in this respect. 

If each virtual item that a player possesses, along with their identifiers, are stored in a 

database, when a mugging occurs before and after snapshots of the databases can be 

compared to see where the virtual items that belonged to the player have gone.  

Auditing and logging are post detection mechanisms. Apart from real time bot detection 

mechanisms (such as player monitoring approaches discussed previously), information 

security can do little to prevent virtual muggings.  

Measures to prevent virtual sweatshops 

It is not easy to catch virtual sweatshops at work. There is only one real tell-tale sign that 

might be used for detection, which is looking for accounts played constantly. 



    - 81 - 

Monitoring the usage on accounts can reveal this kind of behaviour. An account which 

is logged in for a few hours a week, which suddenly starts being used 24 hours a day, 

and then drops back to a few hours a week, is an obvious sign.  

A threshold detection mechanism which automatically alerts administrators to accounts 

being used 24 hours a day can be a useful way to flag suspicious behaviour for further 

investigation. 

Another method that can be used to counter virtual sweatshops is to legitimise virtual 

item trading and bring it within the auspices of the MMORPG itself, like Sony did with 

StationExchange. If virtual items are traded through the game, the game publisher has 

more control over these trades. As virtual sweatshops exist to make money, they will 

trade frequently. The game publisher can notice sellers who are trading often, and 

monitor them more closely if they have suspicions. Analysing amounts of certain items 

being traded may also reveal item duping bugs. To profit from item duping, players 

need to sell their items in exchange for real money. If unusually large amounts of an 

item are being traded, this may point to the presence of a duping bug. This was how 

Sony discovered the presence of a gold duping bug in Everquest – they noticed large 

amounts of gold being sold on StationExchange. Without bringing trade within the 

publisher’s control, such a trend cannot be spotted. 

Bringing virtual item trade within the game should also reduce the number of 

middlemen. Publisher backed trading schemes offer more security to buyers than 

middlemen, which should reduce the number of players using middlemen and thus 

reduce virtual sweatshops who supply the middlemen.  

Virtual item trading is big business. Julian Dibbell, author of Play Money: Or, How I 

Quit My Day Job and Made Millions Trading Virtual Loot, estimates the size of the 

virtual goods market at $880m annually, and growing. Game publishers have attempted 

to ban virtual item trading without much success. The financial incentives open to 

players and middlemen are simply too great, and policing the Internet for virtual item 

sellers is too great a task. I believe that rather than trying to ban virtual goods trading, 

game publishers should encourage it by using the approach taken by Sony with 



    - 82 - 

StationExchange. By controlling virtual trade themselves, they can profit from the 

lucrative market. They should also be able to reduce the instances of virtual fraud that 

occur with the current way of virtual item trading, and be able to spot and close down 

virtual sweatshops more easily. I believe game publishers must also take greater steps to 

reduce identity theft.  MMORPG player accounts seem to have become a soft target for 

criminals. Game publishers must be more proactive in dealing with this problem as it 

will only continue to grow as the market for virtual goods grows. 



    - 83 - 

12 Conclusion 

I hope this project has helped people to appreciate the size and scale of the MMOG 

industry and the challenges it faces. In particular I hope this project has provided a 

comprehensive overview of the issues of virtual crime and cheating, and how 

information security solutions can help to overcome the problems MMOG publishers 

face.   

I believe I have met the objectives I set down in the introduction to this project. This 

project has explained Yan’s fifteen categories of cheating, which represent a thorough 

classification of the types of cheating that exist in all types of MMOG.  Methods used to 

cheat in MMORPG have been discussed in detail, and measures to prevent these cheats 

have been described and evaluated.  The nature of virtual economies in MMORPG, and 

virtual crimes that take place in these MMORPG, have been described and 

countermeasures to prevent virtual crimes have been proposed. I have analysed real-

world approaches taken by game publishers to catch cheats, PunkBuster and the 

Warden. My analysis of PunkBuster was reliant upon information from the developer, 

EvenBalance, and I would have liked to have found some independent information 

rather than relying on a sole source. However, due to the proprietary nature of 

PunkBuster, this was not possible. Likewise, my information about how the Warden 

operates was obtained from a sole source – Greg Hoglund, who had take time to reverse 

engineer it. I placed trust in his analysis, and I felt that this was well placed as he is a 

respected author of a number of software security books.  

This project has shown the problems with creating massively distributed systems. The 

design of such systems is complicated as thousands of different state interactions need to 

be considered, and the distributed nature of the system can lead to race conditions 

which may be exploited by attackers. MMOG systems are the forerunners of other very 

large distributed systems of the future. With the growth of business conducted via the 

Internet, I believe we will see massively distributed business systems in the future, 

where thousands of clients systems will allow the thousands of employees of an 

organisation to interact with a single business system. The lessons learned from MMOG 



    - 84 - 

systems can be applied to help the design and development of these distributed systems 

of the future.  

I can see virtual crime, in particular player identity theft, continuing to rise in the near 

future. I have not seen many initiatives by game publishers to reduce the problem of 

player identity thefts, and if steps are not taken the problem will inevitably get worse. I 

think that a new approach by publishers to RMT needs to be adopted. Instead of trying 

to stop it, they should embrace it, like Linden Labs have done with Second Life. By 

embracing RMT, publishers can gain financially and increase player confidence in RMT. 

Players who don’t like RMT can be catered for by allowing them to play on non-RMT 

servers where RMT is not permitted. I believe creation of safe virtual item trading 

schemes will increase the number of players participating in MMOG as they will see an 

opportunity to make money through playing games. However this will also serve to 

increase the threat of players cheating – if money can be made, players will look for 

ways to cheat that enable them to cash in.  

I foresee a continuing arms race between cheaters and game publishers. Increasingly 

sophisticated approaches to cheating, such as kernel resident bots will become more 

prevalent as cheaters attempt to avoid detection, and publishers will have to keep up 

with these advances if they are to keep their games free of cheats and cheaters. It is vital 

that publishers look to improve their cheating detection mechanisms constantly, as the 

future of their game depends on it. Games which are pervaded by cheaters will cause 

disillusionment amongst fair players and cause them to leave the game, which could 

prove fatal for the publisher’s business.  

I hope this project has helped to educate people about MMOG - a subject that many 

people may have heard of, but not had a great deal of understanding about. The MMOG 

industry has huge potential to expand even further in the coming years; with more 

people connecting to the Internet, and with better hardware giving an enhanced gaming 

experience for players, both of which should mean a new crop of players. Information 

security has a key role to play in ensuring the MMOG industry continues to grow, by 

ensuring the threats that could hamper its growth are dealt with effectively.  



    - 85 - 

13 References  

[AP06] Associated Press: 3 Chinese tried for counterfeiting weapons in online game, May 

2006, 

http://newsinfo.inquirer.net/breakingnews/infotech/view_article.php?article_id=1910

3 

[Bl07] Blizzard Entertainment: World of Warcraft passes 8 million subscribers, January 

2007, http://www.blizzard.com/press/070111.shtml 

[Ca02] Castronova, E.:  On Virtual Economies, CESifo Working Paper Series No. 752, July 

2002. 

[CJ06] Chen, K-T, Jiang, J-W, Huang, P, Chu,HH, Lei,C-L, Chen,W-C.:  Identifying 

MMORPG bots, Proceedings of the 2006 ACM SIGCHI international conference on Advances 

in computer entertainment technology, Hollywood, California, 2006.  

[Co98] Collberg, C, Thomborson, C, Low, D.: A taxonomy of obfuscating 

transformations, Technical Report 148, Department of Computer Sciences, The University of 

Auckland, July 1997. 

[CS04] Chen, YC, Chen, P, Song, R, Korba, L.: Online Gaming and Security Issue – Cases 

and Countermeasures from Taiwan, Proceedings of the 2nd Annual Conference on Privacy, 

Security and Trust, Fredericton, New Brunswick, Canada, October 2004. 

[DL05] Daum, M, Lucks, S.: Attacking Hash Functions by Poisoned Messages "The Story 

of Alice and her Boss", June 2005, http://www.cits.rub.de/MD5Collisions/ 

[Ev06] EvenBalance: PunkBuster for players, June 2006, 

http://evenbalance.com/publications/wr-pl/index.htm 

[FC05] Feng, W, Chang, F, Feng, W, Walpole, J.: A Traffic Characterization of Popular 

On-line Games, IEEE/ACM Transactions on Networking Volume 13, Issue 3, June 2005.   

[Fe07] Feng, W.: Got Mips? The need for speed in online games, June 2007, 

http://www.thefengs.com/wuchang/work/cstrike/GotMIPS.pdf 



    - 86 - 

[HN06] Harris, J, Nardi, B.: Strangers and Friends: Collaborative Play in World of 

Warcraft, CSCW 2006 Proceedings of the 2006 20th anniversary conference on Computer 

Supported Cooperative Work, Banff, Alberta, Canada, November 2006. 

[Ho05] Hoglund, G.: 4.5 Million copies of EULA-compliant spyware, October 2005, 

www.rootkit.com/blog.php?newsid=358 

[Hu05] Hunter, D.: Virtual world phishing, September 2005, 

http://terranova.blogs.com/terra_nova/2005/09/virtual_world_p.html 

[La07] Lavish Software: A guided tour of InnerSpace, June 2007, 

http://www.lavishsoft.com/innerspace/index.php?page=1 

[MH07] McGraw, G, Hoglund, G.: Exploiting Online Games: Cheating Massively 

Distributed Systems, Addison Wesley, 2007. 

[Mm07] Glider: An introduction, June 2007, http://www.mmoglider.com/ 

[Pl06] PlayNoEvil Game Security News & Analysis: Virtual item theft ring busted, 

December 2006, http://playnoevil.com/serendipity/index.php?/archives/1051-Virtual-

Item-Theft-Ring-Busted.html#extended 

[Sc05] Schneier, B.: Schneier on Security, August 2005, 

http://www.schneier.com/blog/archives/2005/08/stealing_imagin.html 

[Si06] Silkroad Tavern: Info on Bots, October 2006, 

http://www.silkroadtavern.com/forums/index.php?s=ee3d925859b58e5fffdc34cdabe1

de02&showtopic=24101 

[So05] Sophos: Suspected gang who stole from online game players arrested in Korea, 

July 2005, 

http://www.sophos.com/pressoffice/news/articles/2005/07/va_krarrests.html 

[So07] Sony Online Entertainment: Station Exchange FAQ, July 2007, 

http://stationexchange.station.sony.com/faq.vm  



    - 87 - 

[Wa07] Blizzard Entertainment: World of Warcraft game guide, June 2007, www.wow-

europe.com/en/info/basics/guide.html  

[We07] Webopedia: Phishing definition, July 2007, 

http://www.webopedia.com/TERM/p/phishing.html 

[Wh04] D. Wheeler, IBM Secure programmer: Prevent race conditions, October 2004, 

http://www.ibm.com/developerworks/linux/library/l-sprace.html 

[Wo07] World of Warcraft Community site: In-Game support, tips to prevent account 

compromise, July 2007, http://www.blizzard.com/support/wowgm/?id=agm01889p 

[Ya02] Yan, J, Choi, HJ. : Security Issues in Online Games, The Electronic Library, Vol. 20, 

No. 2, 2002, pp. 125-133. 

[Ya05] Yan, J, Randell, B.:  Security in Computer Games: from Pong to Online Poker, 

Technical Report Series CS-TR-889, School of Computing Science, Newcastle University, UK, 

February 2005.  

[YB00] Yan, J, Blackwell, A, Anderson, R, Grant, A.: The memorability and security of 

passwords – some empirical results. Technical Report UCAM-CL-TR-500, Cambridge 

University, 2000. 

 

 

 

 

 

 

 

 



    - 88 - 

14 Bibliography 

14.1 Electronic sources 

Useful background information on MMORPG 

http://en.wikipedia.org/wiki/MMORPG   

World of Warcraft European homepage 

http://www.wow-europe.com/en/info/basics/   

Makers of Inner Space 

http://www.lavishsoft.com/innerspace/index.php?page=1   

Anti-cheating website with descriptions of cheating and anti-cheating measures 

http://www.counter-hack.net/   

PunkBuster FAQ 

http://www.evenbalance.com/index.php?page=faq-cod.php   

Home of Station Exchange 

http://stationexchange.station.sony.com/  

Background information on virtual sweatshops 

http://www.techdirt.com/articles/20051209/021252_F.shtml   

Dissertation writing tips 

http://lorien.ncl.ac.uk/ming/Dept/Tips/writing/thesis/thesis-intro.htm  

 

 


