
doi: 10.1016/j.procs.2016.05.295 

Checkpointing of Parallel MPI Applications using MPI

One-sided API with Support for Byte-addressable

Non-volatile RAM
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Abstract
The increasing size of computational clusters results in an increasing probability of failures, which in

turn requires application checkpointing in order to survive those failures. Traditional checkpointing

requires data to be copied from application memory into persistent storage medium, which increases

application execution time as it is usually done in a separate step. In this paper we propose to use

emerging byte-addressable non-volatile RAM (NVRAM) as a persistent storage medium and we ana-

lyze various methods of making consistent checkpoints with support of MPI one-sided API in order to

minimize checkpointing overhead. We test our solution on two applications: HPCCG benchmark and

PageRank algorithm. Our experiments showed that NVRAM based checkpointing performs much better

than traditional disk based approach. We also simulated different possible latencies and bandwidth of

future NVRAM and our experiments showed that only bandwidth had visible impact onto application

execution time.

Keywords: NVRAM, parallel MPI one-sided extension, checkpointing of parallel applications, performance opti-

mization

1 Introduction
In the recent years, performance growth of computational clusters has been possible mainly due to

considerable increases in the numbers of cores in computational devices – both multicore CPUs as well

as engagement of accelerators such as GPUs and coprocessors such as Intel R© Xeon PhiTM. The current

Intel R© Xeon R© Processor E7-8890 v3 features 18 cores (36 threads) at TDP 165 W, Intel R© Xeon PhiTM
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Coprocessor 7120A (16GB, 1,238 GHz) features 61 cores (244 threads) at TDP 300 W, Tesla K80 (2x

Kepler GK210) features 4992 CUDA cores.

Such increase in complexity of a system may result in a potentially higher percentage of failu-

res. As an example, numbers such as 1.25 failures per day were reported for the Sequoia cluster [6].

Consequently, there is a need for programming solutions that would enable surviving failures. Checkpo-

inting of parallel applications has been widely studied so far in e.g. [3, 8] with transparent, coordinated

checkpointing/restart possible in the widely popular OpenMPI [11, 12, 13]. Some new developments in

non-volatile memories have driven us to propose a new solution in this regard. Specifically, within this

paper, we propose a solution for MPI applications that incorporates MPI one-sided API and a collection

of persistent memories in cluster nodes for efficient checkpointing.

2 Related Work

In this paper we propose a new MPI one-sided based persistent memory enabled application for

emerging memory technologies. These technologies have the following common features: byte-

addressability, random access, non-volatility and limited endurance. Kryder and Kim [14] reviewed

thirteen non-volatile memory technologies most of which have the aforementioned features and thus

they are of our interest. The performance of various non-volatile memory technologies compared to

DRAM and NAND flash is presented in Table 1.

Tablica 1: Performance of memory technologies.

Technology Read latency Write latency

DRAM [14] 6-10 ns 6-10 ns

FRAM [14, 19] 8-75 ns 8-75 ns

MRAM [21] 1-10 ns 1-10 ns

STT-RAM [21] 1-10 ns 1-10 ns

NRAM [18] <10 ns <10 ns

RRAM [14] 10 ns 20 ns

CBRAM [10] <50 ns <50 ns

PRAM [4] 10-100 ns 100-1000 ns

NAND flash [14] 25,000 ns 200,000 ns

The idea of using NVRAM in high performance computing was already investigated, especially in

the area of data-intensive architectures, where usage of only DRAM is costly and power-intensive [20].

One of domains that require high memory capacities and good memory performance is graph processing.

In this case the emerging NVRAM technologies allow to store much larger graphs with not so big

performance loss [17].

NVRAM was also already used for checkpointing of distributed parallel applications. Dong et al. [5]

proposed to use hybrid local and global checkpointing using phase-change memories (PCM). Narayanan

and Hodson [15] proposed to use NVRAM to make whole-system checkpoints by keeping all data in

NVRAM. This approach is similar to our proposed double buffering scheme as the data is already in

place when restarting. However, they require hardware modification in order to make sure that data

is flushed to persistence on failure. Gao et al. [7] created their own checkpointing system that creates

partial checkpoints during application execution. It utilizes runtime idle periods to copy data from

DRAM to NVRAM in order not to interfere with application execution.

Checkpointing of Parallel MPI Applications using MPI One-sided API ... Dorożyński et al.
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3 Motivations
Driven by the aforementioned developments in both:

1. growth of HPC systems through the considerable increase of the number of compute devices

and cores and consequently a potentially high rate failures of such systems during application

execution,

2. non-volatile memory technologies including features such as byte level access, relatively high

performance and large sizes compared to RAM

we decided to incorporate non-volatile RAM into wrappers over MPI one-sided API, in order to pro-

vide persistence of data stored in MPI windows and consequently apply this solution for continuous

checkpointing of an application at the code level. Specifically, checkpointing is realized by provision of

transactions in persistent memory. When synchronization is enforced the current state can be considered

as a consistent state of the application.

4 Proposed Solution
In this paper we present an MPI one-sided communication based checkpointing in byte-addressable

non-volatile RAM. One-sided communication functions enable to specify regions of memory (called

windows) of one process to be available for remote read and write by other processes of an MPI appli-

cation and thus create abstraction of distributed shared memory. The proposed solution extends these

functions in order to provide an easy application level checkpointing when communicating processes

synchronize. We create local checkpoints i.e. every process saves only data it is responsible for and thus

requires all machines to be up and running when restarting after failure.

In our solution we implemented wrappers for MPI one-sided communication functions in order to

extend their functionality for transactional access to underlying memory areas. We analyzed MPI one-

sided communication API and found out that the only moments when we can be certain that processes

finished communication and thus hold a consistent application state are the moments of synchronization.

Consequently we decided that synchronization calls should commit a previously started transaction and

start a new one, but we allowed the programmer to decide which synchronization calls should do so.

Provided transactional access creates a new programming model by allowing processes to commu-

nicate freely using standard one-sided communication functions and fall back to a state saved during

synchronization.

4.1 Data consistency
In order to keep data consistent and be able to restart an application after a failure we analyzed three

possible methods of keeping consistent data at all times:

• transaction logging — is a method used in databases for making transactional changes. It keeps a

log of all changes applied to data, so that these may be reverted when transaction is rolled back;

• checkpointing — is a classical method used in high performance computing for storing an ap-

plication state and recovery after a failure. It works by copying necessary data into a separate

location (actually the data is saved into two locations alternately in order to have at least one

proper checkpoint even if a failure occurs during checkpoint creation) at predefined moments in

time;
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• double-buffering — is a modified version of checkpointing in which the application itself uses

two data buffers: one used as a source (i.e. all read accesses will go from this buffer) and the

second used as a destination (i.e. all write accesses will go into this buffer). After every iteration

semantics of the buffers is swapped i.e. the previous source buffer becomes a new destination

buffer and the previous destination buffer becomes a new source buffer for the next iteration.

Since the source buffer is not modified during a single iteration, if anything fails we can restart

application by running the same iteration once again. Now it is only needed to ensure that the data

in the destination buffer is flushed to persistence before it becomes a source for the next iteration.

The first method requires to keep an entry for every modification of the data. If we modify the whole

memory area, which is a common case in high performance computing, we will have to keep in a log

a full copy of the original data along with additional metadata. The logging operation will also add an

additional overhead for storing every modification in a transaction log. These issues make this method

of little use in many high performance applications and consequently we did not focus on it in this work.

The second method is very flexible as it does not impose any limitation on the algorithms that may

use it for storing an application state. This method also has much less memory overhead than transaction

logging as it requires much less metadata to be saved.

The last method has almost no performance overhead, and thus it may achieve much better results

than the other two, as data is only written once to one memory (as opposed to the checkpointing approach

that requires to save data in the destination area and then copy the same data to a separate location)

and the only overhead comes from flushing data to persistence. However, this method requires an

algorithm to overwrite whole destination area in every iteration and thus it is less flexible than classical

checkpointing. This method also requires fast byte-level access to persistent memory both for reading

and writing and thus it was difficult to apply efficiently in traditional persistent memories technologies.

We implemented two of the above methods (ommiting transaction logging due to its aforementioned

drawbacks): the checkpointing method as a flexible solution for the MPI one-sided API wrappers we

implemented and double-buffering at the application level in our test applications in order to see what

performance we could obtain. Sources of the solution will soon be available on GitHub.1

5 Experiments

5.1 Testbed Environment
The testbed environment consisted of a cluster with 8 identical nodes. One of the nodes was used as a

front-end of the cluster, and so it did not take part in computations, and the other nodes were prepared

for simulation of NVRAM.

Every node had 2 Intel R© Xeon R© CPU E5-4620 v2 @ 2.60GHz processors each with 8 cores (they

were modified to simulate latencies of possible NVRAM technologies and did not use Hyper-Threading)

giving the total of 16 cores with 2.6 GHz clock per node. Every node also had 32 GB of RAM, from

which 17.2 GB was used for simulating NVRAM and the rest was used as normal RAM. Additionally,

every node storage included a 240 GB Intel DC 3500 series SSD and a Seagate Barracuda 500 GB 7200

RPM 16MB cache disks.

The nodes were interconnected with 40Gb/s InfiniBand and were running Rocks 6.1.1 cluster distri-

bution2 (based on CentOS release 6.5). The applications were compiled using GCC 4.4.7 with OpenMP

enabled. The MPI implementation used was MVAPICH23 2.1 for its InfiniBand support.

1https://github.com/pmem/mpi-pmem-ext
2http://www.rocksclusters.org/
3http://mvapich.cse.ohio-state.edu/
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The NVRAM simulation was done using The Persistent Memory Driver with ext4 Direct Access

(DAX)4, which is an extension to the Linux kernel. This extension allows to create a virtual disk in

reserved memory (i.e. part of RAM that is marked as persistent by Linux kernel when it starts) and create

a modified ext4 file system on top of it. The modification of ext4 creates direct mapping between file

system block numbers and virtual memory addresses, so that the memory is directly accessed bypassing

the page cache.

We simulated various possible latencies of emerging NVRAM technologies using emulation plat-

form that is realized in hardware. The emulation platform had the following parameters:

• memory latency — supplementary latency over DRAM of every access to NVRAM,

• commit latency — latency of operation that flushes data in processor caches into NVRAM and

makes sure it is stored persistently,

• bandwidth.

5.2 Results
We implemented two applications in order to test our solution: HPCCG [9] and PageRank [16]. The

former is described by its authors as “best approximation to an unstructured implicit finite element or

finite volume application in 800 lines or fewer” and it was chosen as it is a common type of problem

in physical simulations. The latter is the algorithm that stands behind the Google search engine. The

algorithm assigns rank values to web pages, organized as a graph, depending on their importance based

on pages referencing them. This application was chosen, because of its natural requirement for double

buffering (updating the rank of a node in a graph requires knowledge of ranks from a previous iteration

of many neighbors).

5.2.1 HPCCG

The HPCCG mini-application measures system performance by solving a system of linear equations

Ax = b using the conjugate gradient method. The system solved by HPCCG is a finite difference

matrix with a 27-point stencil. The size of the matrix is defined by three values nx, ny and nz that

define the size of a grid of measurement points that is assigned to every process. Grids assigned to

processes are then stacked on the OZ axis so that the final size of the grid for the whole domain is nx
by ny by proc_count ∗ nz. In our experiments we set parameters nx, ny and nz to 256, 256 and 512

respectively. This size of domain resulted in the size of the data kept in memory equal to about 80% of

available RAM. The size of each checkpoint file for this domain size is about 769 MB. In every test the

application was run for 100 iterations.

We implemented four versions of this application:

• no checkpointing — the original implementation modified to use MPI one-sided API for commu-

nication so it may serve as base for the next implementations with checkpointing,

• disk — modification of the first implementation with typical application level checkpointing that

uses standard C file I/O to save the data and saves it on the SSD disk,

• pmem — modification of the first implementation with checkpointing done using implemented

wrappers over MPI one-sided functions,

4https://www.kernel.org/doc/Documentation/filesystems/dax.txt
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• double buffered — implementation of double-buffered checkpointing at the application level as

described in Section 4.1.

Figure 1 presents execution times over memory latency for different implementations and two values

of memory bandwidth. First of all we can see that all NVRAM based methods achieve much better

results than the standard checkpointing on disk even though we used SSD. Secondly, we can see that

double buffered implementation is always faster than the other ones with checkpointing. We can also

see that latency of the memory had almost no impact on final performance, however we can see a small

linear growth. The memory bandwidth on the other hand has significant impact on performance as it

increased the execution time of double buffered solution from around 55 seconds to around 90 seconds.

What is really interesting is that for the pmem version the decreased memory bandwidth did not increase

execution time, even though it makes block access to the memory and thus we expected that decreased

bandwidth would increase execution time.

(a) Memory bandwidth = 37GB/s (b) Memory bandwidth = 9.5GB/s

Rysunek 1: Chart of HPCCG execution time over memory latency for commit latency = 500 ns

Figure 2 presents execution time versus commit latency for two values of memory bandwidth. As

can be seen in the figure the chart is flat i.e. execution time does not depend on commit latency. The

commit operation is issued only when data is flushed to persistence and such flush occurs only 3 times

(for double buffered) and 6 times (for pmem) per iteration. The largest used commit latency is 2000 ns
= 2 μs, iteration count is 100, so the sum of commit latency in the worst case scenario is 2∗100∗6μs =
1200μs = 1.2ms, which is unnoticeable when compared to the application execution time.

(a) Memory bandwidth = 37GB/s (b) Memory bandwidth = 9.5GB/s

Rysunek 2: Chart of HPCCG execution time over commit latency for memory latency = 150 ns

Table 2 presents start and restart times (measured in seconds) of all implementations for the worst
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tested NVRAM performance i.e. commit latency equal to 2000 ns, memory latency equal to 600 ns and

memory bandwidth equal to 9.5 GB/s. The restart times are shorter than start times as start times also

include some conjugate gradient operations that are done before the algorithm main loop. As can be seen

in Table 2 the double buffered implementation has the best performance. The pmem implementation has

worse restart performance than the disk implementation even though it works in much faster memory,

but it also has a worse start time, so the reason for this may lay elsewhere e.g. in memory allocation.

Tablica 2: HPCCG start and restart times.

no checkpointing disk pmem double buffered

start 1.14 1.20 1.80 1.20

restart — 0.58 1.53 0.13

5.2.2 PageRank

The PageRank algorithm is used for ranking of nodes in a directed graph dependent on the rank of their

neighbors. It is mostly used for ranking web pages dependent on the pages that link them. The definition

of PageRank is as follows [16]:

R′(u) = c
∑

v∈Bu

R′(v)
Nv

+ cE(u) (1)

where R′(u) is PageRank of node u, c is a constant used to keep ||R′||1 = 1, Bu are neighbors of node

u that are connected to u by an edge ending in u, Nv is the outdegree of vertex v and E(u) is some

vector that corresponds to a source of rank.

The actual algorithm for calculating PageRank [2] works iteratively by updating every node’s rank

dependent on the values of the neighbors’ ranks from the previous iteration. This imposes the need for

double buffering data, so we implemented three variants of this application:

• no checkpointing — a basic implementation without checkpointing,

• disk — modification of the first implementation with typical application level checkpointing that

uses standard C file I/O to save data and it saves data on disk (in our case SSD),

• double buffered — implementation of double-buffered checkpointing at the application level as

described in Section 4.1.

We ran our experiments on the actual web graph obtained from a 2005 crawl of the .sk domain by

UbiCrawler [1]. This graph has 50 636 154 nodes and 1 949 412 601 arcs and it was chosen, because it

is the biggest one of the available web graphs in the Laboratory for Web Algorithmics at the University

of Milan datasets5 that will fit into the available memory of our cluster. For this graph the size of the data

kept in memory of every process equals to about 10 - 13% of available RAM (depending on process).

The size of each checkpoint file for this size of graph was about 56 MB. The application was run for

100 iterations.

Figure 3 presents execution times over memory latency for different implementations and two values

of memory bandwidth. The results are similar to the results for HPCCG. The double buffered imple-

mentation achieves results comparable to the implementation without checkpointing and much better

5http://law.di.unimi.it/datasets.php
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than the disk implementation. The memory latency once again has little or no impact onto final perfor-

mance and memory bandwidth increased execution time of the double buffered implementation, but the

difference is much smaller than for HPCCG. Figure 4 presents execution time versus commit latency

for two values of memory bandwidth and once again it shows that commit latency has no impact onto

execution time.

(a) Memory bandwidth = 37GB/s (b) Memory bandwidth = 9.5GB/s

Rysunek 3: Chart of PageRank execution time over memory latency for commit latency = 500 ns

(a) Memory bandwidth = 37GB/s (b) Memory bandwidth = 9.5GB/s

Rysunek 4: Chart of PageRank execution time over commit latency for memory latency = 150 ns

Table 3 presents start and restart times (measured in seconds) of all implementations for the worst

tested NVRAM performance i.e. commit latency equal to 2000 ns, memory latency equal to 600 ns and

memory bandwidth equal to 9.5 GB/s. As can be seen the start and restart times are comparable in all

implementations.

Tablica 3: PageRank start and restart times.

no checkpointing disk double buffered

start 0.10 0.12 0.12

restart — 0.11 0.11
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6 Summary and Future Work

In this paper, we presented a new field of application for emerging NVRAM technologies. We showed

the main features of these memories and presented how they may be used for checkpointing distributed

applications. Two methods of checkpointing were analyzed: classical method with copying data onto

persistent media and double buffered approach in which data is kept directly on persistent media. We

implemented our solution as an extension to MPI one-sided API using NVRAM and tested it on two

different applications: HPCCG benchmark and PageRank algorithm. The results showed that the double

buffered approach makes it possible to checkpoint applications with little or no checkpointing overhead.

For future work we consider integrating the double buffered approach into MPI one-sided extensions

we implemented as it gave the best results. Both of our test applications represent one type of distributed

applications i.e. Single Program Multiple Data (SPMD) applications, so we are now investigating how

the proposed solution may be applied to other application paradigms e.g. master-slave or divide-and-

conquer applications.
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