
CHEE 321: Chemical Reaction Engineering

Module 5: Multiple Reactions (Chapter 6, Fogler)

http://www.queensu.ca/


Course (Content) Organization
Isothermal, Ideal Reactor (Single Reaction) Design

Mole Balance
(Module-1)

In – Out + Con = Acc
FA,in-FA,out+(rA)V = dCA/dt

Rate Law
(Module-2)

(rA) = kCA
n

Design Algorithm
(Module-3)

1. GMBE, 2. Rate Law
3. Stoich 4.Combine

Analysis of Rate law
(Module-4)

Kinetics: How to obtain k and rxn order

Multiple Reactions
(Module-5)

Selectivity, Yield

Non-Isothermal Reactor Design

dT/dz = ?

Tin-Tout =?

Output

• Reactor Volume
• Reaction Time

• Rate Constant

• Conversion
• Product Composition

• Energy Balance
• Heat Transfer Rate
• Equilibrium Reactions
• Multiple Steady State

(Module-6)
• Temperature Profile
• Heat Removal
• Heating Requirement

Output



Topics to be covered in this Module

• Types of multiple reactions

• Introduction to selectivity and yield

• Qualitative Analyses (Parallel and Series Reactions)
– Maximizing the reactor operation for single reactant systems
– Maximizing the reactor operation for two reactant systems

• Algorithm for Reactor Design of Multiple Reactions
– Mole Balance
– Net Rates of Reactions
– Stoichiometry



Multiple Reactions
Types of Multiple Reactions

1. Series Reactions

2. Parallel Reactions

3. Complex Reactions: Series and Parallel

4. Independent
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Use molar flow rates and concentrations; 
DO NOT use conversion! 

Cannot use stoichiometric tables to relate 
change in CB to change in CA



Selectivity and Yield
Instantaneous Global
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• What should be the criterion for designing the reactor ? 
• Is it necessary that reactor operates such that minimum amount of 

undesired products are formed ?
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Instantaneous vs. Global Yield

• For a CSTR:

For proof, see Fogler Ex. 6-1 (pg 308)

• For a PFR, concentrations and rxn rates are 
changing along reactor length:

instantaneous yield:

global yield

for v=v0:
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Series Reactions

, t=0  CA=CA0

Batch reactor, isothermal, incompressible

From Fogler website 
http://www.engin.umich.edu/~cre/06chap/frames_learn.htm

http://www.engin.umich.edu/~cre/06chap/frames_learn.htm


Series Reactions

See Appendix A3



Series Reactions

dCC
dt = k 2CB , t = 0 CC = 0

What about byproduct C?  This can be calculated by integration, or by stoichiometry   

You would have the same set of equations for an isothermal PFR, 
replacing t with τ  ; see Fogler Ex. 6-4



Parallel Reactions:
Selectivity for Single Reactant Systems

Example (parallel reaction)

Desired Reaction:

Undesired Reaction:
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Let us examine some reactor operating scenarios to maximize selectivity.

What is the net rate of reaction of A ??

Fogler, 6.2



Case 1: αD-αU >0

High CA favors D

How can we accomplish this?
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• For gas phase reactions, maintain high pressures
• For liquid-phase reactions, keep the diluent to a minimum

• Batch or Plug Flow Reactors should be used
• CSTR should NOT be chosen

Parallel Reactions:
Selectivity for Single Reactant Systems



Case 2: αD-αU < 0

Low CA favors D

How can we accomplish this?

• For gas phase reactions, operate at low pressures
• For liquid-phase reactions, dilute the feed

• CSTR is preferred
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Reactant concentration 
maintained at low level

CA
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CA0

Parallel Reactions:
Selectivity for Single Reactant Systems



Case 3: αD-αU = 0

Concentration cannot be used operating parameter for 
selectivity maximization What now?
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(a) If  ED > EU 

(b) If EU > ED 

• Operate reactor at highest possible temperature

• Operate reactor at lowest possible temperature

Parallel Reactions:
Selectivity for Single Reactant Systems
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None of these discussions 
/ strategies examine yield.  
Both must be considered 
in reactor design! 



Parallel Reactions:
Selectivity for Two Reactant Systems

Example

Desired Reaction:

Undesired Reaction:
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Case 1: α1>α2; β1 > β2

How can we accomplish this?
• Use Batch reactor
• Use Plug Flow reactor

Parallel Reactions:
Selectivity for Two Reactant Systems

For high SDU, maintain both A & B as high as possible
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Let, a = α1-α2; b = β1 - β2



Case 2: α1>α2; β1 < β2

How can we accomplish this?    See Fogler Figure 6.3

• Use semi-batch reactor where B is fed slowly
• Use Tubular reactor with side streams of B being fed continuously
• Use series of small CSTR with A fed only to first and B to each reactor

Parallel Reactions:
Selectivity for Two Reactant Systems

For high SDU, maintain concentration of A high and of B low
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Let, a = α1-α2; b = β2 - β1

DBA Dk⎯→⎯+
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Case 3: α1<α2; β1 < β2

Parallel Reactions:
Selectivity for Two Reactant Systems

For high SDU, maintain both concentration of A and B low
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Let, a = α2-α1; b = β2 - β1

How can we accomplish this?

• For gas phase reactions, operate at low pressures
• For liquid-phase reactions, dilute the feed

• CSTR is preferred



Case 4: α1<α2; β1 > β2

How can we accomplish this?
• Use semi-batch reactor where A is fed slowly
• Use Tubular reactor with side streams of A being fed continuously
• Use series of small CSTR with B fed only to first and A to each reactor

Parallel Reactions:
Selectivity for Two Reactant Systems
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For high SDU, maintain concentration of B high and of A low

Let, a = α2-α1; b = β1 - β2

Same as Case 2, with A and B switched…



Why Semi-Batch Reactors?
B

A
heat

• B is slowly fed to A contained 
in the reactor.

• Unwanted products can be 
minimized

• exothermic reaction can be 
carried out at controlled rate

• Product C is continuously 
removed

• Higher conversion for 
reversible reactions can be 
obtained

C

A, B



Semi-Batch Reactors - GMBE

1. GMBE on a molar basis

Input - Output + Gen = Accu.
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For Species B
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Semi-Batch Reactors - GMBE
2. GMBE on a concentration Basis
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Modification to the CRE Algorithm for Multiple Reactions

• Mole balance on every species (not in terms of conversion)
• Rate Law: Net Rate of reaction for each species, 

e.g., rA = Σ riΑ

• Stoichiometry
a) Liquid Phase, incompressible:  CA=NA/V=FA/v0

b) Gas Phase use 

• Combine – More difficult: set of algebraic or differential 
equations for A, B, …

Fogler, 6.4

Variable 
volumetric 
flowrate; 
ideal gas



Design Equation for Reactors – Multiple Reactions

Gas-Phase Liquid Phase

Batch

Semi-Batch
(B fed)

CSTR

PFR

PBR

NOTE the design 
equations are EXACTLY 
as for a single reaction

but…

Balances must be written 
for all components

What are the assumptions 
for each reactor type?



Net Rate of Reaction

For N reactions, the net rate of formation of species A 
is: 

For a given reaction i ai A + bi B → ci C + di D

NOTE: You can use stoichiometric coefficients to relate 
relative rates of reaction of species for a specific 
reaction only



Example:  Net Rate of Reaction

• The following reactions follow elementary rate law:

Write net rates of formation of A, B and C

Fogler, 6.4.2; see Ex. 6-5 



Example:  Multiple Gas Phase Reactions in 
an Isothermal PFR

Taken from http://www.engin.umich.edu/~cre/06chap/frames_learn.htm

The complex gas phase reactions take place in a PFR. The feed is equal 
molar in A and B with FA0 = 10 mol/min and the volumetric flow rate is 100 
dm3/min. The reactor volume is 1,000 dm3, there is no pressure drop, the 
total entering concentration is CT0 = 0.2 mol/dm3 and the rate constants 
are:

Plot FA, FB, FC, FD and         as a function of V/C DS

http://www.engin.umich.edu/~cre/06chap/frames_learn.htm


Gas Phase Multiple Reactions - Algorithm

1. Mole Balance

Remember, unlike single-reactions, 
for multiple reactions

mole balance for each species 
must be written

A

B

C

D

rA, rB, rC, rD are all NET rates of reactions



Example (cont’d)
2. Rate Laws

Species A

⇒ ⇒

Species B

Species C

Species D



Example (cont’d)
3. Stoichiometry

4. Combine
⇒



Solution

Also, see example 6-10



What you should know…

• Qualitative Analyses (Parallel and Series Reactions)
– Maximizing the reactor operation for single reactant systems
– Maximizing the reactor operation for two reactant systems
– Consideration of selectivity and yield

• Algorithm for Reactor Design of Multiple Reactions
– Mole Balance
– Net Rates of Reactions
– Stoichiometry
– Be able to write the set of equations for the system

– usually cannot be solved without computer programs
– be able to sketch the expected qualitative behaviour
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