CHEM 212 Coordination Chemistry

Chapter 24

Why Study Descriptive Chemistry of Transition Metals Transition metals are found in nature Rocks and minerals contain transition metals The color of many gemstones is due to the presence of transition metal ions Rubies are red due to Cr

- Sapphires are blue due to presence of Fe and Ti
- Many biomolecules contain transition metals that are involved in the functions of these biomolecules * Vitamin B12 contains Co
 - * Hemoglobin, myoglobin, and cytochrome C contain Fe

Why Study Descriptive Chemistry of Transition Metals

- Transition metals and their compounds have many useful applications
 - ▲ Fe is used to make steel and stainless steel
 - ▲ Ti is used to make lightweight alloys
 - ▲ Transition metal compounds are used as pigments
 - * TiO₂ = white
 - $* PbCrO_4 = yellow$
 - * Fe₄[Fe(CN)₆]₃ (prussian blue)= blue
 - ▲ Transition metal compounds are used in many industrial processes

Why Study Descriptive Chemistry of Transition Metals

- To understand the uses and applications of transition metals and their compounds, we need to understand their chemistry.
- Our focus will be on the 4th period transition elements.

<u>Element</u>	<u>Configuration</u>
Sc	$[Ar]3d^{1}4s^{2}$
Ti	$[Ar]3d^24s^2$
V	$[Ar]3d^34s^2$
Cr	[Ar]3d ⁵ 4s ¹
Mn	$[Ar]3d^54s^2$
[Ar] = 1	s ² 2s ² 2p ⁶ 3s ² 3p ⁶

Electr	conic Configurations
Element	<u>Configuration</u>
Fe	$[Ar] 3d^{6}4s^{2}$
Со	[Ar] 3d ⁷ 4s ²
Ni	$[Ar] 3d^84s^2$
Cu	$[Ar]3d^{10}4s^{1}$
Zn	$[Ar]3d^{10}4s^2$
[Ar] ⁻	$= 1s^2 2s^2 2p^6 3s^2 3p^6$

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
							+1	+1	
	+2	+2	+2	+2	+2	+2	+2	+2	+2
+3	+3	+3	+3	+3	+3	+3	+3	+3	
	+4	+4	+4	+4	+4		+4		
		+5	+5	+5	+5				
			+6	+6	+6				
				+7					

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Fe²⁺

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Fe²⁺

$$Fe - 2e^- \rightarrow Fe^{2-}$$

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Fe²⁺

 $Fe - 2e^{-} \rightarrow Fe^{2+}$ [Ar]3d⁶4s²

> valence ns e-'s removed first

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Fe²⁺

 $\begin{array}{c} Fe-2e^{\text{-}} \twoheadrightarrow Fe^{2+} \\ {}_{[\text{Ar}]3d^{6}4s^{2}} & {}_{[\text{Ar}]3d^{6}} \end{array}$

valence ns e-'s removed first

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Fe³⁺

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Fe³⁺

 $Fe - 3e^- \rightarrow Fe^{3+}$

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Co³⁺

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Co³⁺

 $Co - 3e^- \rightarrow Co^{3+}$

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Co³⁺

 $Co - 3e^{-} \rightarrow Co^{3+}$ [Ar] $3d^{7}4s^{2}$

valence ns e⁻'s removed first, then n-1 d e⁻'s

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Co³⁺

 $\begin{array}{c} \text{Co-3e}^{\text{-}} \twoheadrightarrow \text{Co}^{3+} \\ \text{[Ar]}{}^{3}\text{d}^{7}\text{4s}^{2} & \text{[Ar]}{}^{3}\text{d}^{6} \end{array}$

valence ns e⁻'s removed first, then n-1 d e⁻'s Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Mn⁴⁺

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Mn⁴⁺

$$Mn - 4e^{-} \rightarrow Mn^{4+}$$

Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Mn⁴⁺

 $Mn - 4e^{-} \rightarrow Mn^{4+}$ [Ar] $3d^{5}4s^{2}$

valence ns e⁻'s removed first, then n-1 d e⁻'s Electronic Configurations of Transition Metal Ions

◆ Electronic configuration of Mn⁴⁺

 $\begin{array}{c} Mn - 4e^{-} \rightarrow Mn^{4+} \\ {}_{[Ar]3d^{5}4s^{2}} \qquad {}_{[Ar]3d^{3}} \end{array}$

valence ns e⁻'s removed first, then n-1 d e⁻'s

Coordination Chemistry

◆ Transition metals act as Lewis acids *Form complexes/complex ions $Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow Fe(CN)_{6}^{-3-}(aq)$ Lewis acid Lewis base Complex ion

$$\begin{split} Ni^{2+}(aq) + 6NH_3(aq) & \rightarrow Ni(NH_3)_6{}^{2+}(aq) \\ Lewis acid & Lewis base & Complex ion \end{split}$$

Complex contains central metal ion bonded to one or more molecules or anions

Lewis acid = metal = center of coordination

Lewis base = ligand = molecules/ions covalently bonded to metal in complex

Coordination Chemistry

◆ Transition metals act as Lewis acids * Form complexes/complex ions Fe³⁺(aq) + 6CN⁻(aq) → [Fe(CN)₆]³⁻(aq) Lewis acid Lewis base Complex ion Ni²⁺(aq) + 6NH₃(aq) → [Ni(NH₃)₆]²⁺(aq)

Lewis acid Lewis base Complex ion

Complex with a net charge = complex ion Complexes have distinct properties

- Coordination compound
 Compound that contains 1 or more complexes
 - Example
 - *[Co(NH₃)₆]Cl₃
 - *[Cu(NH₃)₄][PtCl₄]
 - $*[Pt(NH_3)_2Cl_2]$

- Coordination sphere
 Metal and ligands bound to it
- Coordination number
 - number of donor atoms bonded to the central metal atom or ion in the complex
 - * Most common = 4, 6
 - *Determined by ligands
 - Larger ligands and those that transfer substantial negative charge to metal favor lower coordination numbers

Coordination Chemistry

Complex charge = sum of charges on the metal and the ligands

[Fe(CN)₆]³⁻

Coordination Chemistry

Complex charge = sum of charges on the metal and the ligands

Coordination Chemistry

Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions

 $[Co(NH_3)_6]Cl_2$

neutral compound

Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions

Ligands

- ▲ classified according to the number of donor atoms
- ▲ Examples
 - * monodentate = 1
 - * bidentate = 2 * tetradentate = 4
 - * tetradentate = 4 * hexadentate = 6
 - * polydentate = 2 or more donor atoms

Nomenclature of Coordination Compounds: IUPAC Rules

- The cation is named before the anion
- When naming a complex:
 - ▲Ligands are named first
 - *alphabetical order
 - Metal atom/ion is named last * oxidation state given in Roman numerals follows in parentheses
 - ▲Use no spaces in complex name

Nomenclature: IUPAC Rules

- The names of anionic ligands end with the suffix -o
 - ▲-ide suffix changed to -o
 - ▲-ite suffix changed to -ito
 - ▲-ate suffix changed to -ato

vonicherature.	TOTAC Rules
Ligand	Name
bromide, Br-	bromo
chloride, Cl-	chloro
cyanide, CN-	cyano
hydroxide, OH-	hydroxo
oxide, O ²⁻	охо
fluoride, F-	fluoro

Nomenclature: IUPAC Rules

Ligand	Name
carbonate, CO ₃ ²⁻	carbonato
oxalate, C ₂ O ₄ ²⁻	oxalato
sulfate, SO42-	sulfato
thiocyanate, SCN-	thiocyanato
thiosulfate, S2O32-	thiosulfato
Sulfite, SO ₃ ²⁻	sulfito

Nomenclature: IUPAC Rules

• Neutral ligands are referred to by the usual name for the molecule

▲Example

* ethylenediamine

▲ Exceptions

- * water, $H_2O = aqua$
- * ammonia, NH_3 = ammine
- * carbon monoxide, CO = carbonyl

Nomenclature: IUPAC Rules

• Greek prefixes are used to indicate the number of each type of ligand when more than one is present in the complex

▲ di-, 2; tri-, 3; tetra-, 4; penta-, 5; hexa-, 6

- If the ligand name already contains a Greek prefix, use alternate prefixes:
 - ★ bis-, 2; tris-, 3; tetrakis-,4; pentakis-, 5; hexakis-, 6
 - ▲ The name of the ligand is placed in parentheses

Nomenclature: IUPAC Rules

• If a complex is an anion, its name ends with the -ate

▲ appended to name of the metal

Nomenclature: IUPAC Rules

Transition Metal	Name if in Cationic Complex	Name if in Anionic Complex
Sc	Scandium	Scandate
Ti	titanium	titanate
V	vanadium	vanadate
Cr	chromium	chromate
Mn	manganese	manganate
Fe	iron	ferrate
Со	cobalt	cobaltate
Ni	nickel	nickelate
Cu	Copper	cuprate
Zn	Zinc	zincate

Isomerism

Isomers

- ▲ compounds that have the same composition but a different arrangement of atoms
- Major Types
 - ▲ structural isomers
 - ▲ stereoisomers

Structural Isomers

Structural Isomers
 isomers that have different bonds

Structural Isomers

Coordination-sphere isomers
 differ in a ligand bonded to the metal in the complex, as opposed to being outside the coordination-sphere

Coordination-Sphere Isomers

• Example [Co(NH₃)₅Cl]Br vs. [Co(NH₃)₅Br]Cl

Coordination-Sphere Isomers

◆ Example

[Co(NH₃)₅Cl]Br vs. [Co(NH₃)₅Br]Cl

♦ Consider ionization in water $[Co(NH_3)_5CI]Br \rightarrow [Co(NH_3)_5CI]^+ + Br^-$

 $[\mathrm{Co}(\mathrm{NH}_3)_5\mathrm{Br}]\mathrm{Cl} \rightarrow [\mathrm{Co}(\mathrm{NH}_3)_5\mathrm{Br}]^+ + \mathrm{Cl}^{-}$

Coordination-Sphere Isomers

◆ Example

[Co(NH₃)₅Cl]Br vs. [Co(NH₃)₅Br]Cl

Consider precipitation

 $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Br}(\text{aq}) + \text{AgNO}_3(\text{aq}) \rightarrow [\text{Co}(\text{NH}_3)_5\text{Cl}]\text{NO}_3(\text{aq}) + \text{AgBr}(s)$

 $[\mathrm{Co}(\mathrm{NH}_3)_5\mathrm{Br}]\mathrm{Cl}(\mathrm{aq}) + \mathrm{Ag}\mathrm{NO}_3(\mathrm{aq}) \rightarrow [\mathrm{Co}(\mathrm{NH}_3)_5\mathrm{Br}]\mathrm{NO}_3(\mathrm{aq}) + \mathrm{Ag}\mathrm{Cl}(\mathrm{aq})$

Structural Isomers

Linkage isomers
 differ in the atom of a ligand bonded to the metal in the complex

Linkage Isomers

◆ Example ▲ [Co(NH₃)₅(ONO)]²⁺ vs. [Co(NH₃)₅(NO₂)]²⁺

Linkage Isomers

◆ Example ▲ [Co(NH₃)₅(SCN)]²⁺ vs. [Co(NH₃)₅(NCS)]²⁺

*Co-SCN vs. Co-NCS

Stereoisomers

- ◆ Stereoisomers
 - ▲ Isomers that have the same bonds, but different spatial arrangements

Stereoisomers

- Geometric isomers
 - ▲ Differ in the spatial arrangements of the ligands

Properties of Optical Isomers

◆ Enantiomers

- ▲ possess many identical properties
 - * solubility, melting point, boiling point, color, chemical reactivity (with nonchiral reagents)

▲ different in:

- * interactions with plane polarized light
- *reactivity with "chiral" reagents
- Example
- $d\text{-}C_4\text{H}_4\text{O}_6^{2\text{-}}(\text{aq}) + d, l\text{-}[\text{Co}(\text{en})_3]\text{Cl}_3(\text{aq}) \rightarrow$
- $d\text{-}[Co(en)_3](d\text{-}C_4H_4O_6{}^{2\text{-}})Cl(s) + l\text{-}[Co(en)_3]Cl_3(aq) + 2Cl\text{-}(aq)$

Crystal Field Theory

Crystal Field Theory

- ▲ Model for bonding in transition metal complexes
 - * Accounts for observed properties of transition metal complexes
- ▲ Focuses on d-orbitals
- ▲ Ligands = point negative charges
- ▲Assumes ionic bonding

Compounds/complexes that have color:
 Absorb specific wavelengths of visible light (400 -700 nm)

* wavelengths not absorbed are transmitted

Electronic Configurations of Transition Metal Complexes

- Expected orbital filling tendencies for e⁻'s:
 - ccupy a set of equal energy orbitals one at a time with spins parallel (Hund's rule) * minimizes repulsions
 - ▲ occupy lowest energy vacant orbitals first
- These are not always followed by transition metal complexes.

Electronic Configurations of Transition Metal Complexes

- Determining d-orbital energy level diagrams:
 - ▲ determine oxidation # of the metal
 - ▲ determine # of d e⁻'s
 - ▲ determine if ligand is weak field or strong field
 - ▲ draw energy level diagram

