Chem 232: Quantitative Analysis Lecture Notes

Scott Huffman

January 21, 2014

Topic

1 Chapter 1: Basic tools of Analytical chemistry

SI units: French system 180 years old

Base Units

dimension	unit	symbol
length	meter	m
mass	kilogram	kg
time	second	s
electrical current	ampere	A
temperature	Kelvin	K
Amount of substance	mole	mol

derived from SI base units

dimension	unit	symbol	Sl equivalent
Frequency	Hertz	Hz	$\frac{1}{s}$
force	Newton	N	$\frac{m \mathrm{~kg}}{\mathrm{~s}^{2}}$
pressure	Pascal	Pa	$\frac{\mathrm{N}}{\mathrm{m}^{2}}$ or $\frac{\mathrm{kg}}{\mathrm{ms}}$

SI Units are base 10 (mostly):

Conversion to common units is simplified
 What is an exception?
 Time, which is base $60,24,365.25$

SI Units are base 10 (mostly):

Conversion to common units is simplified

What is an exception?

Time, which is base $60,24,365.25$

Chapter 1: Basic tools of Analytical chemistry

SI Units are base 10 (mostly):

Conversion to common units is simplified

What is an exception?

Time, which is base $60,24,365.25$

Chapter 1: Basic tools of Analytical chemistry

SI Units are base 10 (mostly):

Conversion to common units is simplified

What is an exception?

Time, which is base $60,24,365.25$

SI Units Prefixes:

Prefixes can be used to simplify numbers
table 1-3 in book (big)

prefix	abbreviation	10^{N} where $\mathrm{N}=$
yotta	Y	24
zetta	Z	21
exa	E	18
peta	P	15
tera	T	12
giga	G	9
mega	M	6
kilo	k	3
hecto	h	2
deca	da	1
unit		

SI Unit Prefixes:

table 1-3 in book (small)

prefix	abbreviation	10^{N} where $\mathrm{N}=$
unit		
deci	d	-1
centi	c	-2
milli	m	-3
micro	μ	-6
nano	n	-9
pico	p	-12
femto	f	-15
atto	a	-18
zepto	z	-21
yocto	y	-23

Chapter 1: Basic tools of Analytical chemistry

Example: usage of prefixes in SI

```
0.17\times104 m}->1.7\textrm{km
```

and how do you know this?
$0.17 \times 10^{4} \mathrm{~m} \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=1.7 \mathrm{~km}$

Chapter 1: Basic tools of Analytical chemistry

Concentration units and conversions:

Concentration units and conversions: Here comes the definitions!

Definition: solution

solution:
a homogeneous mixture of two or more substances

Definition: solute

solute:

minor species in a solution

Definition: solvent

solvent:

major species in a solution
NOTE in aqueous solutions the solvent is water written as (aq) in chemical reactions. For example $\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

NOTE can also be a system of chemicals (methanol and water)

Definition: analyte

analyte:

species of interest in a mixture (implies a measurement)

Definition: concentration

concentration:

The ratio of solute contained in a given volume or mass of solution or solvent

Definition: mole

mole:

number of carbon atoms with mass of $0.012 \mathrm{~kg}=$ $6.022141415 \times 10^{23}$

Example Problem: learing about the mole

donut
carbon atoms molecules of acetic acid
single

Example Problem: learing about the mole

donut
carbon atoms molecules of acetic acid
single $\quad 1$

Example Problem: learing about the mole

	donut	carbon atomsmolecules of acetic acid	
single	1	1	

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single pair	1	1	1

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2		

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple			

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2		

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen			

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12		

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen			

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13		

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13	13	

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13	13	13
gross			

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13	13	13
gross	144		

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13	13	13
gross	144	144	

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen gross mole	13	144	144

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13	13	13
gross	144	144	144
mole	6.022×10^{23}		

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13	13	13
gross	144	144	144
mole	6.022×10^{23}	6.022×10^{23}	

Example Problem: learing about the mole

	donut	carbon atoms	molecules of acetic acid
single	1	1	1
pair	2	2	2
couple	2	2	2
dozen	12	12	12
baker's dozen	13	13	13
gross	144	144	144
mole	6.022×10^{23}	6.022×10^{23}	6.022×10^{23}

Definition: Avogadro's Number

> Avogadro's Number:
> this is the number in a mole
> short hand $=N_{a}$

Definition: Avogadro's Number

Avogadro's Number:

this is the number in a mole
short hand $=N_{a}$

Definition: Avogadro's Number

Avogadro's Number:

this is the number in a mole short hand $=N_{a}$

Definition: Atomic Mass

Molar Atomic Mass:
number of grams of an element containing N_{a} atoms

Definition: Molar Mass

Molar Mass:

sum of the atomic masses of all the atoms in a molecule abreviated MM herein.

Chapter 1: Basic tools of Analytical chemistry

Definition: Molarity

Molarity:

number of molecules or atoms or ions of a substance in moles per liter of solution
Molarity $=\frac{\text { moles of substance }}{\text { Liters of solution }}$
square bracket notation
[$\mathrm{H}_{3} \mathrm{O}^{+}$] these square brackets mean concentration in mole/liter

Definition: Molarity

Molarity:

number of molecules or atoms or ions of a substance in moles per liter of solution
Molarity $=\frac{\text { moles of substance }}{\text { Liters of solution }}$

square bracket notation

[$\mathrm{H}_{3} \mathrm{O}^{+}$] these square brackets mean concentration in mole/liter

Example Problem: mass to molarity

Seawater contains 2.7 g of NaCl per 100 mL of seawater. What is the molarity of NaCl in the ocean?

Have	Need
Mass of NaCl and volume of solution $\rightarrow \mathrm{mol} / \mathrm{L}$	

- Determine Molar Mass (MM) of NaCl

$$
\begin{gathered}
22.989768 \mathrm{~g} / \mathrm{mol}(\mathrm{MM} \text { of } \mathrm{Na}) \\
+35.4527 \mathrm{~g} / \mathrm{mol}(\mathrm{MM} \text { of } \mathrm{Cl}) \\
\hline 58.442468 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

■ Use MM to determine the moles of 2.7 g NaCl

$$
\text { moles of } \mathrm{NaCl}=2.7 \mathrm{~g}\left(\frac{1 \mathrm{molNaCl}}{58.442468 \mathrm{gNaCl}}\right)=0.046 \mathrm{~mol}
$$

Example Problem: mass to molarity (Continued)

Seawater contains 2.7 g of NaCl per 100 mL of seawater.

- Use the moles of NaCl and volume of solution to determine molarity

$$
\text { Molarity of } \mathrm{NaCl}=\frac{0.046 \mathrm{~mol} \mathrm{NaCl}}{100 \times 10^{-3} \mathrm{~L} \text { solution }}=0.46 \mathrm{M}
$$

Example Problem: Molarity to mass

MgCl_{2} has a concentration of 0.045 M in the ocean. How many grams of MgCl_{2} are present in 25 mL of seawater?

- First:

$$
\begin{aligned}
\text { Molar mass of } \mathrm{MgCl}_{2}= & \begin{array}{l}
24.305 \mathrm{~g} / \mathrm{mole} \mathrm{Mg} \\
2(35.453 \mathrm{~g} / \mathrm{mole} \mathrm{Cl})
\end{array} \\
& \frac{95.211 \mathrm{~g} / \mathrm{mole} \mathrm{MgCl}}{2}
\end{aligned}
$$

- second:
grams of MgCl_{2} in 25 mL of seawater $=$ $(0.045$ moles $/ \mathrm{L})(95.211 \mathrm{~g} /$ mole $)\left(25 \times 10^{-3} \mathrm{~L}\right)=0.11 \mathrm{~g}$

Definition: Electrolyte

Electrolyte:

a substance that dissociates into ions in solution
strong: mostly disassociates
weak: partially dissociates

Example: of electrolytes

MgCl_{2} is a strong electrolyte in water

$$
\begin{array}{ll}
70 \% \text { of } \mathrm{MgCl}_{2} & \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-} \\
30 \% \text { of } \mathrm{MgCl}_{2} & \mathrm{MgCl}^{+}+\mathrm{Cl}^{-}
\end{array}
$$

Example: of electrolytes

MgCl_{2} is a strong electrolyte in water

$$
\begin{array}{ll}
70 \% \text { of } \mathrm{MgCl}_{2} & \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-} \\
30 \% \text { of } \mathrm{MgCl}_{2} & \mathrm{MgCl}^{+}+\mathrm{Cl}^{-}
\end{array}
$$

- NOTE there is, in reality, very little MgCl_{2} in the solution

Definition: Formal Concentration

Formal Concentration:
molarity of electrolyte solutions

- So when we say concentration of MgCl_{2} in water is 0.054 M , what we really mean is that the formal concentration is 0.054 M .

Definition: Formal Concentration

Formal Concentration:

molarity of electrolyte solutions

- So when we say concentration of MgCl_{2} in water is 0.054 M , what we really mean is that the formal concentration is 0.054 M .

Definition: Formula Mass

Formula Mass:

sum of all the atomic masses in the formula
why have this?
the molecular mass (MM) does not make sense for electrolytes
because

- in water the molecule has broken up into ions
- in the solid form the molecules are often not pure but crystallized with water molecules
- this is called hydrated and the number of water molecules is called the hydration number
- Example:
$\mathrm{NaNO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Definition: Formula Mass

Formula Mass:

sum of all the atomic masses in the formula
why have this?
the molecular mass (MM) does not make sense for electrolytes because

- in water the molecule has broken up into ions
- in the solid form the molecules are often not pure but crystallized with water molecules
- this is called hydrated and the number of water molecules is called the hydration number
- Example:
$\mathrm{NaNO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Definition: Coulomb's Law

Coulomb's Law:

opposite charges are attracted, same charges are repelled

Definition: Electronegativity

electronegativity:

- scale of nuclear (positive) pull on electrons (negative).
- bonds formed by atoms of different electronegativity result in polar bonds

F

Definition: Electronegativity

electronegativity:

- scale of nuclear (positive) pull on electrons (negative).
- bonds formed by atoms of different electronegativity result in polar bonds

Definition: Electronegativity

electronegativity:

- scale of nuclear (positive) pull on electrons (negative).
- bonds formed by atoms of different electronegativity result in polar bonds
δ^{+}
δ^{-}

2.1 4.0

Chapter 1: Basic tools of Analytical chemistry

Definition: Molality

Molality (m):

- concentration unit in

■ $m=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Definition: Molality

Molality (m):

- concentration unit in

■ $m=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
why:

Definition: Molality

Molality (m):

- concentration unit in

■ $m=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

why:

molarity changes with temp because volume changes with temp

Chapter 1: Basic tools of Analytical chemistry

Definition: v \%

Percent by Volume:

$\mathrm{v} \%=\frac{\text { volume of solute }}{\text { volume of total solution or mixture }} \times 100$

Chapter 1: Basic tools of Analytical chemistry

Example: Everclear is 95 v \% ethanol

$95 \mathrm{v} \%=\frac{95 \mathrm{~mL} \text { ethanol }}{100 \mathrm{~mL} \text { Everclear }} \times 100 \%$

Chapter 1: Basic tools of Analytical chemistry

Definition: wt\%

Percent by Weight:
 $w t \%=\frac{\text { mass of solute }}{\text { mass of total solution or mixture }} \times 100$

Example Problem: wt \% to molarity and molality

Find the molarity and molality of a $37.0 \mathrm{wt} \%$ solution of HCl in water whose density is $1.19 \mathrm{~g} / \mathrm{mL}$.

Have	want	
density, wt\%	moles $/ \mathrm{L}$	moles $/ \mathrm{kg}$ solvent
other info	M.M. $=$	$36.46 \mathrm{~g} / \mathrm{mole}$

- Definition of Molarity

$$
M=\frac{\text { moles of } \mathrm{HCl}}{\mathrm{~L} \text { of solution }}
$$

- Definition of wt \%

$$
w t \%=\frac{\mathrm{g} \text { of } \mathrm{HCl}}{\mathrm{~g} \text { of solution }} \times 100 \%=37.0 w t \%=\frac{0.37 \mathrm{~g} \mathrm{HCl}}{\underbrace{1.00 \mathrm{~g} \text { solution }}_{\text {arbitrary }}} \times 100 \%
$$

Example Problem: wt\% to molarity and molality (continued)

Find the molarity and molality of a $37.0 \mathrm{wt} \%$ solution of HCl in water whose density is $1.19 \mathrm{~g} / \mathrm{mL}$.

- convert g of solution $\rightarrow \mathrm{L}$ of solution

$$
\underbrace{\left(\frac{0.37 \mathrm{~g} \mathrm{HCl}}{1.00 \mathrm{~g} \mathrm{sol} .}\right)}_{\text {from definition above }} \underbrace{\left(\frac{1.19 \mathrm{~g} \text { sol. }}{1.00 \mathrm{~mL} \text { sol. }}\right)}_{\text {density }}\left(\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}\right)=440.3 \frac{\mathrm{~g} \mathrm{HCl}}{\mathrm{~L} \mathrm{sol} .}
$$

- convert g of $\mathrm{HCl} \rightarrow$ to moles of HCl

$$
\text { Molarity }=\left(440.3 \frac{\mathrm{~g} \text { of } \mathrm{HCl}}{\mathrm{~L} \text { of solution }}\right)\left(\frac{1 \mathrm{~mole} \mathrm{HCl}}{36.46 \mathrm{~g} \mathrm{HCl}}\right)=12.1 \mathrm{M}
$$

Example Problem: wt\% to molarity and molality (continued2)

- Find Molality of the same solution remember the definition of molaity

$$
\text { molality }=\frac{\text { moles of } \mathrm{HCl}}{\mathrm{~kg} \text { of water }}
$$

- pick a mass of solution (because one is not given, it can be any convenient mass) such as 1 g of solution. Therefore, 1 g of solution $=0.37 \mathrm{~g}$ of $\mathrm{HCl}+\mathrm{Xg}$ of water. where
$X=1 \mathrm{~g}-0.37 \mathrm{~g}=0.63 \mathrm{~g}$ of water.
- convert g of $\mathrm{HCl} \rightarrow$ to moles of HCl

$$
\begin{aligned}
& \text { molality }=0.37 \mathrm{~g} \mathrm{HCl}\left(\frac{1 \mathrm{~mole} \mathrm{HCl}}{36.46 \mathrm{~g} \mathrm{HCl}}\right)=0.010148 \text { moles } \mathrm{HCl} \\
& \text { molality }=\left(\frac{0.010148 \mathrm{moles} \mathrm{HCl}}{063 \times 1 \mathrm{HCl}^{-3} \mathrm{ko}}\right)=16.1 \mathrm{~m} \\
& \text { Scott Huffman } \\
& \text { Chem 232: Quantitative Analysis Lecture Notes }
\end{aligned}
$$

Definition: ppm and ppb

ppm or ppb:
$p p m=\frac{\text { mass of solute }}{\text { mass of sample }} \times 10^{6}(\mu \mathrm{~g} / \mathrm{g})$
$p p b=\frac{\text { mass of solute }}{\text { mass of sample }} \times 10^{9}(\mathrm{ng} / \mathrm{g})$
note: similarity between wt \% (pph) and ppm and ppb

Assumption: ppm and ppb in water solutions are very low concentrations

- the density of the solution is therefore very close to the density of pure water
- so with density $1.0 \mathrm{~g} / \mathrm{mL}$

Derivation of ppm and ppb :

$$
\mathrm{ppm}=\left(\frac{\mu \mathrm{g}}{\mathrm{~g}}\right) \underbrace{\left(\frac{1.00 \mathrm{~g}}{m \mathrm{~L}}\right)}_{\text {assumed density }}\left(\frac{1000 m \mathrm{~L}}{\mathrm{~L}}\right)\left(\frac{m \mathrm{~g}}{1000 \mu \mathrm{~g}}\right)=\frac{1 m \mathrm{~g}}{\mathrm{~L}}
$$

Derivation of ppm and ppb :

$\mathrm{ppm}=\left(\frac{\mu \mathrm{g}}{\mathrm{g}}\right) \underbrace{\left(\frac{1.00 \mathrm{~g}}{m \mathrm{~L}}\right)}_{\text {assumed density }}\left(\frac{1000 m \mathrm{~L}}{\mathrm{~L}}\right)\left(\frac{m \mathrm{~g}}{1000 \mu \mathrm{~g}}\right)=\frac{1 m \mathrm{~g}}{\mathrm{~L}}$
$\mathrm{ppb}=\frac{\mu \mathrm{g}}{\mathrm{L}}$

Example Problem: ppb to molarity

Find the concentration in molarity of 34 ppb hexane in water $\left(\mathrm{MM}_{\text {hexane }}=86 \mathrm{~g} / \mathrm{mole}\right)$

- Remember your definition of $\mathrm{ppb} .34 \mathrm{ppb}=\frac{34 \mathrm{\mu g}}{\mathrm{~L}}$
- convert μ gto moles

$$
34 \mu \mathrm{~g}\left(\frac{1 \mathrm{~g}}{10^{6} \mu \mathrm{~g}}\right) \underbrace{\left(\frac{1 \mathrm{~mol}}{86 \mathrm{~g}}\right)}_{M M_{\text {hexane }}}=3.95 \times 10^{-7} \mathrm{M}
$$

or $0.395 \mu \mathrm{M}$

preparing solutions:

The reason that we have molarity as a concentration unit is because of the way that solutions are prepared using Volumetric Flasks.

Example: How to use a Volumetric Flask to make a solution from a solid

flask
task
You need 500 mL solution containing 10 mM Ca^{2+}. In your stockroom you have a kilogram of calcium nitrate pentahydrate $\left(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$.
Here are your steps

- Calculate the mass needed
- weigh out close to that amount (record actual mass)
- make solution

Chapter 1: Basic tools of Analytical chemistry
Example: How to use a volumetric flask to make solution from a solid

- determine the number of moles of Ca^{+2} needed.

$$
\begin{gathered}
10 \mathrm{mM} \mathrm{Ca} \\
+2\left(\frac{1 M}{10^{3} \mathrm{mM}}\right)=0.01 \mathrm{M} \\
\frac{0.01 \text { mole }}{L} 0.500 \mathrm{~L}=5.0 \times 10^{-3} \text { moles } \mathrm{Ca}^{+2}
\end{gathered}
$$

- Determine how many moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are needed from the dissociation reaction.

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{+2}+2 \mathrm{NO}_{3}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O} \\
& \quad 5.0 \times 10^{-3} \text { moles Ca }{ }^{+2}\left(\frac{1 \text { mole } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}}{1 \text { mole } \mathrm{Ca}+2}\right)=5.0 \times 10^{-3} \text { moles } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Chapter 1: Basic tools of Analytical chemistry
Example: How to use a volumetric flask to make solution from a solid

- Determine the number of grams needed.

$$
5.0 \times 10^{-3} \text { moles } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O} \underbrace{\left(\frac{254.08 \mathrm{~g}}{\text { mole }}\right)}_{F W}=1.27 \mathrm{~g}
$$

- Measure (weigh) out close to that amount (record actual mass).

Let's pretend it is 1.3000 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

- make solution

Example: How to use a Volumetric Flask to make a solution

 from a solid- Finally, calculate the actual concentration (remember that you measured 1.3000 g)

$$
\begin{aligned}
1.3000 \mathrm{gCa}\left(\mathrm{NO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(\frac{1}{F W}\right)\left(\frac{1 \text { mole }}{1 \text { mole }}\right)=5.1165 \times 10^{-3} \text { moles } \mathrm{Ca}^{2+} \\
\left(\frac{5.1165 \times 10^{-3} \text { moles } \mathrm{Ca}^{2+}}{0.500 \mathrm{~L} \text { sol. }}\right)=0.0102 \mathrm{M}
\end{aligned}
$$

Chapter 1: Basic tools of Analytical chemistry
Example: How to use a volumetric flask to make a more dilute solution from a more concentrated solution.

Ex. you have a solution of 12.1 M HCl , but you need 1 L of 0.100 M HCl .

- use the dilution equation
$C_{i} V_{i}=C_{f} V_{f}$
■ make a table

$$
\begin{aligned}
& C_{i}=12.1 \mathrm{M} \\
& V_{i}=? \\
& C_{f}=0.100 \mathrm{M} \\
& V_{f}=1 \mathrm{~L}
\end{aligned}
$$

- you do not know V_{i}, so solve the dilution equation for V_{i} $V_{i}=\frac{C_{f} V_{f}}{C_{i}}=\frac{(0.1 \mathrm{M})(1 \mathrm{~L})}{12.1 \mathrm{M}}=8.264 \times 10^{-3} \mathrm{~L}$

Example: solution dilution (continued)

```
so you take 8 mL out of your 12.1 M HCl solution and put it in a
volumetric flask.
Next you fill the flask to about 1 cm from the fill line with your
solvent
mix the sample
fill to the line with your solvent
now you need to calculate the actual concentration of your
diluted solution, because you actually only transferred 8 ml of
concentrated HCl.
```


Example: solution dilution (continued)

> so you take 8 mL out of your 12.1 M HCl solution and put it in a volumetric flask.

Next you fill the flask to about 1 cm from the fill line with your solvent
mix the sample
fill to the line with your solvent
now you need to calculate the actual concentration of your
diluted solution, because you actually only transferred 8 ml of
concentrated HCl .

Example: solution dilution (continued)

so you take 8 mL out of your 12.1 M HCl solution and put it in a volumetric flask.

Next you fill the flask to about 1 cm from the fill line with your solvent
mix the sample
fill to the line with your solvent
now you need to calculate the actual concentration of your
diluted solution, because you actually only transferred 8 ml of
concentrated HCl .

Example: solution dilution (continued)

so you take 8 mL out of your 12.1 M HCl solution and put it in a volumetric flask.

Next you fill the flask to about 1 cm from the fill line with your solvent

mix the sample

fill to the line with your solvent
now you need to calculate the actual concentration of your
diluted solution because you actually only transferred 8 ml of concentrated HCl .

Example: solution dilution (continued)

so you take 8 mL out of your 12.1 M HCl solution and put it in a volumetric flask.

Next you fill the flask to about 1 cm from the fill line with your solvent

mix the sample

fill to the line with your solvent
now you need to calculate the actual concentration of your
diluted solution, because you actually, only transferred 8 ml of concentrated HCl .

Example: solution dilution (continued)

so you take 8 mL out of your 12.1 M HCl solution and put it in a volumetric flask.

Next you fill the flask to about 1 cm from the fill line with your solvent

mix the sample

fill to the line with your solvent
now you need to calculate the actual concentration of your
diluted solution, because you actually only transferred 8 ml of concentrated HCl .

Example: solution dilution continued

- make a table

$$
\begin{aligned}
& C_{i}=12.1 \mathrm{M} \\
& V_{i}=8 \mathrm{~mL} \\
& C_{f}=? \\
& V_{f}=1 \mathrm{~mL}
\end{aligned}
$$

- you do not know C_{f}, so solve the dilution equation for C_{f}

$$
C_{f}=\frac{C_{i} V_{i}}{V_{f}}=\frac{(12.1 \mathrm{M})(8 \mathrm{~mL})}{1000 \mathrm{~mL}}=0.097 \mathrm{M}
$$

Analytical Calculations based upon stoichiometry:

Generally, this is the application of limiting reagent.

Example: Gravimetric Analysis

What is the concentration of lead in the solution?
Sodium chloride is added to a solution of $\left\{\mathrm{Pb}^{+2}\right\}$. Assuming that the following reaction is the only one, and that the reaction goes to completion, what was the concentration in ppm of lead(II) in the solution?

Given the RXN
$\mathrm{Pb}^{+2}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{PbCl}_{2}(\mathrm{~s})$
you filter out the ppt and the solid weighs 0.0004 g .

Example: Gravimetric Analysis (continued)

$$
\mathrm{Pb}^{+2}+2 \mathrm{Cl}^{-} \longrightarrow \underbrace{\mathrm{PbCl}_{2}(\mathrm{~s})}_{\text {mass }=0.0004 \mathrm{~g}}
$$

What was the concentration of lead in the solution before the addition of Cl^{-}in a sample whose volume was of 250 mL .
$0.0004 \mathrm{gPbCl}_{2} \underbrace{\left(\frac{1 \text { mole } \mathrm{PbCl}_{2}}{278.068 \mathrm{~g} \mathrm{PbCl}}\right)}_{\text {FW of } \mathrm{PbCl}_{2}})=1.43834 \times 10^{-6}$ moles PbCl_{2}
1.43834×10^{-6} moles $\mathrm{PbCl}_{2}\left(\frac{\text { moles } \mathrm{Pb}^{+2}}{\text { moles } \mathrm{PbCl}_{2}}\right)=1.43834 \times 10^{-6}$ moles Pb^{+2}
1.43834×10^{-6} moles $\mathrm{Pb}^{+2} \underbrace{\left(\frac{207.19 \mathrm{~g} \mathrm{P}^{+2}}{\text { mole } \mathrm{Pb}^{+2}}\right)}_{\mathrm{MM} \text { of } \mathrm{Pb}^{+2}}=2.98012 \times 10^{-4} \mathrm{gPb}^{+2}$

Example: Gravimetric Analysis (continued)

- remember

$$
\begin{gathered}
\mathrm{ppm}=\frac{\mu \mathrm{g}}{\mathrm{~L}} \\
2.98012 \times 10^{-4} \mathrm{gPb}^{+2}\left(\frac{10^{6} \mu \mathrm{~g}}{g}\right)\left(\frac{1}{0.250 \mathrm{~L}}\right)=1192 \mathrm{ppm}
\end{gathered}
$$

or $1.2 \times 10^{3} \mathrm{ppm}$

