CHEM 3.6 (5 credits)

Demonstrate understanding of equilibrium principals

 in aqueous systems

- sparingly soluble ionic solids
- acidic and basic solutions
- concentrations of dissolved species
- K_{s} calculations
- common ion effect
- predicting precipitation/dissolution
- K_{a} and pK_{a} calculations
- concentration of species present in solution
- pH and conductivity
- titration curves and selection of indicators

Do now:

What is an acid?
What is a base?

What is the difference between a concentrated and a strong acid?

CHEM 3.6 AS91392 (5 credits)

Demonstrate understanding of equilibrium principals in aqueous systems
external

CHEM 3.3 AS91389 (3 credits)

Demonstrate understanding of chemical processes in the world around us internal (literacy reading and writing credits)

Similarities

CHEM 3.3 requires knowledge of acids and bases at curriculum level 8 (NCEA Level 3).

The first part of CHEM 3.6 also requires knowledge of acids and bases but more in-depth than CHEM 3.3.

We will cover acids and bases together until the end of this week before splitting off into groups for CHEM 3.3 and CHEM 3.6

powerpoints and independent work with checkpoints text book work

Acids and Bases

Brainstorm what you recall from level 2...

These key words might help you...
$\mathrm{pH} \quad \mathrm{K}_{\mathrm{w}}$ hydronium ion concentrated strong alkali

Acids and Bases

An acid is a proton donor
A base is a proton acceptor

Write equations for HNO_{3} and $\mathrm{CO}_{3}{ }^{2-}$ reacting with water

Amphiprotic substances

Some compounds can act as both acids and bases.

Write two equations for the reaction of $\mathrm{HCO}_{3}{ }^{-}$with water to show it acting as both an acid and a base.

Do now:

Write two equations for $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$reacting with water.

As an acid:
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$

As a base:
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$

Strong and weak acids

A strong acid completely dissociates in water

A weak acid does not completely dissociate in water

Concentrated and dilute mean different things than strong and weak!

Strong and weak acids

Strong Acid and Weak Acid
Ionization

Strong and weak acids

Write three sentences to describe the difference between a strong acid and a weak acid. Write equations for the reactions of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, a strong acid, and carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, a weak acid, to help explain your answer.

Conjugate pairs

When an acid dissolves in water the ion produced from the removal of H^{+}is called its conjugate base. When a base dissolves in water the ion produced from the addition of H^{+}is called its conjugate acid.

Measuring the acidity of solutions

How do we measure how acidic a solution is?
pH

We can measure the pH or pOH of strong acids and bases because the solutions dissociate completely into their ions, so the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}is the same as the concentration of the acid or base
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\begin{array}{r}
\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right] \quad 14=\mathrm{pH}+\mathrm{pOH} \\
\mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
\end{array}
$$

pH calculations for strong acids and

bases

Calculate the pH of the following solutions...
a) $\mathrm{A} 0.025 \mathrm{~mol} . \mathrm{L}^{-1}$ solution of HCl

$$
\mathrm{pH}=-\log _{10} 0.025=1.60
$$

b) A 0.004 mol. L^{-1} solution of KOH

$$
\mathrm{pOH}=-\log _{10} 0.004=2.40 \quad \mathrm{pH}=14-2.40=11.60
$$

Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for the following solutions
a) A solution of HCl with a pH of 2.8

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.8}=1.58 \times 10^{-3} \mathrm{~mol} . \mathrm{L}^{-1}
$$

b) A solution whose pH is 4.31

Workbook pg 225 Q2,
226, 228

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-4.31}=4.90 \times 10^{-5} \mathrm{~mol} . \mathrm{L}^{-1}
$$

Do now:

Calculate the pH of the following solutions
$0.05 \mathrm{~mol}_{\mathrm{L}} \mathrm{L}^{-1}$ solution of $\mathrm{HCl} \quad$ A $0.04 \mathrm{~mol}^{\mathrm{L}} \mathrm{L}^{-1}$ solution of KOH

Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for the following solutions
A solution whose pH is $10.4 \quad$ A solution where $\left[\mathrm{OH}^{-}\right]=10^{-9}$

Calculate[$\left.\mathrm{OH}^{-}\right]$for the following solutions
A solution whose pH is 6.5
A solution where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3}$

Strong and weak acids:

Why is the pH of a $0.5 \mathrm{~mol} . \mathrm{L}^{-1} \mathrm{HCl}$ solution (a strong acid) different to the pH of a $0.5 \mathrm{~mol} . \mathrm{L}^{-1} \mathrm{CH}_{3} \mathrm{COOH}$ solution (a weak acid)?

Acid Rain

2012 Exam

QUESTION ONE

(a) Write equations for the reactions occurring when each of the following is added to water.
(i) HCl

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

(ii) $\mathrm{CH}_{3} \mathrm{NH}_{2}$

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}
$$

(iii) $\mathrm{NH}_{4} \mathrm{Cl}$

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \\
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \stackrel{ }{\leftrightharpoons} \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
\end{aligned}
$$

Properties

What is the difference between the pH of a strong acid and a weak acid?
Strong acid - complete dissociation - means higher concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$so a lower pH
Weak acid - incomplete dissociation - means lower concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$so a higher pH

What is the difference in the conductivity of a strong acid and a weak acid?

Strong acid - complete dissociation - means many ions in solution which can conduct charge
Weak acid - incomplete dissociation - means fewer ions in solution so can not conduct as much charge

Acidic and basic salts

When a strong acid and a strong base react together in equal amounts the solution is neutral ($\mathrm{pH}=7$).
eg. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \underset{\text { neutral }}{\mathrm{Na}^{+}}+\frac{\mathrm{Cl}^{-}}{\mathrm{H}_{2} \mathrm{O}}$
When a strong acid and a weak base react together in equal amounts the solution is slightly acidic ($\mathrm{pH}<7$).
eg. $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \underset{\text { neutral }}{\stackrel{\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}}{ }} \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$
When a weak acid and a strong base react together in equal amounts the solution is slightly basic ($\mathrm{pH}>7$). eg. $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \underline{\mathrm{H}_{2} \mathrm{O}}+\mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$

Do now:

Complete Q 4 and 5 in your workbook pg 229

You need to be able to write equations for weak acids (eg $\mathrm{NH}_{4}{ }^{+}$, $\mathrm{CH}_{3} \mathrm{COOH}$ and HOCl) and weak bases (eg $\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{COO}^{-}$) reacting with water.

2013 Exam

QUESTION ONE

(a) 1 mol of each of the following substances was placed in separate flasks, and water was added to these flasks to give a total volume of 1 L for each solution.

In the box below, rank these solutions in order of increasing pH .
Justify your choice and include equations where appropriate.

```
CH3}\mp@subsup{\textrm{NH}}{3}{}\textrm{Cl
CH3NH2
HCl
```

Order of increasing pH
$\mathrm{HCl}<\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{NH}_{2}$

2013 Exam

* $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ is an conic solid. In water it will break up completely into it's ions $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}_{(0)} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}($as $)+\mathrm{Cl}_{\text {(ap) }}$ $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$is a weak acid so will will set up an equilibrium with water $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}$ as $\mathrm{H}_{2} \mathrm{O}^{+}$forms (pusan donated to $\mathrm{H}_{2} \mathrm{O}$), the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will be great her than $\left[\mathrm{OH}^{-}\right]$and $\mathrm{pH}<$ however as it is a weak acid, the pHlwill * CHIN is a weak base that will partially

2013 Exam

Achievement	Achievement with Merit	Achievement with Excellence
- Conrect order. - TWO equations conrect. - Recognises that HCl dissociates completely in water. OR Recognises that $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \mathrm{OR} \mathrm{CH}_{3} \mathrm{NH}_{2}$ only partially react with water.	- THREE conrect equations. - Recognises that HCl dissociate completely in water. AND Recognises that $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$ or $\mathrm{CH}_{3} \mathrm{NH}_{2}$ only partially react with water.	- Discusses all the reactions correctly including concentrations of OH^{-} and $\mathrm{H}_{3} \mathrm{O}^{+}$ions.

2013 Exam

(b) The conductivity of the $1 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions formed in (a) can be measured.

In the box below, rank these solutions in order of decreasing conductivity.

Order of decreasing conductivity

$\mathrm{HCl}=\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{NH}_{2}$

Compare and contrast the conductivity of each of the $1 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions, with reference to species in solution.

2013 Exam

* $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ also completely breaks up into it's ions in water
$\mathrm{CA}_{3} \mathrm{NH}_{3} \mathrm{Cl}_{\text {cs }} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$(aq $+\mathrm{Cl}_{\text {(aq) }}^{-}$ result the $[i o n s]$ is high, and the same as for HCl . Hs a result $\mathrm{CAH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ has conductivity cavalla as hus th as for $H+C 1$.
* CH3NHz is a weak base which only
moderate $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{H}_{3} \mathrm{O}+$ this means that only a few 101 s form, resulting in a low, Lions] and

2013 Exam

Q	Evidence
(b)	$\mathrm{HCl}=\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{NH}_{2}$ $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ and HCl will dissociate completely in water to produce 2 mol L^{-1} ions. $\mathrm{CH}_{3} \mathrm{NH}_{2}$ will only partially react with water to produce less than 1 mol L ions.

Achievement	Achievement with Merit	Achievement with Excellence
- $\mathrm{CH}_{3} \mathrm{NH}_{2}$ written last.	.$\mathrm{CH}_{3} \mathrm{NH}_{2}$ witten last and discuses $\mathrm{HCl} / /$	Conrect order with valid to degree of conductivity. discusion Links concentration of ions to degree of conductivity.
$\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl} \mathrm{AND}$ $\mathrm{CH}_{3} \mathrm{NH}_{2}$.	Links concentration of ions to degree of conductivity.	

2012 Exam

QUESTION ONE

(c) Compare and contrast the pH and electrical conductivity of $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ solutions of HCl ,

Q	Achievement	Achievement with Merit	Achievement with Excellence
(c)	- Either: Recognises reasons for pH variation are due to production of $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$ OR Recognises conductivity is related to the number of ions in solution.	EImeI: Recognises reasons for variations in pH and conductivity AND makes a valid comparison between one pair. OR Difference in pH comectly discussed for ALL 3 solutions. OR Difference in conductivity conrectly discussed for A.LL 3 solutions.	- Discussion addresses variation in BOTH pH (including whether acidic or basic) and conductivity using correct reasons for ALL 3 solutions.

