Chem 452 – Lecture 3 Hemoglobin & Myoglobin Part 1

Question of Day: How do the differences in structure between the oxygen transport proteins myoglobin (Mb) and hemoglobin (Hb) make each more best suited for their biological roles?

Introduction
1111044011011
 Both Hemoglobin (Hb) and Myoglobin (Hb) are oxygen-binding proteins.
(,, g, g
 Hb is used in mammals to transport oxygen from the the lungs to the tissues.
5
 Mb is used in the tissues to store the oxygen, once it gets there.
Chem 452, Lecture 3 - Hb and Mb 2

Introduction

- Together, Hb and Mb provide an excellent example of structurefunction relationships in proteins.
- + They illustrate the substrate binding portion of an enzyme catalyzed reaction.
- * They illustrate **allosteric regulation.**

Chem 452, Lecture 3 - Hb and Mb 3

Introduction

+ Hb and Mb bind oxygen differently.

·	
d Mb 4	

Introduction	
 Hb also provided one of the first examples for the molecular basis of genetic diseases. 	
 Sickle-cell anemia. 	
Chem 452, Lecture 3 - Hb and Mb 5	
	l

~	•
(-ono	mirc
UEIIU	

- + Identifying cause of genetic mutation, e.g.Sickle cell anemia
 - + Due to a 1 base pair change in the gene for the β subunit of hemoglobin

Hb-A: ...ATG GTG CAC CTG ACT CCT ${f GAG}$ GAG AAG TCT GCC GTT ACT... Hb-S: ...ATG GTG CAC CTG ACT CCT ${f GTG}$ GAG AAG TCT GCC GTT ACT...

Chem 452, Lecture 1 - Introduction to Biochemistry 6

Genomics

+ Identifying cause of genetic mutation, e.g.Sickle cell anemia

+ Due to a 1 base pair change in the gene for the β subunit of hemoglobin

Hb-A: ...ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT... Hb-S: ...ATG GTG CAC CTG ACT CCT GTG GAG AAG TCT GCC GTT ACT..

Genomic	S			
 Identify e.g.Sickle * Due to a 	ing cau le cell 1 base j	u se o anem	f gen 11a nange 1	etic mutation, in the gene for
the β s Hb-A:ATG GT Hb-S:ATG GT	ubunit of	f hemo ct cct G	GIODIN AG GAG	AAG TCT GCC GTT ACT AAG TCT GCC GTT ACT
	U UP PP Lo C Le Le Le A lite	C A se Ser Ty se Ser Ty su Ser ST su Pro Hit su Pro Gli su Pro Gli tru Pro Hit tru Pro Gli tru Pro Gli tru Pro Hit tru Pro Gli tru Pro Gli tru Pro Hit tru Pro Hit tru Pro Gli tru Pro Hit tru Pro Hit	G Cys U Cys C OP STOP A OP Trp G Arg U Arg C Arg G Arg G Aser U Ser C	

e 1 - Introduction to Biochemistry 6

G Val Ala Asp Gly Val Ala Asp Gly Val Ala Asp Gly Val Ala Glu Gly

Introduction + Mb and Hb were also the first proteins to have their 3-dimensional structures determined.	
Chem 452, Lecture 3 - Hb and Mb 7	

- The crystal structure of Mb was determined by John Kendrew's lab in 1957 using X-ray diffraction.
- + This was closely followed by the crystal structure for Hb, which was determined by Max Perutz's in 1958.

Chem 452, Lecture 3 - Hb and Mb 8

Introduction

Nobel Prizes in 1962

Chem 452, Lecture 3 - Hb and Mb 10

Functions of Hb and Mb

- + Hb and Mb provide an excellent example of how proteins have evolved to most efficiently carry out a particular function.
- Hb binds oxygen in the lung, where the O₂ concentration is high, and delivers it to the tissues, where the O₂ concentration is low.
- + Mb then accepts the O_2 from the Hb in the tissues, where the O_2 concentrations are low.

Chem 452, Lecture 3 - Hb and Mb 11

Functions of Hb and Mb What does this description of the roles of Hb and Mb tell you about the relative O2 binding affinities for Hb and Mb? • Hb binds oxygen in the lung, where the O2 concentration is high, and delivers it to the tissues, where the O2 concentration is low. • Mb then accepts the O2 from the Hb in the tissues, where the O2 concentrations are low.

Functions of Hb and Mb

- + Hb and Mb provide an excellent example of how proteins have evolved to most efficiently carry out a particular function.
- Hb binds oxygen in the lung, where the O₂ concentration is high, and delivers it to the tissues, where the O₂ concentration is low.
- + Mb then accepts the O_2 from the Hb in the tissues, where the O_2 concentrations are low.

Chem 452, Lecture 3 - Hb and Mb 11

Structures of Hb and Mb	
+ Structures of Mb and the $lpha$ and	β
subunits of Hb are very similar	
Myoglobin	
Mb Hb Chem 452, Lecture 3 - Hb	and Mb 12

Structures of Hb and Mb	
+Structures of Mb and the $lpha$ and eta	
subunits of Hb are very similar	
Myoglobin Myoglobin	
Mb Hb Chem 452, Lecture 3 - Hb and Mb 12	

Structures of Hb and Mb	
+ The amino acid sequences for Mb and the $lpha$ and eta chains of Hb are	
homologous (Chapter 6.2–6.4)	
Иновораліа са уС.Закол тирика Анискусцина се убларці Парирі, в ургітри тур неп	
VLEFILGEDIIOVLOSKHORGADAQGAMANDALELFAKOMASADAGEAG	
Chem 452, Lecture 3 – Hb and Mb 13	

Structures of Hb and Mb		
 The amino acid sequences for Mb i also homologous to the sequence for the plant protein leghemoglobin 	s or	
Немоворія и Истрадитиціка и истори и раналоги и раналоги и раналоги и раналоги и раналоги и раналоги и раналоги Муроворія de se de martine na www.kytendo i раналоги. Патера и раналоги и раналоги.		
-DLSHGSAQVKGHGKKKAADALTNAVAHVDDMPNALSALSDLHAMKL RVDPV EDEMKASEDLKKHGATUL TALGGILKKKGHHEAEIKPLAQSHATKHKIPVK	25%	
NFKLLSHCLLVTLAAHLPAEFTPAVHASLDRFUAVSTVLTSKYR YLEFISECII I QYLDSKHPSDPGADAQGAMMSALEL FRKDMASNYK ELG FQG		
Myoglobin GISBGEWOLVL NVMSKVERDI FOGROEVLIRLEKGHRETLEKFRHRERDE Leghemoglobin GALTESQAALVKS SUMWENDMI DVSTHREFUL VLE I ADAAKD LESFLKSTSBV		
KASE-DÜKKHGATVLTALGGILKKKKGHHEAEIMPLAGSHATRHKIPVKYLE PONNPELOAHAGKVEKLYEAAIOLEVTSVVVTDATLISMLGSVEVSKG-VADAHEP	23%	
FISECTI IQVLQSKHPGDFGADAQGANNKALELFRKDMASNYA-ELGFQG VVKEALLKTI XEVVGAKWSEELKSBYTI ATDELAIVI KKENDAA		
Chem 452, Lecture 3 - Hb	and Mb 14	

Structures of Hb and Mb		
 The amino acid sequences for Mb also homologous to the sequence f the plant protein leghemoglobin 	s or	
Неводіовія а VС.Р. радктифікланоскуснічла судаєнці світу П. ст. у т.	25%	
Myoglabin CDS.SECURITY INVERTIGATION OF THE EXAMPLE AND ADDRESS OF THE	23%	
Chem 452, Lecture 3 - Hb	and Mb 14	

Structures of Hb and Mb

- These three proteins also have very similar 3-dimensional structures.
- The tertiary structure appear to be more highly conserved than the primary structure.

-	
1	

Structures of Hb and Mb

 The amino acid sequences can be used to create an evolutionary tree.

The O_2 binding site for Hb & Mb

 Kendrew's X'ray crystal structure for Mb showed the heme group inserted into a pocket produced in the tertiary fold of the protein.

b 18

The O_2 binding site for Hb & Mb

 Kendrew's X'ray crystal structure for Mb showed the heme group inserted into a pocket produced in the tertiary fold of the protein.

The O_2 binding site for Hb & Mb

* The heme Fe²⁺ ligated by the heme nitrogens and the nitrogen on the **proximal histidine**.

The O_2 binding site for Hb & Mb

+ The heme Fe²⁺ reduces the bound O_2 to a superoxide ion, O_2^- .

 The O₂ binding site for Hb & Mb The heme Fe²⁺ reduces the bound O₂ to a superoxide ion, O₂⁻. 	
 Superoxide, like other reactive oxygen species (ROS's), is very damaging. 	
 It is the distal histidine that helps to prevent the release of the superoxide. 	
Chem 452, Lecture 3 – Hb and Mb 23	

Hb is a Tetramer

- Hb's quaternary structure causes it to bind O₂ differently than Mb
- + Hb is a tetramer of myoglobin-like subunits
 - + Two $\,\alpha\,$ subunits
 - + Two β subunits
- + Combine as two $\alpha \beta$ dimers
- + $\alpha_1\beta_1$ and $\alpha_2\beta_2$

Chem 452, Lecture 3 - Hb and Mb 26

Chem 452, Lecture 3 - Hb and Mb 27

Problem 7.12 & 7.14

For Wednesday, work Problems 12 and 14 at the end of Chapter 7 and be ready to discuss them in class.

Hb Binds O₂ Cooperatively • Cooperativity is associated with changes in the quaternary structure of Hb $\overbrace{verticesphane glub in the equators of the structure of Hb}{Trese (T) State} \xrightarrow{reserved to the structure of the stru$

Hb Binds O₂ Cooperatively

- + Models to explain the cooperativity: + MWC Model
 - * (Jacques Monod, Jeffries Wyman & Jean-Pierre Changeux)

 T state

 T state
 </

(**0**₂)

Concerted Model Chem 452, Lecture 3 - Hb and Mb 35

Hb Binds O₂ Cooperatively

+ Cooperativity can be assessed with a **Hill plot**.

Hb Binds O₂ Cooperatively

- + At the molecular level.
 - Conformational changes occurring upon O₂ bonding to one subunit are transmitted to other subunits

Hb Binds O₂ Cooperatively

Allosteric Regulation

+ 2,3-BPG binds to, and stabilizes, the T-state of Hb.

To Summarize	
 Question of Day: How do the differences in structure between the oxygen transport proteins myoglobin (Mb) and hemoglobin (Hb) make each more best suited for their biological roles? 	
Chem 452, Lecture 3 - Hb and Mb 46	

