STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre STUDY TIPS

CHEM 6.1 BALANCING CHEMICAL EQUATIONS 1

Chemical reactions – balancing chemical equations/stoichiometry

ReactantsProducts (must have atom & charge conservation for balance)Examples: $2.C + O_2 \longrightarrow 2 CO$ $Al^{3+}P^{3-}(s) + 3.H_2O_{(1)} \longrightarrow Al(OH)_{3(s)} + PH_{3(g)}$ $Cu^{2+} + Zn \longrightarrow Cu + Zn^{2+}$

 $Cl_2 + 2.I^- \longrightarrow 2.Cl^- + I_2$

<u>Combustion</u> [burning in air (20 %v/v oxygen) or in pure oxygen]

Eg. 2. C_2H_6 + 7. O_2 \longrightarrow 4. CO_2 + 6. H_2O

<u>Acid/Base</u> Water forms hydrogen ions (H^+), which are the abbreviated form of the hydronium ion (H_3O^+), and hydroxide ions (**OH**⁻) when it self-ionizes :

 $\delta = \text{lower case delta (a small amount of charge) to indicate polarity eg., H^{\delta+})}$

$$\begin{array}{cccccccc} H \,\delta + & H \,\delta + \\ & & & \\ & & & \\ & & & \\ \delta^{-} : O : & & \\ & & & \\ \delta^{-} : O : & \delta^{-} & \leftrightarrows & H_{3}O^{+} & + & HO^{-} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

What is meant by the term, "CHEMICAL EQUILIBRIUM" as represented by \Rightarrow ?

<u>Physical equilibrium</u> is when we have a <u>balanced static system</u>. In contrast, a **chemical equilibrium** is **dynamic**, with reactants continually changing into products, and vice-versa, until no overall change in the concentrations of either reactants or products occurs, although they never stop interchanging.

<u>Since at equilibrium there is no change in the overall concentrations of reactants or products</u>, the <u>ratio</u>, <u>[products]/[reactants] is constant</u>, at constant temperature, so we can write the **equilibrium constant**, **K**, for the following reaction as:

$$H_2O + H_2O \stackrel{K}{\Rightarrow} H_3O^+ + OH^- \qquad K = [H_3O^+].[OH^-] / [H_2O]^2$$

Because this is in water, and the $[H_2O]$ is essentially constant, the product, K. $[H_2O]^2$ is constant, and given the special symbol, $K_{water} = K_w$ which has the value $10^{-14} @ 25^{\circ}C$.

 $H_2O + H_2O \stackrel{K_w}{\Rightarrow} H_3O^+ + OH^ K_w = [H_3O^+].[OH^-] = 10^{-14} @ 25^{\circ}C$

WHAT IS AN ACID?

Brønsted concept: an ACID is an entity which produces H₃O+ ions (aquated protons) in aqueous solution.

Why is the proton released? Because H is bound to a very electronegative element, eg O, Cl. (Electronegativity is the ability of an atom/ion to attract electrons).

 $\delta - \delta +$

ELEMENT – H H_2O ELEMENT- $+ H_3O^+$ + 4

δ = lower case delta (a small amount of charge) eg., H ^{δ+} γ
Δ = capital delta (a larger amount of charge) eg., H ^{Δ+}
\pm = integral value of charge eg., H ⁺

so magnitude of charge follows

the sequence $H^+ > H^{\Delta_+} > H^{\delta_+}$

ELECTRONEGATIVITY VALUES OF SOME COMMON ELEMENTS

Н		В	С	Ν	0	F	
2.20		2.04	2.55	3.04	3.44	3.98	
Li	Be	Al	Si	Р	S	Cl	
0.98	1.57	1.61	1.90	2.19	2.58	3.16	
Na	Mg	Ga	Ge	As	Se	Br	
0.93	1.31	1.81	2.01	2.18	2.55	2.96	
К	Са	In	Sn	Sb	Те	Ι	
0.82	1.00	1.78	1.96	2.05	2.1	2.66	
HCl (strong acid)		H-C $\ell(g)$ water \rightarrow H ₃ O ⁺ + C ℓ (aq) (virtually complete dissociation)					

ACETIC ACID (weak acid)

a large amount per mol, so a strong base

a large amount per mol, so a strong acid

 $CH_3COOH + H_2O$ \leftarrow (only about 1 % dissociation) $K_a \rightarrow$ CH₃COO⁻ + H₃O⁺

Na+OH (strong base) Na+OH (s) --- water \rightarrow Na+(aq) + HO (aq) (virtually complete dissociation)

AMMONIA (weak base)

 $NH_3 + H_2O \leftarrow (only about 1 \% dissociation) K_b \rightarrow NH_4^+ + OH^-$

As an example, compare Δ (EN) (polarity) of hydrogen (H) bound to C, N, O, F:

Δ(EN) = 0.4 ie., <u>C has **similar EN** to H</u>,

so C-H bond is non-polar, so H (in hydrocarbon) is not acidic when bound only to C.

$$\begin{array}{c} \delta^{-} & \delta^{+} \\ N(3.0) - H(2.2) \end{array}$$

 $\Delta(EN) = 0.8$ ie., <u>N is slightly more EN than H</u>,

so N-H bond is slightly polar, but H (in amine) is not acidic in water when bound only to N.

$$-\frac{\delta}{0(3.4)}-\frac{\delta}{H(2.2)}$$

$$\Delta(EN) = 1.2$$
 ie., 0 is more EN than H

so **O-H bond is polar**, but H (in alcohol) is **not acidic** in water when bound only to 0.

 Δ (EN) > 1.2 (due to proximity of another 0 in C=0),

so **O-H bond in carboxyl group is even more polar than –O-H in alcohol or water due to presence of >C=O**, and so H (in carboxylic acid) is **slightly acidic.**

$$\frac{\delta}{F(4.0)} - \frac{\delta}{H(2.2)}$$

 Δ (EN) = 1.8 ie., <u>F is much more EN than H</u>,

so F-H bond is polar, so H (in HF) is quite acidic.

Other examples:

Sulphurous acid, dissolved SO₂ gas

$$H_2SO_3 \iff H^+ + HSO_3^- \iff H^+ + SO_3^{2-}$$
 an acid

Sulphuric acid, dissolved SO₃ gas

$$H_2SO_4 \iff H^+ + HSO_4^- \iff H^+ + SO_4^{2-}$$
 an acid

Carbonic acid, dissolved CO₂ gas

(Note that H^+ and $H^+(aq)$ are abbreviations for the hydronium ion, H_3O^+ , in fact all ions in aqueous solution are always hydrated/solvated)

<u>A scale for reporting acidity/basicity (alkalinity) – the pH scale</u> p NOTATION is a convenient means of expressing concentrations. p means '-log₁₀', and we use 'log' to signify 'log₁₀' (ie log to the base 10)

So, $\mathbf{p}X = -\mathbf{log_{10}}(X) = -\mathbf{log}(X)$ and $\mathbf{p}K_a = -\mathbf{log_{10}}(K_a) = -\mathbf{log}(K_a)$ Hence, $\mathbf{X} = \mathbf{10} \cdot \mathbf{p}\mathbf{X}$ and $Ka = \mathbf{10} \cdot \mathbf{p}\mathbf{K}_a$

What do we use this "p" notation for?

To express very low concentrations, especially for acid (H+)/base (OH-) solutions:

Eg $pH = -\log_{10}[H^+]$ $[H^+] = 10^{-pH}$ M& $pOH = -\log_{10}[OH^-]$ $[OH^-] = 10^{-pOH}$ MIf $[H^+] = 0.000\ 000\ 01\ M = 10^{-8}\ M = 10^{-pH}$ thenpH = 8;

If the pH = 3, then $[H^+] = 10^{-3} \text{ M}$ (because $[H^+] = 10^{-pH} \text{ M}$) so $[H^+] = 0.001 \text{ M}$

Since:

 K_w H₂O + H₂O \leftrightarrows H₃O⁺ + OH⁻ and $K_w = [H_3O^+].[OH^-] = 10^{-14} @ 25^{\circ}C$ then, in **pure water**, $[H_3O^+] = [OH^-] = 10^{-7} M @ 25^{\circ}C$.

Now, the pH Scale is defined by : $pH = -log_{10}[H^+]$ so, $[H^+] = 10^{-pH}$ so in pure water where $[H^+] = 10^{-7} M = 10^{-pH} M$, the pH = 7 (neutral) and pH + pOH = 14

So the <u>pH scale is a measure</u> from 1 to 14 <u>of the acidity</u> (pH = 1-6), <u>or alkalinity</u> (pH = 8-14), <u>of an</u> <u>aqueous solution</u>.

 $\begin{array}{ccc} pH=2 & pH=7 & pH=12 \\ [H^+]=10^{-pH} & [H^+]=10^{-2} & [H^+]=10^{-7} & [H^+]=10^{-12} & mol/L \end{array}$

pH = 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14 very acidic neutral very basic(alkaline)

 $\begin{bmatrix} OH^{-} \end{bmatrix} = 10^{-pOH} & [OH^{-}] = 10^{-12} & [OH^{-}] = 10^{-7} & [OH^{-}] = 10^{-2} & mol/L \\ pOH = 12 & pOH = 7 & pOH = 2 \end{bmatrix}$

stomach pH = 1-3 intestines pH = 7.6-8.2 dishwasher detergent pH = 12

STRONG ACIDS completely dissociate (ionize) in water. e.g., HCl, HNO₃, H₂SO₄.

 $HNO_3 + H_2O$ ------ 100 % dissociation \rightarrow $H_3O^+(aq)$ + $NO_3^-(aq)$

i.e., a strong acid dissociates / ionizes completely in solution (about 95 - 100 %). In the stomach HCl forms the strong acid H⁺ Cl⁻ which kills bacteria and activates digestive enzymes.

For a Strong ACID dissolved in water : eg. $HC\ell + H_2O \rightarrow H_3O^+ + C\ell^-$ If $[HC\ell] = 0.1 \text{ M} = 10^{-1} \text{ M}$, then $[H_3O^+] = [H^+] = 10^{-1} \text{ M}$, so, since $[H^+] = 10^{-pH}$, pH = 1

<u>WEAK ACIDS only partly dissociate</u> (partially ionize, about 1-10 %) in water. e.g. carboxylic acids (RCOOH), H_3PO_4 , carbonic acid (H_2CO_3), H_2S , HF, boric acid (H_3BO_3).

Acetic acid - found in vinegar :

 $\begin{array}{rcl} & & & \\ \mathsf{CH}_3\mathsf{COOH} & + & \mathsf{H}_2\mathsf{O} & \leftarrow (1 \ \% \ \text{dissociation} \) \rightarrow & \mathsf{CH}_3\mathsf{COO}^{-}(\mathsf{aq}) \ + \ \mathsf{H}_3\mathsf{O}^{+}(\mathsf{aq}) \end{array}$

BASES or ALKALIS

An alkali (or base) is an entity which produces hydroxide (OH-) ions in solution. e.g. NaOH (Na+OH-) + $H_2O \rightarrow Na+(aq) + OH-(aq)$

<u>STRONG BASES</u> completely dissociate in water(about 95 – 100 %) i.e. tend to completely ionize in solution to produce OH ions, eg NaOH, KOH, Ba(OH)₂

KOH(K+OH-) + water ----- 100 % dissociation \rightarrow K+(aq) + OH- (aq)

For a Strong BASE dissolved in water : eg. KOH(K+OH·) + $H_2O \rightarrow K+(aq) + OH\cdot(aq)$ If [KOH] = 0.1 M = 10⁻¹ M, then $[OH^-] = 10^{-1}$ M, so since $[OH^-] = 10^{-pOH}$, pOH = 1,

Since, pH + pOH = 14, so pH + 1 = 14, so pH = 13.

<u>WEAK BASES</u> only partially ionize in water (about 1-10 %); indeed, they tend to remain as molecules e.g., ammonia and amines (RNH₂, R'R"NH etc.) react with water to produce OH ions.

V.

NEUTRALISATION is usually the formation of water from an *acid* (H⁺) and a *base* (eg. OH⁻ or :NH₃), and this is always accompanied by the formation of an ionic salt :

$$HBr(aq) + KOH(aq) \rightarrow Br^{-} + H^{+} + OH^{-} + K^{+} \rightarrow K^{+} + Br^{-} (soluble salt) + H_2O$$

$$H_2SO_4 = SO_4^{2-} + 2.H^{+} + 2.OH^{-} + 2.Na^{+} \longrightarrow 2.H_2O + 2.Na^{+} + SO_4^{2-}$$

$$Acetic acid (in vinegar) CH_3COOH + OH^{-} + K^{+} \longrightarrow H_2O + CH_3COO^{-} + K^{+}$$

Neutralisation can also occur when an acid and a base react to give just a salt:

Eg., $HC\ell(aq) + :NH_3(aq) \rightarrow C\ell^- + H^+ + :NH_3(aq) \rightarrow NH_4^+ + C\ell^-$ soluble salt (ammonium ion) With $Na_2CO_3 = 2$. $Na^+ + CO_3^{2^-} + H^+ + C\ell^- \rightarrow Na^+ + HCO_3^- + Na^+ + C\ell^-$ Then $Na^+ + HCO_3^- + H^+ + C\ell^- \rightarrow Na^+ + C\ell^- + H_2CO_3 \rightarrow H_2O + CO_2$ overall 2. $Na^+ + CO_3^{2^-} + 2. H^+ + 2. C\ell^- \rightarrow 2.Na^+ + 2. C\ell^- + H_2O + CO_2$

Notice that during the acid/base reaction the Na⁺ and $C\ell^-$ "spectator" ions do not take part in the reaction.

BUFFER SOLUTIONS

<u>A BUFFER</u> is an aqueous solution which resists changes in pH when acids or bases are added to it.

To do this, they must contain both an acidic component (to react with added base) and a basic (alkaline) component (to react with added acid).

Eg., base $HPO_4^{2^-} + H^+ \leftrightarrows H_2PO_4^-$ acid comprises the major buffer inside cells where pH = 7.4and, base $HCO_3^- + H^+ \leftrightarrows H_2CO_3$ (dissolved CO₂) acid comprises the major buffer in blood where pH = 7.4

A mixture of acetic acid (CH_3COOH) and sodium acetate ($Na^+ CH_3COO^-$) provides a buffer having a pH of 5, whilst a mixture of ammonium chloride ($NH_4^+ Cl^-$) and ammonia (NH_3) provides a buffer of pH 9.