Periodic Trends

1.1 Effective Nuclear Charge

- The interaction between the nuclear charge and the valence electrons (how many? how far away?) is critical
- The nuclear charge experienced by the valence electrons (Z_{eff}) impacts how tightly the valence electrons are held
- How tightly the valence electrons are held influences atomic size, ionization energy, electron affinity, and reactivity

1

1.5 Using Slater's Rules

- > What do the 1.0, 0.85 and 0.35 factors mean?
- Some examples

≻Na

≻F

Periodic Trends

1.7 Using Slater's Rules

Z_{eff} trend across a period (Li to Ne)

- Atomic radius: distance from nucleus to outermost electrons
- IE: energy change when an electron is removed from a gaseous atom or ion

$A(g) \rightarrow A^+(g) + e^-$

EA: energy change when an electron is added to a gaseous atom or ion

$$A(g) + e^{-} \rightarrow A^{-}(g)$$

Electronegativity (EN): the tendency of an atom to draw shared electrons (in a chemical bond) toward itself

1A (1)							8A (18)
H	2A	3A	4A	5A	6A	7A	He
-72.8	(2)	(13)	(14)	(15)	(16)	(17)	(0.0)
Li	Be	B	C	N	0	F	Ne
- 59.6	≤0	- 26.7	- 122	+7	- 141	- 328	(+29)
Na	Mg	AI	Si	P	S	CI	Ar
- 52.9	≤0	- 42.5	- 134	-72.0	-200	- 349	(+35)
K	Ca	Ga	Ge	As	Se	Br	Kr
- 48.4	4 -2.37	- 28.9	- 119	-78.2	- 195	- 325	(+39)
Rb	Sr	In	Sn	Sb	Te	I	Xe
-46.9	-5.03	- 28.9	- 107	- 103	- 190	- 295	(+41)
Cs	Ba	TI	Pb	Bi	Po	At	Rn

Periodic Trends

2.8 Electron Affinity

- Another exception to the general trend
- F and CI (O and S)

4.4 Uniqueness Principle

> Absence of d orbitals of appropriate energy

Periodic Trends

5.1 Diagonal Effect

Diagonal relationship (similar chemical properties) between first member of a group and the second member of the next group

Li and Mg

- Be and Al
- B and Si

