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ABSTRACT

In this paper, a nonlinear model predictive control (NMPC) based on a piecewise linear Wiener model is
applied to a polymerization reactor. The static nonlinear part of the applied Wiener model is approximated
using the piecewise linear functions and its dynamic linear element is identified using a state-space
description. Due to the nonlinear gain of model, for gathering data, a generalized multiple-level noise
(GMN) test has been used. This test demonstrates the response of the system to a range of amplitude
changes. The predictive control based on this model retains all the interested properties of the classical
linear MPC. This approach leads to a quadratic programming problem due to the canonical structure of
the nonlinear gain. The control scheme has been applied to a polymerization reactor as a MIMO process.
Results show that the used Wiener model is able to identify the nonlinear processes effectively. The
nonlinear predictive control based on this model is compared to the linear MPC. The parameters of both
linear and nonlinear model predictive controllers are tuned and the performances of both methods are
compared. It is shown that the nonlinear controller has a better performance, having short settling time
and without any overshoot compared to its linear one. Moreover, this controller has a good performance

and rejects unmeasured disturbances effectively.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

There are very few design techniques that can be proven to sta-
bilize processes in the presence of nonlinearities and constraints.
Model predictive control (MPC) is one of these techniques [1]. MPC
refers to a class of computer control algorithms that control the
future behavior of a plant through the use of an explicit process
model. At each control interval the MPC algorithm computes an
open-loop sequence of manipulated variable adjustments in order
to optimize future plant behavior. The first input in the optimal
sequence is injected into the plant, and the entire optimization is
repeated at subsequent control intervals [1]. Regarding desirable
properties of MPC, these controllers are applied quickly in a wide
range of different industries; such that by the year 1999 more than
4500 applications of these controllers have been reported which
use linear model, while about 80% of these applications are in petro-
chemical industries [2,3]. By now, the application of MPC based on
linear dynamic models covers a wide range of applications and the
linear MPC theory can be considered quite mature [1]. Nevertheless,
many manufacturing processes are inherently nonlinear and there

* Corresponding author. Tel.: +98 21 77240492; fax: +98 21 77240490.
E-mail address: arefi@iust.ac.ir (M.M. Arefi).

1385-8947/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cej.2008.05.013

are cases where nonlinear effects are significant and can not be
ignored. These include at least two broad categories of applications

[1]:

1- Regulator control problems where the process is highly non-
linear and subject to large frequent disturbances (pH control,
etc.).

2- Servo control problems where the operating points change fre-
quently and span a wide range of nonlinear process dynamics
(polymer manufacturing, ammonia synthesis, etc.).

Under these conditions, linear models are often not sufficient
enough to describe the process dynamics adequately and there-
fore nonlinear models should be used. Nonlinear model predictive
control (NMPC) is a good development of linear MPC to nonlinear
world that is presented as a very good scheme for this type of prob-
lems. NMPC is conceptually similar to its linear counterpart except
that nonlinear dynamic models are used for process prediction and
optimization [4].

Nonlinear systems modeling can be performed in three differ-
ent ways. The first method is the use of different models for various
operating points of the system. The second approach is using fun-
damental equations (e.g. mass and energy conservation equations)
which in most cases are difficult to use due to process complexity.
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zero conversion frequency factor for disproportion-
ation reaction

kto overall termination rate constant at zero conversion
frequency factor for overall termination rate con-
stant at zero conversion

M monomer concentration in the reactor

Mg monomer feed concentration

Mg, monomer feed concentration for scaling purposes
only

MW; molecular weight for initiator

MWy,  molecular weight for monomer
MWq molecular weight for solvent

P concentration of live polymer

q volumetric flow rate

R universal gas constant

S solvent concentration

t time

T, T, reactor temperature, jacket temperature
Ts feed temperature

u vector of manipulated variables

Vi white noise sequence, measurement
Vv volume of reactor

Ve free volume

Vim, Vip, Vi free volume contribution of monomer, polymer,
solvent, respectively

Vie volume fraction of initiator in feed

Vinf volume fraction of monomer in feed

w white noise input, process

w dimensionless live polymer concentration

X; dimensionless reactor state variable

X1f manipulated variable (dimensionless inlet
monomer concentration)

Xoc manipulated variable (dimensionless jacket tem-
perature)

X3f manipulated variable (dimensionless inlet initiator
concentration)

Greek letters
B dimensionless heat-transfer coefficient
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Nomenclature
@m, Pp, ¢s volume fraction of monomer, polymer, solvent,
Ac heat-transfer area of the reactor respectively
Cp specific heat capacity of reactor contents Ao, A, Ay zeroth, first, and second MWD moments
D polydispersity nw number-average chain length
Da; Damkohler number for species j 0 density of reacting medium
E; activation energy for reaction j Ps, Pi» pm densities of solvent, initiator, and monomer,
f initiator efficiency respectively
gt gel effect factor T dimensionless time
h heat-transfer coefficient
—AH  heat of reaction Subscripts
I initiator concentration in the reactor D, f dissociation, transfer to monomer
If initiator feed concentration p propagation
kq dissociation rate constant for initiator te, tg termination: combination, disproportionation
ke rate constant for chain transfer to monomer 1, 2, 3,4 monomer, temperature, initiator, solvent
Kes rate constant for chain transfer to solvent 5,6,7 moments: zeroth, first, second
k; frequency factor for reactioni(i=d, f, p, t)
kp propagation rate constant
ke overall termination ratfe copstant L The third and the best approach is the use of empirical models that
k/“ rate constant.for combination termination L convert the available input-output data to an input-output relation
Kico ZEro conversion frequency factor for combination which can be used for the prediction of the future behavior of the
termination reaction system.

Kiq rate constant for disproportionation

There are several approaches to nonlinear system identification
based on empirical models. One way is to use theoretically sound
nonlinear functions and to develop identification schemes for these
models. Identification using Volterra series, neural networks and
nonlinear ARMAX models belong to this methodology. The advan-
tage of this approach is the ability to obtain a global model of the
underlying system. The main difficulty of the approach is the high
cost in identification tests and computation. Another approach is
to combine linear dynamic models with static or memoryless non-
linear functions. These types of models are called block-oriented
nonlinear models. There are several advantages when using block-
oriented models: (1) low cost in identification tests; (2) low cost in
identification and control computations and (3) it is easy to com-
prehend and to incorporate a priori process knowledge [5].

The class of block-oriented nonlinear models includes complex
models which are composed of linear dynamic systems and nonlin-
ear static elements. Wiener and Hammerstein models are the most
known and the most widely implemented members of this class.
Wiener and Hammerstein models have found numerous industrial
applications for system modeling, control, fault detection and iso-
lation. Wiener and Hammerstein models reveal the capability of
describing a wide class of different systems and apart from indus-
trial examples, there are many other applications in biology and
medicine [6].

In particular, Wiener models have a special structure that facil-
itates their application to NMPC. These models consist of a linear
dynamic element which is followed by a static nonlinearity and
can represent many of the nonlinearities commonly encountered
in industrial processes [7]. Due to the static nature of the nonlin-
earities, they can be removed from the control problem. This fact
generalizes the well-known gain-scheduling concept for nonlin-
ear control. Due to the presence of some potential computational
difficulties, an implicit inversion of the nonlinear static gain is nec-
essary [7]. Application of these models in NMPC has been addressed
in several papers [7-15]. For example in Refs. [8,9], a static nonlin-
ear term is used to model the inverse of the nonlinearity of the
plant and is selected as a polynomial with proper degree. Besides
in Refs. [7,10,11], the nonlinear term and its inverse are modeled
using piecewise linear (PWL) method. In Ref. [12], a nonlinear
combination of Laguerre models followed by a single-layer neu-
ral network is introduced as an efficient nonlinear identification
method used in MPC applications. The nonlinear predictive con-
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trol based on Wiener-Neural model is presented in Ref. [13], where
the static nonlinear part is modeled using neural network. In all
of these works the paradigmatic applications have been pH neu-
tralization and continuous stirred tank reactor (CSTR) processes. In
Ref. [14], the nonlinear predictive control based on a Wiener-Neural
model is applied to a plug-flow tubular reactor, where the pro-
cess is simulated in HYSYS environment. In Ref. [15], a distillation
column simulation model is used as a benchmark to demonstrate
the benefits of a Wiener model based identification and control
methodology. The results verify the capability of this method in
identification of a nonlinear ill-conditioned plant compared with
the other existing linear techniques.

In addition to the above-mentioned processes, a polymerization
reactor is a process that bears a highly nonlinear behavior. Polymer-
ization reactors are difficult to control effectively due to their highly
nonlinear behavior and multi-input multi-output structure.

Lack of online measurements and input constraints are two
important problems which are sometimes neglected in academic
studies of a polymerization reactor control [16,17]. Most nonlin-
ear control techniques proposed for polymerization reactors are
based on feedback linearization or MPC [17-21]. In Ref. [17], a
multivariable extension of the feedback linearization (FBL) MPC
control strategy for the free-radical polymerization of methyl
methacrylate in a CSTR has been presented and its results are
compared to NMPC. A constrained MPC of a polymerization reac-
tor is presented in Ref. [18], where the process is controlled as
three inputs-three outputs. In Ref. [19], a multi-input multi-output
(MIMO) Wiener model of a polymerization reactor is identified
and the model is used in an MPC scheme. The quality of the
proposed controller is also compared with that of linear MPC.
This algorithm is based on the past inputs multivariable output
error state-space (PI-MOESP) method for the estimation of system
matrices of the linear part [22], and Tchebychev polynomials for
the nonlinear part [19]. In Ref. [20], an adaptive MPC is applied
to methyl methacrylate (MMA) polymerization reactor. The con-
trol of a solution copolymerization reactor using MPC algorithm
based on multiple piecewise linear models is presented in Ref.
[21].

In this paper, a nonlinear model predictive control based on
a piecewise linear Wiener model is applied to a polymerization
reactor. The static nonlinear element of this Wiener model is
approximated using the piecewise linear functions and its dynamic
linear element is modeled using a state-space description. PWL
functions have been proved to be a very powerful tool for modeling
and analyzing nonlinear systems [23,24]. A generalized multiple-
level noise (GMN) test [5] is used for getting data in order to identify
the model. The presented control scheme has been applied to a
polymerization reactor, and its results have been compared to linear
MPC.

The paper is organized as follows: In Section 2 a Wiener model
with a piecewise linear representation for the nonlinear gain is pre-
sented and then the NMPC based on this Wiener model is described.
In Section 3, the presented control scheme has been applied to a
polymerization reactor, and simulation results are compared to lin-
ear MPC. Finally, some concluding remarks are discussed in Section
4.

2. The nonlinear model predictive control based on
piecewise linear Wiener model

In this section, nonlinear predictive control based on a piecewise
linear Wiener model is introduced. For identification of this model,
an efficient test signal for gathering dynamic data is necessary. To
do this, some test signals are presented. By using obtained data, the

u(k) v(k)

H1 H2 —

Fig. 1. The Wiener model.

procedure of the Wiener model identification and inverse model
evaluation is stated. Finally, the NMPC based on this Wiener model
is presented.

2.1. Piecewise linear Wiener model

Among the nonlinear black box models, the block-oriented mod-
els are efficient structures in nonlinear modeling [ 14]. These models
consist of a series connection of a linear dynamic and static nonlin-
ear element.

A Wiener model consists of a dynamic linear block (H1) in cas-
cade with a static nonlinearity at the output (H2), as shown in Fig. 1.
Here v(k) e R™ is an intermediate signal that does not necessarily
have a physical meaning. On the other hand, in the Hammerstein
model the static input nonlinearity precedes the linear block.

In certain respects, Hammerstein models are very similar to
the linear models on which they are based. For example, if u(k)
is a piecewise constant input sequence [e.g. pulses, steps, pseudo-
random binary sequences (PRBS), etc.], for any static nonlinearity
the intermediate variable sequence will also be a piecewise con-
stant sequence with the same general character (specifically, with
transitions at the same instants as u(k), but assuming different val-
ues). Hammerstein models have been considered as alternatives to
linear models in a number of chemical process applications [25].

In particular, while Hammerstein and Wiener models exhibit
exactly the same steady-state behavior, the differences in their
transient responses can be quite significant. As a specific example,
the general character of the step response can change with the sign
and/or magnitude of the input step, unlike the case of the Hammer-
stein model, where this general character is determined entirely by
the linear part [25]. Because of this behavior and the capability of
modeling complex nonlinear dynamics by Wiener models led us to
the selection of this model structure. In this paper, the possibilities
and the advantages of the use of a specific Wiener approximation
to represent the model of the process are analyzed.

Let us assume that the system to be controlled can be described
by the following discrete-time, nonlinear, state-space model [7,11]:

X(k +1) = f(x(k), u(k)) (1)
y(k) = g(x(k)) + d(k)) (2)

where f : R" x R™ — R"and g : R" — xR™o are twice continuously
differentiable functions, x € R" is a vector of n state variables, u € R™i
is a vector of m; process inputs or manipulated variables, d € R™ is
a vector of m, additive disturbance variables, y € R™° is a vector of
me process outputs and k is the sample time.

There are several options to describe the linear dynamic block
in Wiener models. For example, some of the used representations
include convolution models (step or impulse responses), autore-
gressive moving average with exogenous input (ARMAX) models,
autoregressive with exogenous input (ARX) models, state-space
models, etc. [9]. In this work, a state-space model is used as follows:

x(k +1) = Ax(k) + Bu(k) 3)
v(k) = Cx(k) + Du(k)

where A, B, C, D are the system matrices with proper dimensions.
For the static nonlinear element (H2), the continuous PWL func-

tions are used. PWL functions have been proved to be a very

powerful tool for modeling and analyzing nonlinear systems [24].
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Fig. 2. The piecewise linear Wiener model.

It can be proved that any nonlinear function f (f : R™o — R™e), can
uniquely be represented as [24]:

fv)=CTAv) (4)

where the vector A = [AOT, AT, ..., AmOT]T is the elements of the
basisand C = [C], CT, ..., CL, ]T is the parameter vector associated
with the vector function Al

In this work, the functionis f=H,: D — D, being D € R™, as shown
in Fig. 2. The domain and the image of the PWL function share the
same dimension in our application. Moreover, if we assume that the
function fofthe systemisinvertible (this is areasonable assumption
for a large set of process models), it is possible to define the inverse
function as f~1, such that v = f~1(f(v)). This function is also unique
and PWL [10].

2.2. Input signal design

Some important factors which must be considered in designing
the identification test for nonlinear systems are [5]:

a) Duration of the test signal.

b) Amplitude and shape of the test signal.

c) The spectrum of the test signal (the average switching time).
d) Correlation of the test signal in each channel.

e) The number of manipulated variables in each test.

Traditionally, PRBS are used as the inputs to a system in order to
produce representative sets of data to be analyzed. In theory, a PRBS
excites the range of dynamics present in a system so that a dynamic
model can be produced which contains these dynamics. This is not
sufficient, however, for fitting a Wiener model. Since these mod-
els have nonlinear gains, an input signal must be used which also
demonstrates the response of the system to a range of amplitude
changes [9]. A signal that satisfies these criteria is a GMN [5] or a
modified PRBS signal [9] which, in addition to random frequency,
also exhibits random amplitude changes.

In addition to above, one disadvantage of using a PRBS signal
is that its spectrum has dips around some frequencies, which will
result in low signal-to-noise ratios in these frequency ranges. A bet-
ter way to generate binary signals with low-pass character is the
so-called generalized binary sequence (GBN) [5]. Another advan-
tage with GBN is that the signal length is flexible. The GBN also has
a minimum crest factor [5].

Since in nonlinear systems the test time depends mainly on the
number of parameters in the model and the level of noise and
unmeasured disturbances, it is recommended longer test time in
comparison with linear systems [5]. This is typically considered
about 16-25 times of the settling time of the process. The other fac-
tors may be included by choosing one of the following test signals
[5]:

a) Stair Test.
b) Filtered white uniform noise.
c) GMN.

In this work, the GMN test has been used for data collection.
This type of test is a multi-level extension of GBN. In this test the
amplitude and the number of pulses must be selected suitably. The

number of levels on this test is equal or greater than the degree of
the nonlinear polynomial which must be identified. Moreover, the
average switching time of the test can be obtained from Tsw =T/3,
where T is 98% of the process settling time.

2.3. Wiener model identification and inverse model evaluation

Different Wiener model identification approaches can be found
in relevant literature [7-15,19,22,26]. A general classification of
these approaches is the following:

1) The N-L approach.
2) The L-N approach.
3) The simultaneous approach.

In this paper, the L-N approach is used for identification of
Wiener model, because it is straightforward and ensures an accu-
rate description of the static nonlinearity. In this method, first the
linear block is identified using a correlation technique. After that,
the intermediate signal v is generated from the input signal and
finally the static nonlinearity is estimated.

For identification of Wiener model parameters, the linear part
is modeled using a state-space description and the nonlinear static
gain is identified using dynamic and steady-state input-output
data. To identify the linear dynamic part and the static PWL func-
tion, the N4SID (Numerical Algorithms for Subspace State Space
System Identification) algorithm and the PWL Toolbox [27] based
on the least square method were used, respectively.

In order to implement the NMPC scheme that is described in
the next section, a good representation of the inverse of the non-
linearity is necessary. To identify it, the following approaches are
available [7,28]:

a) Algorithmic approach.
b) Direct inverse computation.
c) Direct identification.

Since problems of small dimension are dealt with here and
useful data for the identification process are available, the direct
identification approach has been chosen in this paper. In this
method, after identification of linear model, the output sequences
of this LTI system will be computed. With this sequence, a primary
identification of the nonlinear part of the Wiener model can be
estimated. Now, for identification of inverse of nonlinearity, the
inputs and outputs of this sequence are changed and using this new
sequence, the inverse of nonlinear element is identified for control
purposes.

2.4. Nonlinear model predictive control
The control problem to be solved is to compute a sequence

of inputs Au(k), {k=1,...,M}, that will minimize the following
dynamic objective:

P M-1
J=) wlke+)=rligy+ Y _l1Autk+5)llg, (5)
j=1 j=0

subject to model equations and to inequality constraints:

yi<yk+j)<yy Vji=1,...,P-1

uy<uk+j)<u, Vji=1,...,M-1 (6)

where P is the prediction horizon, M is the control horizon, u is the
manipulated variable, y is the output variable and r is the desired
set point. The relative importance of the objective function con-
tributions is controlled by setting the time dependent weighting
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matrices Q; and R;. Beyond the control horizon, the control signal
is assumed to be constant (Au(k+j)=0, j=M,...,P). Once Au(k) is
computed, following the receding horizon principle, only the first
element of the optimal control sequence is used as the current con-
trol value. Then the horizon will shift one step forward in time and
the whole procedure is repeated.

In this work, since the PWL function fis assumed to be invert-
ible; the inverse of nonlinear part of the Wiener model is used to
translate set points, output variables and their constraints to the
linear model. Finally, the Wiener NMPC (WNMPC) can be posed as
a quadratic programming (QP) problem:

minJ = rrz}{r)l{(\‘/(k) - r*(l<))TQ(\7(k) —r*(k)) + u(k) ' Ru(k)}
utky u

subject to (7)

v = (k) < vy

u; < u(k) < uy

where V(k) is the predicted output for the linear model, u(k) is the
vector of manipulating variables and r’(k)=f~1(r(k)) is a transfor-
mation of the set point r(k) to the linear part. Also, the relative
importance of the objective function contributions is controlled by
setting the weighting matrices Q and R.

3. Case study: polymerization rector

In this section, the presented control scheme is applied to a
polymerization reactor as a MIMO process. Polymerization reac-
tors are difficult to control effectively due to their highly nonlinear
behavior and MIMO structure [17]. In this section, identification
and predictive control of this process is presented.

3.1. Process description

The process under consideration is solution polymerization of
methyl methacrylate (PMMA) in a jacketed CSTR. As shown in
Fig. 3, three streams—monomer, initiator and solvent are feed into
the CSTR system. The reactor is equipped with a cooling jacket to
remove extra heat generated during the exothermic polymeriza-
tion. The exit stream contains polymer product, unreacted polymer,
initiator and solvent, and is send downstream for separation
[18].

The model equations are [16]:

M: %(Mf—M):kpMP (8)
. q —AH hAc
T= V(Tf—T)“r (pcp> kpMP — Vpcp(T—Tc) 9)
Initiator Solvent
Monomer
Cooling fluid
————————————
Cooling fluid OO
-
Effluent

Fig. 3. Schematic of solution polymerization of MMA in a CSTR [18].

i 90 _n_
I'= U =1)—kal (10)
$=2(si-5) (11)

%
~ 1
io = 7%% + (M + kiaP + kisS)ltP + kiecP? (12)
. q [(keM + kegP + kiS)(200 — ?) + ke PIP
)\1——V)\1+ 1-a) (13)
. 3_ 2
Kz=—2k2+ [(keM+kegP+kesS)(0® —30r 2+4a)+ktcP(oz +2)]P (14)

v (1-a)
where
kpM
@~ KoM 1 keM + KsS + keP (15)
p_ |kl (16)
ki

ke = ke + ktd (17)

The ith moment of the dead polymer molecular weight dis-
tribution (MWD) is represented by A; (i=0, 1, 2) and M is
the monomer concentration, T is the reactor temperature, I is
the initiator concentration, S is the solvent concentration, Mg
is the monomer feed concentration, Tf is the feed tempera-
ture, Ir is the initiator feed concentration, S¢ is the solvent
feed concentration and T, is the coolant temperature. Other
process parameters are defined in notation part. The rate con-
stants with the exception of k¢ are assumed to follow an
Arrhenius dependence on temperature. These rate constants are
[16,17]:

ka = kij exp (—%) (18)
E,

kp = ki, exp (—ﬁ) (19)
E

ko = ki exp (_RL;:) (20)

ke = ki exp (—:—;) (21)

The expression for k; is obtained using (20) and the Schmidt-Ray
correlation for the gel effect [16-18]:

0.10575 exp[17.15V; — 0.01715(T — 273.2)]
ke ) Vp>[0.1856 — 2.965 x 10~4(T — 273.2)]
T ko ) 2.3 x 107 exp[75V¢]

Vi < [0.1856 — 2.965 x 10~4(T — 273.2)]

8t (22)

The free volume V; is calculated from the volume fractions of
monomer, polymer, and solvent in the rector through the following
equations [16-18]:

§2 = Vimém + Vipdp + VisPs (23)
{8 1820 )
where

Vi = 0.025 + 0.001(T — 167) (25)
Vi, = 0.025 + 0.00048(T — 378) (26)
Vis = 0.025 + 0.001(T — 181) (27)
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Volume fractions are calculated using the reactor concentrations
and physical property data under the assumption of ideal mixing
[17]

MW, M
m=—" 2
¢ o (28)

MW;M
= 29
$i=— (29)
MWsM
g = — 30
¢ o (30)
o = L= 9mPm = PP = ipy (31)

Pp
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dx
TZ = —x7 + [(Dagx1 Exs + Dasx4 + g:DaygWExq )0 — 30® — 4a)
+gtDarcWExec(a + 2)] + W(1 — a)? (38)
where
D E
a= DX (39)
DapEXxl + DafEXfx1 + gtDatWExt + Dasx4
X2
Ex =exp | —F——— (40
x=exp [1+(X2/Vp)} )
ViX2 .
Eiexp | ————|, =d,f,t, tc, td) 41
X] p|:1+(x2/)/p):| (] f ( )

where MW; is the molecular weight of species j, p; is the pure com-
ponent density of species j, and p is the density of the fluid in the
reactor (which is assumed to be constant). The equation for ¢ is
derived from the requirement that the mass fractions in the reactor
sum to unity. The initiator concentration in the reactor usually is
very low relative to the other species. As a result, it is reasonable to
make the approximation ¢; =0 [17].

The polymerization reactor equations are nondimensionalized
using the dimensionless variables, as shown in Table 1, to give the
following state-space model [16]:

dx
d—; = X1 — X1 — DapWix Ex (32)
dX2
qar - —X — BDapypWx1Ex — B(x2 — Xac) (33)
dX3
a7 =Xt —¥3 — DaaxsExq (34)
dX4
ar - Xaf —Xg (35)
dX5
dr = % +[(DagxiExt + Dasxq + geDaaWExia )W)
1 2
+ EW gtDagcExtc (36)
dXG 2
qr = Xt [(Dagx1 Exs + Dasx4 + geDagWEyq (20 — ®)
+gtDarcWExic] + W(1 — o) (37)
Table 1
Dimensionless variables [16]
Dimensionless variable Definition Dimensionless variable Definition
[i E
T Vq Yp RTEf
M E
X1 Mry Yt ﬁ
T-T; E E
X2 il Vd B
X3 MLfo Yic %C
E
X4 Mifo Ytd EL;
E
X5 Mifo Y ﬁ
A k' e~vdrp
¥ M7:0 n k;M;U e~vp
22 kp e P VMg,
X7 Wi Day —a
w ML;O Day nDap
M, kg MoV
Xif MTf) Das sl
Xoe TCTTTf :TB Day ki, e 7P VMg,
f f q
It kéw e to¥p VM,
X3f My Dayc e T
B (—AH;_M&, Dayg kédo e~ 7td"P VMg,
peple q
B hAc D ki e77P VMo

PCpq q

The parameter values of model equations are given in Table 2.

3.1.1. Open-loop results

The open-loop behavior of the system has been justified
using simulations on steady-state responses. Moreover, using the
transient responses of the state variables, may give a better under-
standing of the open-loop dynamics, i.e., monomer and initiator
concentration in the reactor, rector temperature, and three leading
moments.

The feed conditions for a start up and initial values are summa-
rized in Table 3. The start up procedure is as follows:

For t<0, the reactor contains only the monomer and solvent
which are at a same temperature with that of the cooling jacket
and feed. At this time, in order to reach the desired conversion, the
concentration of the monomer feed and the reactor monomer is
kept at the same level.

It is assumed that no reaction takes place before the feed
enters the reactor. At time zero, monomer, initiator, and solvent
are applied to the reactor. Immediately, the reaction starts until the
system reaches its steady state. The open-loop steady-state results
are listed in Table 4 as the main case of simulation.

The open-loop responses, for start up of the CSTR system, are
illustrated in Fig. 4. It is observed that the monomer concentration
in the reactor, changes from 3.5 mol/L to a new steady-state value
as 3.14 mol/L. This is due to both the monomer consumption and
increase in the moments from zero to their steady-state values.
Moreover, the reactor temperature rises rapidly, mainly because of
the exothermic nature of the reaction.

3.1.2. Step response results

In the polymerization process, the MWD is largely determined
by the first three moments of the distribution which are often called
the principle moment. In this application, the principle moments
are unique function of the reactor state variables x;-x4 at steady
state [17]. Moreover, it has been proved that the steady-state val-
ues of initiator and solvent concentration are depended on model
parameters such as feed condition and the reactor temperature
[17]. Thus, by driving the monomer concentration (x;) and the
reactor temperature (x,) to particular set points, the MWD can
be controlled approximately. This implies that polymer grades
corresponding to different steady-state conditions and the same
feed conditions can be obtained using the controlled variables and
the monomer feed concentration and the coolant temperature as
manipulated variables.

In order to obtain settling and sampling time of the process,
some step tests are performed. Suppose that T be the process set-
tling time, then the sampling time can be chosen in range of Ts¢/100
to Tst/20 [5]. Moreover, this test is helpful for studying the nonlinear
behavior of the process. The step tests are performed by chang-
ing each of the two manipulated variables independently of the
other manipulated variable. Fig. 5 shows the open-loop responses
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Fig. 4. Open-loop response of polymerization process.
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Fig. 5. The open-loop responses for +5% step changes (+5% solid line, —5% dashed line) in manipulated variables.

Table 2

parameters and constant values in polymerization reactor model [18]

Variable Value Variable Value Variable Value

P 1038 g/L K, 1.69 x 1014 51 E4 3000 cal/mol
Ps 898.5¢g/L k’p 4.925 x 10° L/mol s Ep 4353 cal/mol
Oi 1000 ¢g/L ki, 9.80 x 107 L/mol's Eto 701 cal/mol
Pm 942.11¢g/L k’f 4.92L/mols E¢ 4353 cal/mol
Pp 1200¢g/L ket 0.091 f 0.5

o 0.4 cal/(gK) ’,%d 8.23 h 135.6 mol/(m?2 s K)
1% 900L Ac 2.8 m? —AH 13.8 kcal/mol
q 0.2813L/s MW, 100.13 g/mol MW5 88.12 g/mol
R 0.001987 MW; 24.23 g/mol Mg, 3.5gmol/L
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Table 3 g 5 T T T
i 1 . iener model

Feed condition for startup [18] aé- 45} st data
Monomer feed concentration (M) 3.5 gmol/L q‘:)
Initiator feed concentration (If) 0.01 gmol/L 2
Solvent feed concentration (S¢) 6.4 gmol/L 8
Feed temperature (Tf) 340K 5
Feed temperature (T¢) 340K &
Total feed flow rate 1800L/h 8 15

5 1 L \ . ) .

= 0 100 200 300 400 500 600
Table 4 o
Base case for simulation [18] 3 360 ! ! : !

© 355 A
Monomer concentration 3.146 gmol/L 2 350t
Initiator concentration 0.0097 gmol/L g 345
Solvent concentration 6.4 gmol/L — a40 |
Zeroth moment 33x104 5 ]
First moment 0.35 o e . . g , ’
e 759.53 € 0 100 200 300 400 500 600
Reactor temperature 3442K
Number average chain length 1076.14 Samples
Polydispersity 1.9937

for £5% step changes in manipulated variables. It can be seen that
the polymerization process has severe nonlinearity for step changes
at coolant temperature.

3.2. Identification of the process

A GMN signal is used as a random sequence input in order to
obtain dynamic data. In this test, seven levels 2, 2.5, 3, 3.5, 4, 4.5
and 5 have been selected for the first input (monomer feed con-
centration) and seven levels 326, 330, 335, 340, 345, 350 and 353
for the second input (jacket temperature) to cover the spanned
range of the input signal. Switching time between these levels is
assumed to be 15 samples. Both two signals obtained from GMN
test are applied to the process simultaneously. Two thousand sam-
ples of the input-output data with sampling time of 180 s are used
for identification. The input and output signals of polymerization
process are shown in Fig. 6.
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Fig. 7. Validation of the Wiener model for polymerization process.

The model parameters for the linear block were computed using
a state-space description and input/output dynamic data. A steady-
state data set has been used in the identification of the Wiener static
gain. 400 steady-state data for linear model and 400 steady-state
data for process have been obtained. The static nonlinear gain is
approximated using these steady-state data and piecewise linear
functions.

Finally, the Wiener model is identified by the linear model out-
puts and process nonlinear gain. From the 2000 obtained data, 1400
samples are used for identification and the rest is used for vali-
dation. Fig. 7 shows that the identified Wiener model is in good
agreement with process behavior.

3.3. Nonlinear model predictive control

In this section, the nonlinear model predictive control based
on the piecewise linear Wiener model is applied to polymeriza-

Monomer Concentrtion

0 200 400 600 800 1000 1200 1400 1600 1800 2000

365

360 1

350 F

3451

Temperature

340

3351

330 . . " . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Samples

Fig. 6. GMN inputs (monomer feed concentration and jacket temperature) and output signals (monomer concentration and reactor temperature) for identification of

polymerization reactor.
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Fig. 8. Comparison the behavior of NMPC (solid line) and linear MPC (dashed line)
for set point changes in monomer concentration output.

tion reactor. This process is a multi-input multi-output process
and NMPC of this process is done with concentration on practi-
cal aspects such as excitation signal for identification and rejection
of disturbance effects in this process.

The parameters for the NMPC are defined as follows: the con-
trol and prediction horizons are tuned 3 and 10, respectively. The
weighting matrix Q takes the value 100 for both process outputs,
R takes the value 50 for monomer feed concentration and 100 for
coolant temperature. It is noticeable that the weighting matrices
are determined by trial and error as well as prediction and control
horizons.

The simulation results for this control scheme have been
compared to LMPC. Parameters of both linear and nonlinear
controllers are tuned and the best obtained results are com-
pared. For both cases (NMPC and linear MPC) a range of 2-5
for monomer feed concentration input and a range of 326-353
for coolant temperature input has been considered as input
constraints.

Fig. 8 shows a comparison of NMPC and LMPC behavior for poly-
merization process when the first output set points have changed,
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Fig.9. Comparison control signal of NMPC (solid line) with linear MPC (dashed line)
for set point changes in monomer concentration output.

Fig. 10. Comparison the behavior of NMPC (solid line) and LMPC (dashed line) for
set point changes in reactor temperature.

where the second output is set to the nominal value, 344.2. Con-
trol signals of both controllers are shown in Fig. 9. As it is clear
from these figures the NMPC controller has better performance
with short settling time and without any overshoot. Furthermore,
the second output has been maintained closed to the nominal
value. Control signals of both controllers do not have any large step
changes.

A comparison of NMPC and LMPC behavior for set point change
in reactor temperature has been shown in Fig. 10, where the first
output (monomer concentration) is set to the nominal value, 3.15.
Fig. 11 shows a comparison of corresponding control signals. Results
show that nonlinear controller has a better performance com-
pared to the linear one regarding set point changes in reactor
temperature.

In Fig. 12, the NMPC performance for set points changes in both
outputs has been compared to LMPC. It can be seen that the non-
linear controller has a much better performance compared to the
linear one; it has a short settling time without overshoot. The com-
parison of corresponding control signals of both controllers are
presented in Fig. 13. It is shown that the control signals of both con-
trollers are almost smooth. Moreover, the defined constraints for
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Fig. 11. Comparison control signal of NMPC (solid line) with linear MPC (dashed
line) for set point changes in reactor temperature output.
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Fig. 12. Comparison the NMPC (solid line) and LMPC (dashed line) performance for
set point changes in both process outputs.
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Fig. 13. Comparison control signal of NMPC (solid line) and LMPC (dashed line) for
set point changes in both process outputs.

manipulated variables are satisfied. All of the simulations showed
that the maximum computation time for optimization at each sam-
pling interval is sufficiently below the chosen sampling time and
the control signals are feasible due to canonical structure of non-
linear gain.

The NMPC performance in rejecting unmeasured disturbance
of initiator efficiency factor, f is shown in Fig. 14. Here, the
initiator efficiency factor, f decreases from 0.5 to 0.45. It can
be seen that NMPC is able to reject unmeasured disturbance
effectively.

4. Conclusions

In this paper, a nonlinear model predictive control based on
a piecewise linear Wiener model for a polymerization reactor is
applied and simulated. This approach has all the interesting fea-
tures of classical MPC. It leads to a quadratic programming problem
due to the canonical structure of the nonlinear gain, so it has easy
computations. On the other hand, the identification of the nonlin-
ear gain of the process using piecewise linear approximation needs
both dynamic and steady-state input-output data. This method
can be implemented on multivariable and highly nonlinear pro-
cesses which LMPC is unable to control them. The presented control

5.5
- 5 scheme is applied to a polymerization reactor as a MIMO process.
2 § 4-? Simulation results show superior performance of the NMPC com-
; £ 4e pare to LMPC. Results show that the linear MPC follows the set point
E § 3t with overshoot and long settling time, while the NMPC exhibits a
S5 25 desirable fast response with smooth changes in the control effort.
=9 ] ; [ Furthermore, it rejects unmeasured disturbance effectively.
0 2 4 6 8 10 12 14
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