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a b s t r a c t

In this paper, a nonlinear model predictive control (NMPC) based on a piecewise linear Wiener model is
applied to a polymerization reactor. The static nonlinear part of the applied Wiener model is approximated
using the piecewise linear functions and its dynamic linear element is identified using a state-space
description. Due to the nonlinear gain of model, for gathering data, a generalized multiple-level noise
(GMN) test has been used. This test demonstrates the response of the system to a range of amplitude
changes. The predictive control based on this model retains all the interested properties of the classical
linear MPC. This approach leads to a quadratic programming problem due to the canonical structure of
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eneralized multiple-level noise (GMN)
uadratic programming (QP)
olymerization reactor
ulti-input multi-output (MIMO)

the nonlinear gain. The control scheme has been applied to a polymerization reactor as a MIMO process.
Results show that the used Wiener model is able to identify the nonlinear processes effectively. The
nonlinear predictive control based on this model is compared to the linear MPC. The parameters of both
linear and nonlinear model predictive controllers are tuned and the performances of both methods are
compared. It is shown that the nonlinear controller has a better performance, having short settling time
and without any overshoot compared to its linear one. Moreover, this controller has a good performance
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. Introduction

There are very few design techniques that can be proven to sta-
ilize processes in the presence of nonlinearities and constraints.
odel predictive control (MPC) is one of these techniques [1]. MPC

efers to a class of computer control algorithms that control the
uture behavior of a plant through the use of an explicit process

odel. At each control interval the MPC algorithm computes an
pen-loop sequence of manipulated variable adjustments in order
o optimize future plant behavior. The first input in the optimal
equence is injected into the plant, and the entire optimization is
epeated at subsequent control intervals [1]. Regarding desirable
roperties of MPC, these controllers are applied quickly in a wide
ange of different industries; such that by the year 1999 more than
500 applications of these controllers have been reported which
se linear model, while about 80% of these applications are in petro-

hemical industries [2,3]. By now, the application of MPC based on
inear dynamic models covers a wide range of applications and the
inear MPC theory can be considered quite mature [1]. Nevertheless,

any manufacturing processes are inherently nonlinear and there
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re cases where nonlinear effects are significant and can not be
gnored. These include at least two broad categories of applications
1]:

- Regulator control problems where the process is highly non-
linear and subject to large frequent disturbances (pH control,
etc.).

- Servo control problems where the operating points change fre-
quently and span a wide range of nonlinear process dynamics
(polymer manufacturing, ammonia synthesis, etc.).

Under these conditions, linear models are often not sufficient
nough to describe the process dynamics adequately and there-
ore nonlinear models should be used. Nonlinear model predictive
ontrol (NMPC) is a good development of linear MPC to nonlinear
orld that is presented as a very good scheme for this type of prob-

ems. NMPC is conceptually similar to its linear counterpart except
hat nonlinear dynamic models are used for process prediction and
ptimization [4].
Nonlinear systems modeling can be performed in three differ-
nt ways. The first method is the use of different models for various
perating points of the system. The second approach is using fun-
amental equations (e.g. mass and energy conservation equations)
hich in most cases are difficult to use due to process complexity.

http://www.sciencedirect.com/science/journal/13858947
mailto:arefi@iust.ac.ir
dx.doi.org/10.1016/j.cej.2008.05.013
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Nomenclature

Ac heat-transfer area of the reactor
cp specific heat capacity of reactor contents
D polydispersity
Daj Damkohler number for species j
Ej activation energy for reaction j
f initiator efficiency
gt gel effect factor
h heat-transfer coefficient
−�H heat of reaction
I initiator concentration in the reactor
If initiator feed concentration
kd dissociation rate constant for initiator
kf rate constant for chain transfer to monomer
kfs rate constant for chain transfer to solvent
k′

i
frequency factor for reaction i (i = d, f, p, t)

kp propagation rate constant
kt overall termination rate constant
ktc rate constant for combination termination
k′

tco zero conversion frequency factor for combination
termination reaction

ktd rate constant for disproportionation
k′

tdo zero conversion frequency factor for disproportion-
ation reaction

kto overall termination rate constant at zero conversion
k′

to frequency factor for overall termination rate con-
stant at zero conversion

M monomer concentration in the reactor
Mf monomer feed concentration
Mfo monomer feed concentration for scaling purposes

only
MWi molecular weight for initiator
MWm molecular weight for monomer
MWs molecular weight for solvent
P concentration of live polymer
q volumetric flow rate
R universal gas constant
S solvent concentration
t time
T, Tc reactor temperature, jacket temperature
Tf feed temperature
u vector of manipulated variables
vk white noise sequence, measurement
V volume of reactor
Vf free volume
Vfm, Vfp, Vfs free volume contribution of monomer, polymer,

solvent, respectively
Vif volume fraction of initiator in feed
Vmf volume fraction of monomer in feed
w white noise input, process
W dimensionless live polymer concentration
xi dimensionless reactor state variable
x1f manipulated variable (dimensionless inlet

monomer concentration)
x2c manipulated variable (dimensionless jacket tem-

perature)
x3f manipulated variable (dimensionless inlet initiator

concentration)

Greek letters
ˇ dimensionless heat-transfer coefficient

�m, �p, �s volume fraction of monomer, polymer, solvent,
respectively

�0, �1, �2 zeroth, first, and second MWD moments
� number-average chain length
� density of reacting medium
�s, �i, �m densities of solvent, initiator, and monomer,

respectively
� dimensionless time

Subscripts
D, f dissociation, transfer to monomer
p propagation
tc, td termination: combination, disproportionation
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1, 2, 3, 4 monomer, temperature, initiator, solvent
5, 6, 7 moments: zeroth, first, second

he third and the best approach is the use of empirical models that
onvert the available input–output data to an input–output relation
hich can be used for the prediction of the future behavior of the

ystem.
There are several approaches to nonlinear system identification

ased on empirical models. One way is to use theoretically sound
onlinear functions and to develop identification schemes for these
odels. Identification using Volterra series, neural networks and

onlinear ARMAX models belong to this methodology. The advan-
age of this approach is the ability to obtain a global model of the
nderlying system. The main difficulty of the approach is the high
ost in identification tests and computation. Another approach is
o combine linear dynamic models with static or memoryless non-
inear functions. These types of models are called block-oriented
onlinear models. There are several advantages when using block-
riented models: (1) low cost in identification tests; (2) low cost in
dentification and control computations and (3) it is easy to com-
rehend and to incorporate a priori process knowledge [5].

The class of block-oriented nonlinear models includes complex
odels which are composed of linear dynamic systems and nonlin-

ar static elements. Wiener and Hammerstein models are the most
nown and the most widely implemented members of this class.
iener and Hammerstein models have found numerous industrial

pplications for system modeling, control, fault detection and iso-
ation. Wiener and Hammerstein models reveal the capability of
escribing a wide class of different systems and apart from indus-
rial examples, there are many other applications in biology and

edicine [6].
In particular, Wiener models have a special structure that facil-

tates their application to NMPC. These models consist of a linear
ynamic element which is followed by a static nonlinearity and
an represent many of the nonlinearities commonly encountered
n industrial processes [7]. Due to the static nature of the nonlin-
arities, they can be removed from the control problem. This fact
eneralizes the well-known gain-scheduling concept for nonlin-
ar control. Due to the presence of some potential computational
ifficulties, an implicit inversion of the nonlinear static gain is nec-
ssary [7]. Application of these models in NMPC has been addressed
n several papers [7–15]. For example in Refs. [8,9], a static nonlin-
ar term is used to model the inverse of the nonlinearity of the
lant and is selected as a polynomial with proper degree. Besides
n Refs. [7,10,11], the nonlinear term and its inverse are modeled
sing piecewise linear (PWL) method. In Ref. [12], a nonlinear
ombination of Laguerre models followed by a single-layer neu-
al network is introduced as an efficient nonlinear identification
ethod used in MPC applications. The nonlinear predictive con-
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rol based on Wiener-Neural model is presented in Ref. [13], where
he static nonlinear part is modeled using neural network. In all
f these works the paradigmatic applications have been pH neu-
ralization and continuous stirred tank reactor (CSTR) processes. In
ef. [14], the nonlinear predictive control based on a Wiener-Neural
odel is applied to a plug-flow tubular reactor, where the pro-

ess is simulated in HYSYS environment. In Ref. [15], a distillation
olumn simulation model is used as a benchmark to demonstrate
he benefits of a Wiener model based identification and control

ethodology. The results verify the capability of this method in
dentification of a nonlinear ill-conditioned plant compared with
he other existing linear techniques.

In addition to the above-mentioned processes, a polymerization
eactor is a process that bears a highly nonlinear behavior. Polymer-
zation reactors are difficult to control effectively due to their highly
onlinear behavior and multi-input multi-output structure.

Lack of online measurements and input constraints are two
mportant problems which are sometimes neglected in academic
tudies of a polymerization reactor control [16,17]. Most nonlin-
ar control techniques proposed for polymerization reactors are
ased on feedback linearization or MPC [17–21]. In Ref. [17], a
ultivariable extension of the feedback linearization (FBL) MPC

ontrol strategy for the free-radical polymerization of methyl
ethacrylate in a CSTR has been presented and its results are

ompared to NMPC. A constrained MPC of a polymerization reac-
or is presented in Ref. [18], where the process is controlled as
hree inputs–three outputs. In Ref. [19], a multi-input multi-output
MIMO) Wiener model of a polymerization reactor is identified
nd the model is used in an MPC scheme. The quality of the
roposed controller is also compared with that of linear MPC.
his algorithm is based on the past inputs multivariable output
rror state-space (PI-MOESP) method for the estimation of system
atrices of the linear part [22], and Tchebychev polynomials for

he nonlinear part [19]. In Ref. [20], an adaptive MPC is applied
o methyl methacrylate (MMA) polymerization reactor. The con-
rol of a solution copolymerization reactor using MPC algorithm
ased on multiple piecewise linear models is presented in Ref.
21].

In this paper, a nonlinear model predictive control based on
piecewise linear Wiener model is applied to a polymerization

eactor. The static nonlinear element of this Wiener model is
pproximated using the piecewise linear functions and its dynamic
inear element is modeled using a state-space description. PWL
unctions have been proved to be a very powerful tool for modeling
nd analyzing nonlinear systems [23,24]. A generalized multiple-
evel noise (GMN) test [5] is used for getting data in order to identify
he model. The presented control scheme has been applied to a
olymerization reactor, and its results have been compared to linear
PC.
The paper is organized as follows: In Section 2 a Wiener model

ith a piecewise linear representation for the nonlinear gain is pre-
ented and then the NMPC based on this Wiener model is described.
n Section 3, the presented control scheme has been applied to a
olymerization reactor, and simulation results are compared to lin-
ar MPC. Finally, some concluding remarks are discussed in Section
.

. The nonlinear model predictive control based on
iecewise linear Wiener model
In this section, nonlinear predictive control based on a piecewise
inear Wiener model is introduced. For identification of this model,
n efficient test signal for gathering dynamic data is necessary. To
o this, some test signals are presented. By using obtained data, the

w

t
p

Fig. 1. The Wiener model.

rocedure of the Wiener model identification and inverse model
valuation is stated. Finally, the NMPC based on this Wiener model
s presented.

.1. Piecewise linear Wiener model

Among the nonlinear black box models, the block-oriented mod-
ls are efficient structures in nonlinear modeling [14]. These models
onsist of a series connection of a linear dynamic and static nonlin-
ar element.

A Wiener model consists of a dynamic linear block (H1) in cas-
ade with a static nonlinearity at the output (H2), as shown in Fig. 1.
ere v(k) ∈ Rmo is an intermediate signal that does not necessarily
ave a physical meaning. On the other hand, in the Hammerstein
odel the static input nonlinearity precedes the linear block.
In certain respects, Hammerstein models are very similar to

he linear models on which they are based. For example, if u(k)
s a piecewise constant input sequence [e.g. pulses, steps, pseudo-
andom binary sequences (PRBS), etc.], for any static nonlinearity
he intermediate variable sequence will also be a piecewise con-
tant sequence with the same general character (specifically, with
ransitions at the same instants as u(k), but assuming different val-
es). Hammerstein models have been considered as alternatives to

inear models in a number of chemical process applications [25].
In particular, while Hammerstein and Wiener models exhibit

xactly the same steady-state behavior, the differences in their
ransient responses can be quite significant. As a specific example,
he general character of the step response can change with the sign
nd/or magnitude of the input step, unlike the case of the Hammer-
tein model, where this general character is determined entirely by
he linear part [25]. Because of this behavior and the capability of

odeling complex nonlinear dynamics by Wiener models led us to
he selection of this model structure. In this paper, the possibilities
nd the advantages of the use of a specific Wiener approximation
o represent the model of the process are analyzed.

Let us assume that the system to be controlled can be described
y the following discrete-time, nonlinear, state-space model [7,11]:

(k + 1) = f (x(k), u(k)) (1)

(k) = g(x(k)) + d(k)) (2)

here f : Rn × Rmi → Rn and g : Rn → ×Rmo are twice continuously
ifferentiable functions, x ∈ Rn is a vector of n state variables, u ∈ Rmi

s a vector of mi process inputs or manipulated variables, d ∈ Rmo is
vector of mo additive disturbance variables, y ∈ Rmo is a vector of
o process outputs and k is the sample time.

There are several options to describe the linear dynamic block
n Wiener models. For example, some of the used representations
nclude convolution models (step or impulse responses), autore-
ressive moving average with exogenous input (ARMAX) models,
utoregressive with exogenous input (ARX) models, state-space
odels, etc. [9]. In this work, a state-space model is used as follows:

x(k + 1) = Ax(k) + Bu(k)
v(k) = Cx(k) + Du(k)

(3)
here A, B, C, D are the system matrices with proper dimensions.
For the static nonlinear element (H2), the continuous PWL func-

ions are used. PWL functions have been proved to be a very
owerful tool for modeling and analyzing nonlinear systems [24].



G. Shafiee et al. / Chemical Engineerin

I
u

f

w
b
w

i
s
f
f
f
a

2

t

a
b

d
e

p
e
m
s
e
d
c
m
a

i
r
t
s
t
a

n
u
c
a
t
[

a
b
c

T
a

n
t
a
w

2

i
t

1
2
3

W
r
l
t
fi

i
g
d
t
S
o

t
l
a

a
b
c

u
i
m
o
i
e
i
s
p

2

o
d

J

s

u

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
Fig. 2. The piecewise linear Wiener model.

t can be proved that any nonlinear function f (f : Rmo → Rmo ), can
niquely be represented as [24]:

(v) = CT�(v) (4)

here the vector � = [�0T, �1T, . . . , �moT]
T

is the elements of the
asis and C = [CT

0, CT
1, . . . , CT

mo ]
T

is the parameter vector associated
ith the vector function �i.

In this work, the function is f = H2: D → D, being D ∈ Rmo , as shown
n Fig. 2. The domain and the image of the PWL function share the
ame dimension in our application. Moreover, if we assume that the
unction f of the system is invertible (this is a reasonable assumption
or a large set of process models), it is possible to define the inverse
unction as f−1, such that v = f −1(f (v)). This function is also unique
nd PWL [10].

.2. Input signal design

Some important factors which must be considered in designing
he identification test for nonlinear systems are [5]:

) Duration of the test signal.
) Amplitude and shape of the test signal.

c) The spectrum of the test signal (the average switching time).
) Correlation of the test signal in each channel.
) The number of manipulated variables in each test.

Traditionally, PRBS are used as the inputs to a system in order to
roduce representative sets of data to be analyzed. In theory, a PRBS
xcites the range of dynamics present in a system so that a dynamic
odel can be produced which contains these dynamics. This is not

ufficient, however, for fitting a Wiener model. Since these mod-
ls have nonlinear gains, an input signal must be used which also
emonstrates the response of the system to a range of amplitude
hanges [9]. A signal that satisfies these criteria is a GMN [5] or a
odified PRBS signal [9] which, in addition to random frequency,

lso exhibits random amplitude changes.
In addition to above, one disadvantage of using a PRBS signal

s that its spectrum has dips around some frequencies, which will
esult in low signal-to-noise ratios in these frequency ranges. A bet-
er way to generate binary signals with low-pass character is the
o-called generalized binary sequence (GBN) [5]. Another advan-
age with GBN is that the signal length is flexible. The GBN also has
minimum crest factor [5].

Since in nonlinear systems the test time depends mainly on the
umber of parameters in the model and the level of noise and
nmeasured disturbances, it is recommended longer test time in
omparison with linear systems [5]. This is typically considered
bout 16–25 times of the settling time of the process. The other fac-
ors may be included by choosing one of the following test signals
5]:

) Stair Test.
) Filtered white uniform noise.

) GMN.

In this work, the GMN test has been used for data collection.
his type of test is a multi-level extension of GBN. In this test the
mplitude and the number of pulses must be selected suitably. The
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umber of levels on this test is equal or greater than the degree of
he nonlinear polynomial which must be identified. Moreover, the
verage switching time of the test can be obtained from Tsw = T/3,
here T is 98% of the process settling time.

.3. Wiener model identification and inverse model evaluation

Different Wiener model identification approaches can be found
n relevant literature [7–15,19,22,26]. A general classification of
hese approaches is the following:

) The N-L approach.
) The L-N approach.
) The simultaneous approach.

In this paper, the L-N approach is used for identification of
iener model, because it is straightforward and ensures an accu-

ate description of the static nonlinearity. In this method, first the
inear block is identified using a correlation technique. After that,
he intermediate signal v is generated from the input signal and
nally the static nonlinearity is estimated.

For identification of Wiener model parameters, the linear part
s modeled using a state-space description and the nonlinear static
ain is identified using dynamic and steady-state input–output
ata. To identify the linear dynamic part and the static PWL func-
ion, the N4SID (Numerical Algorithms for Subspace State Space
ystem Identification) algorithm and the PWL Toolbox [27] based
n the least square method were used, respectively.

In order to implement the NMPC scheme that is described in
he next section, a good representation of the inverse of the non-
inearity is necessary. To identify it, the following approaches are
vailable [7,28]:

) Algorithmic approach.
) Direct inverse computation.
) Direct identification.

Since problems of small dimension are dealt with here and
seful data for the identification process are available, the direct

dentification approach has been chosen in this paper. In this
ethod, after identification of linear model, the output sequences

f this LTI system will be computed. With this sequence, a primary
dentification of the nonlinear part of the Wiener model can be
stimated. Now, for identification of inverse of nonlinearity, the
nputs and outputs of this sequence are changed and using this new
equence, the inverse of nonlinear element is identified for control
urposes.

.4. Nonlinear model predictive control

The control problem to be solved is to compute a sequence
f inputs �u(k), {k = 1,. . .,M}, that will minimize the following
ynamic objective:

=
P∑

j=1

||y(k + j) − r||Qj
+

M−1∑
j=0

||�u(k + j)||Rj
(5)

ubject to model equations and to inequality constraints:

yl ≤ y(k + j) ≤ yu ∀j = 1, . . . , P − 1
u ≤ u(k + j) ≤ u ∀j = 1, . . . , M − 1

(6)

l

here P is the prediction horizon, M is the control horizon, u is the
anipulated variable, y is the output variable and r is the desired

et point. The relative importance of the objective function con-
ributions is controlled by setting the time dependent weighting
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atrices Qj and Rj. Beyond the control horizon, the control signal
s assumed to be constant (�u(k + j) = 0, j = M,. . .,P). Once �u(k) is
omputed, following the receding horizon principle, only the first
lement of the optimal control sequence is used as the current con-
rol value. Then the horizon will shift one step forward in time and
he whole procedure is repeated.

In this work, since the PWL function f is assumed to be invert-
ble; the inverse of nonlinear part of the Wiener model is used to
ranslate set points, output variables and their constraints to the
inear model. Finally, the Wiener NMPC (WNMPC) can be posed as
quadratic programming (QP) problem:

min J
u(k)

= min
u(k)

{(v̂(k) − r∗(k))TQ(v̂(k) − r∗(k)) + u(k)TR u(k)}

subject to
vl ≤ v̂(k) ≤ vu

ul ≤ u(k) ≤ uu

(7)

here v̂(k) is the predicted output for the linear model, u(k) is the
ector of manipulating variables and r*(k) = f−1(r(k)) is a transfor-
ation of the set point r(k) to the linear part. Also, the relative

mportance of the objective function contributions is controlled by
etting the weighting matrices Q and R.

. Case study: polymerization rector

In this section, the presented control scheme is applied to a
olymerization reactor as a MIMO process. Polymerization reac-
ors are difficult to control effectively due to their highly nonlinear
ehavior and MIMO structure [17]. In this section, identification
nd predictive control of this process is presented.

.1. Process description

The process under consideration is solution polymerization of
ethyl methacrylate (PMMA) in a jacketed CSTR. As shown in

ig. 3, three streams—monomer, initiator and solvent are feed into
he CSTR system. The reactor is equipped with a cooling jacket to
emove extra heat generated during the exothermic polymeriza-
ion. The exit stream contains polymer product, unreacted polymer,
nitiator and solvent, and is send downstream for separation
18].

The model equations are [16]:
˙ = q

V
(Mf − M) = kpMP (8)

˙ = q

V
(Tf − T) +

(
−�H

�cp

)
kpMP − hAc

V�cp
(T − Tc) (9)

Fig. 3. Schematic of solution polymerization of MMA in a CSTR [18].
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˙ = q

V
(If − I) − kdI (10)

˙ = q

V
(Sf − S) (11)

˙ 0 = − q

V
�0 + [(kfM + ktdP + kfsS)]˛P + 1

2
ktcP2 (12)

˙ 1 = − q

V
�1 + [(kfM + ktdP + kfsS)(2˛ − ˛2) + ktcP]P

(1 − ˛)
(13)

˙ 2=− q

V
�2+ [(kfM+ktdP+kfsS)(˛3−3˛2+4˛)+ktcP(˛ + 2)]P

(1 − ˛)2
(14)

here

= kpM

kpM + kfM + kfsS + ktP
(15)

=
√

2fkdI

kI
(16)

t = ktc + ktd (17)

The ith moment of the dead polymer molecular weight dis-
ribution (MWD) is represented by �i (i = 0, 1, 2) and M is
he monomer concentration, T is the reactor temperature, I is
he initiator concentration, S is the solvent concentration, Mf
s the monomer feed concentration, Tf is the feed tempera-
ure, If is the initiator feed concentration, Sf is the solvent
eed concentration and Tc is the coolant temperature. Other
rocess parameters are defined in notation part. The rate con-
tants with the exception of kfs are assumed to follow an
rrhenius dependence on temperature. These rate constants are

16,17]:

d = k′
d exp

(
− Ed

RT

)
(18)

p = k′
p exp

(
− Ep

RT

)
(19)

to = k′
to exp

(
−Eto

RT

)
(20)

f = k′
f exp

(
− Ef

RT

)
(21)

The expression for kt is obtained using (20) and the Schmidt-Ray
orrelation for the gel effect [16–18]:

t = kt

kto
=

⎧⎪⎨
⎪⎩

0.10575 exp[17.15Vf − 0.01715(T − 273.2)]
Vf > [0.1856 − 2.965 × 10−4(T − 273.2)]
2.3 × 10−6 exp[75Vf]
Vf ≤ [0.1856 − 2.965 × 10−4(T − 273.2)]

(22)

he free volume Vf is calculated from the volume fractions of
onomer, polymer, and solvent in the rector through the following

quations [16–18]:

= Vfm�m + Vfp�p + Vfs�s (23)

f =
{

˝ if ˝ > 0
0 if ˝ ≤ 0

(24)

here
fm = 0.025 + 0.001(T − 167) (25)

fp = 0.025 + 0.00048(T − 378) (26)

fs = 0.025 + 0.001(T − 181) (27)
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olume fractions are calculated using the reactor concentrations
nd physical property data under the assumption of ideal mixing
17]

m = MWmM

�m
(28)

i = MWiM

�i
(29)

s = MWsM

�s
(30)

p = � − �m�m − �s�s − �i�i

�p
(31)

here MWj is the molecular weight of species j, �j is the pure com-
onent density of species j, and � is the density of the fluid in the
eactor (which is assumed to be constant). The equation for �p is
erived from the requirement that the mass fractions in the reactor
um to unity. The initiator concentration in the reactor usually is
ery low relative to the other species. As a result, it is reasonable to
ake the approximation �i = 0 [17].
The polymerization reactor equations are nondimensionalized

sing the dimensionless variables, as shown in Table 1, to give the
ollowing state-space model [16]:

dx1

d�
= x1f − x1 − DapWx1Ex (32)

dx2

d�
= −x2 − BDap	pWx1Ex − ˇ(x2 − x2c) (33)

dx3

d�
= x3f − x3 − Dadx3Exd (34)

dx4

d�
= x4f − x4 (35)

dx5

d�
= −x5 + [(Dafx1Exf + Dasx4 + gtDatdWExtd)(˛W)]

+ 1
2

W2gtDatcExtc (36)
dx6

d�
= −x6 + [(Dafx1Exf + Dasx4 + gtDatdWExtd)(2˛ − ˛2)

+ gtDatcWExtc] + W(1 − ˛) (37)

able 1
imensionless variables [16]

imensionless variable Definition Dimensionless variable Definition

tq
V 	p

Ep
RTf

1
M

Mfo
	 t

Et
Ep

2
T−Tf

Tf

Ep
RTf

	d
Ed
Ep

3
I

Mfo
	 tc

Etc
Ep

4
S

Mfo
	 td

Etd
Ep

5
�

Mfo
	 f

Ef
Ep

6
�1
Mfo
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kfsMfoV
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Ep
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Dat
k′

to e−	t	p VMfo
q

3f
If
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tco e−	to	p VMfo

q
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dx7

d�
= −x7 + [(Dafx1Exf + Dasx4 + gtDatdWExtd)(˛3 − 3˛2 − 4˛)

+ gtDatcWExtc(˛ + 2)] + W(1 − ˛)2 (38)

here

= Dapx1Ex

DapExx1 + DafExfx1 + gtDatWExt + Dasx4
(39)

x = exp

[
x2

1 + (x2/	p)

]
(40)

xj exp

[
	jx2

1 + (x2/	p)

]
, (j ≡ d, f, t, tc, td) (41)

The parameter values of model equations are given in Table 2.

.1.1. Open-loop results
The open-loop behavior of the system has been justified

sing simulations on steady-state responses. Moreover, using the
ransient responses of the state variables, may give a better under-
tanding of the open-loop dynamics, i.e., monomer and initiator
oncentration in the reactor, rector temperature, and three leading
oments.
The feed conditions for a start up and initial values are summa-

ized in Table 3. The start up procedure is as follows:
For t < 0, the reactor contains only the monomer and solvent

hich are at a same temperature with that of the cooling jacket
nd feed. At this time, in order to reach the desired conversion, the
oncentration of the monomer feed and the reactor monomer is
ept at the same level.

It is assumed that no reaction takes place before the feed
nters the reactor. At time zero, monomer, initiator, and solvent
re applied to the reactor. Immediately, the reaction starts until the
ystem reaches its steady state. The open-loop steady-state results
re listed in Table 4 as the main case of simulation.

The open-loop responses, for start up of the CSTR system, are
llustrated in Fig. 4. It is observed that the monomer concentration
n the reactor, changes from 3.5 mol/L to a new steady-state value
s 3.14 mol/L. This is due to both the monomer consumption and
ncrease in the moments from zero to their steady-state values.

oreover, the reactor temperature rises rapidly, mainly because of
he exothermic nature of the reaction.

.1.2. Step response results
In the polymerization process, the MWD is largely determined

y the first three moments of the distribution which are often called
he principle moment. In this application, the principle moments
re unique function of the reactor state variables x1–x4 at steady
tate [17]. Moreover, it has been proved that the steady-state val-
es of initiator and solvent concentration are depended on model
arameters such as feed condition and the reactor temperature
17]. Thus, by driving the monomer concentration (x1) and the
eactor temperature (x2) to particular set points, the MWD can
e controlled approximately. This implies that polymer grades
orresponding to different steady-state conditions and the same
eed conditions can be obtained using the controlled variables and
he monomer feed concentration and the coolant temperature as

anipulated variables.
In order to obtain settling and sampling time of the process,

ome step tests are performed. Suppose that Tst be the process set-

ling time, then the sampling time can be chosen in range of Tst/100
o Tst/20 [5]. Moreover, this test is helpful for studying the nonlinear
ehavior of the process. The step tests are performed by chang-

ng each of the two manipulated variables independently of the
ther manipulated variable. Fig. 5 shows the open-loop responses
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Fig. 4. Open-loop response of polymerization process.

Fig. 5. The open-loop responses for ±5% step changes (+5% solid line, −5% dashed line) in manipulated variables.

Table 2
parameters and constant values in polymerization reactor model [18]

Variable Value Variable Value Variable Value

� 1038 g/L k′
d

1.69 × 1014 S−1 Ed 3000 cal/mol
�s 898.5 g/L k′

p 4.925 × 105 L/mol s Ep 4353 cal/mol
�i 1000 g/L k′

to 9.80 × 107 L/mol s Eto 701 cal/mol
�m 942.11 g/L k′

f
4.92 L/mol s Ef 4353 cal/mol

�p 1200 g/L k′
fs

0.091 f 0.5

cp 0.4 cal/(g K) ktd
ktc

8.23 h 135.6 mol/(m2 s K)
V 900 L Ac 2.8 m2 −�H 13.8 kcal/mol
q 0.2813 L/s MWm 100.13 g/mol MWs 88.12 g/mol
R 0.001987 MWi 24.23 g/mol Mfo 3.5 g mol/L
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Table 3
Feed condition for startup [18]

Monomer feed concentration (Mf) 3.5 gmol/L
Initiator feed concentration (If) 0.01 gmol/L
Solvent feed concentration (Sf) 6.4 gmol/L
Feed temperature (Tf) 340 K
Feed temperature (Tc) 340 K
Total feed flow rate 1800 L/h

Table 4
Base case for simulation [18]

Monomer concentration 3.146 gmol/L
Initiator concentration 0.0097 gmol/L
Solvent concentration 6.4 gmol/L
Zeroth moment 3.3 × 10−4

First moment 0.35
Second moment 759.53
R
N
P

f
t
a

3

o
a
c
f
r
a
t
p
f
p

a
s
g
d
a
f

p
s
d
a

F
p

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
eactor temperature 344.2 K
umber average chain length 1076.14
olydispersity 1.9937

or ±5% step changes in manipulated variables. It can be seen that
he polymerization process has severe nonlinearity for step changes
t coolant temperature.

.2. Identification of the process

A GMN signal is used as a random sequence input in order to
btain dynamic data. In this test, seven levels 2, 2.5, 3, 3.5, 4, 4.5
nd 5 have been selected for the first input (monomer feed con-
entration) and seven levels 326, 330, 335, 340, 345, 350 and 353
or the second input (jacket temperature) to cover the spanned
ange of the input signal. Switching time between these levels is
ssumed to be 15 samples. Both two signals obtained from GMN

est are applied to the process simultaneously. Two thousand sam-
les of the input–output data with sampling time of 180 s are used
or identification. The input and output signals of polymerization
rocess are shown in Fig. 6.

3

o

ig. 6. GMN inputs (monomer feed concentration and jacket temperature) and output
olymerization reactor.
Fig. 7. Validation of the Wiener model for polymerization process.

The model parameters for the linear block were computed using
state-space description and input/output dynamic data. A steady-
tate data set has been used in the identification of the Wiener static
ain. 400 steady-state data for linear model and 400 steady-state
ata for process have been obtained. The static nonlinear gain is
pproximated using these steady-state data and piecewise linear
unctions.

Finally, the Wiener model is identified by the linear model out-
uts and process nonlinear gain. From the 2000 obtained data, 1400
amples are used for identification and the rest is used for vali-
ation. Fig. 7 shows that the identified Wiener model is in good
greement with process behavior.
.3. Nonlinear model predictive control

In this section, the nonlinear model predictive control based
n the piecewise linear Wiener model is applied to polymeriza-

signals (monomer concentration and reactor temperature) for identification of
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ig. 8. Comparison the behavior of NMPC (solid line) and linear MPC (dashed line)
or set point changes in monomer concentration output.

ion reactor. This process is a multi-input multi-output process
nd NMPC of this process is done with concentration on practi-
al aspects such as excitation signal for identification and rejection
f disturbance effects in this process.

The parameters for the NMPC are defined as follows: the con-
rol and prediction horizons are tuned 3 and 10, respectively. The
eighting matrix Q takes the value 100 for both process outputs,
takes the value 50 for monomer feed concentration and 100 for

oolant temperature. It is noticeable that the weighting matrices
re determined by trial and error as well as prediction and control
orizons.

The simulation results for this control scheme have been
ompared to LMPC. Parameters of both linear and nonlinear
ontrollers are tuned and the best obtained results are com-
ared. For both cases (NMPC and linear MPC) a range of 2–5
or monomer feed concentration input and a range of 326–353

or coolant temperature input has been considered as input
onstraints.

Fig. 8 shows a comparison of NMPC and LMPC behavior for poly-
erization process when the first output set points have changed,

ig. 9. Comparison control signal of NMPC (solid line) with linear MPC (dashed line)
or set point changes in monomer concentration output.

l
p
p
t

F
l

ig. 10. Comparison the behavior of NMPC (solid line) and LMPC (dashed line) for
et point changes in reactor temperature.

here the second output is set to the nominal value, 344.2. Con-
rol signals of both controllers are shown in Fig. 9. As it is clear
rom these figures the NMPC controller has better performance
ith short settling time and without any overshoot. Furthermore,

he second output has been maintained closed to the nominal
alue. Control signals of both controllers do not have any large step
hanges.

A comparison of NMPC and LMPC behavior for set point change
n reactor temperature has been shown in Fig. 10, where the first
utput (monomer concentration) is set to the nominal value, 3.15.
ig. 11 shows a comparison of corresponding control signals. Results
how that nonlinear controller has a better performance com-
ared to the linear one regarding set point changes in reactor
emperature.

In Fig. 12, the NMPC performance for set points changes in both
utputs has been compared to LMPC. It can be seen that the non-
inear one; it has a short settling time without overshoot. The com-
arison of corresponding control signals of both controllers are
resented in Fig. 13. It is shown that the control signals of both con-
rollers are almost smooth. Moreover, the defined constraints for

ig. 11. Comparison control signal of NMPC (solid line) with linear MPC (dashed
ine) for set point changes in reactor temperature output.
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Fig. 12. Comparison the NMPC (solid line) and LMPC (dashed line) performance for
set point changes in both process outputs.

Fig. 13. Comparison control signal of NMPC (solid line) and LMPC (dashed line) for
set point changes in both process outputs.

Fig. 14. The NMPC performance in rejecting unmeasured disturbance of the initiator
efficiency factor, f.
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anipulated variables are satisfied. All of the simulations showed
hat the maximum computation time for optimization at each sam-
ling interval is sufficiently below the chosen sampling time and
he control signals are feasible due to canonical structure of non-
inear gain.

The NMPC performance in rejecting unmeasured disturbance
f initiator efficiency factor, f is shown in Fig. 14. Here, the
nitiator efficiency factor, f decreases from 0.5 to 0.45. It can
e seen that NMPC is able to reject unmeasured disturbance
ffectively.

. Conclusions

In this paper, a nonlinear model predictive control based on
piecewise linear Wiener model for a polymerization reactor is

pplied and simulated. This approach has all the interesting fea-
ures of classical MPC. It leads to a quadratic programming problem
ue to the canonical structure of the nonlinear gain, so it has easy
omputations. On the other hand, the identification of the nonlin-
ar gain of the process using piecewise linear approximation needs
oth dynamic and steady-state input–output data. This method
an be implemented on multivariable and highly nonlinear pro-
esses which LMPC is unable to control them. The presented control
cheme is applied to a polymerization reactor as a MIMO process.
imulation results show superior performance of the NMPC com-
are to LMPC. Results show that the linear MPC follows the set point
ith overshoot and long settling time, while the NMPC exhibits a
esirable fast response with smooth changes in the control effort.
urthermore, it rejects unmeasured disturbance effectively.
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