CHEMICAL NAMES # FORMULAS # SIGNIFICANCE OF A CHEMICAL FORMULA Chemical formulas are important because they indicate the relative number of atoms of each kind of a chemical compound - For an ionic compound: chemical formulas represents one formula unit - Formula unit: the simplest ratio of the compound's positive and negative ions - For a molecule: the molecular formula gives the number of atoms of each element contained in a single molecule of the compound # MONATOMIC IONS - Monatomic ion: ions formed from a single atom - o *Ex*: Na⁺, Mg²⁺, S²⁻ #### Naming monatomic ions: - Cations (+): - Name of element + cation - Ex: K⁺ Potassium cation Mg²⁺ Magnesium cation Aluminum cation - <u>Anions (-)</u>: - O Base of element + -ide Ex: F- Fluoride N³⁻ Nitride Br- Bromide Oxidation numbers: the ions charges that atoms gain when they lose or gain their valence electrons; are the number of electrons they can lose or gain when bonding | hydrogen | 60 - T | | | 100 | | 150 | | (37-3) | | 155 | 2.51 | | 100 | 100 | 1551 | 555 | 552 8 | helium | |---|---|--------|--------------------|----------------------|--------------------|-------------------|---|---|-------------------|--------------------|------------------|-------------------|--------------------|---|-------------------|---|--------------------|---| | Ĥ | | | | | | | | | | | | | | | | | | He | 241 147 247 242 | | 1,0079
lithium | beryllium | | | | | | | | | | | 1 | boron | carbon | nitrogen | oxygen | fluorine | 4.0026
neon | | 3 | 4 | | | | | | | | | | | | 5 | 6 | 7 | 8 | 9 | 10 | | Li | Be | | | | | | | | | | | | В | С | N | 0 | F | Ne | | 6.941 | 9.0122 | | | | | | | | | | | | 10.811 | 12.011 | 14.007 | 15.999 | 18,998 | 20.180 | | sodium
11 | magnesium
12 | | | | | | | | | | | | aluminium
13 | sticon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | | Na | Mg | | | | | | | | | | | | AI | Si | P | S | CI | Ar | | 22,990 | 24.305 | | | | | | | | | | | | 26.982 | 28.096 | 30.974 | 32.065 | 35,453 | 39,948 | | potassium | caldum | | scandium | titanium | vanadium | chromium | manganese | iron | cobalt | nickel | copper | zine | gallium | germanium | arsenic | selenium | bromine | krypton | | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K | Ca | | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | | 39.098 | 40.078 | | 44.956 | 47.867 | 50,942 | 51.996 | 54.938 | 55.845 | 58.933 | 58,693 | 63,546 | 65.39 | 69.723 | 72.61 | 74.922 | 78.96 | 79.904 | 83.80 | | rubidium
37 | strontium
38 | | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium
43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | 50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | 100000000000000000000000000000000000000 | Sr | | Υ | Zr | Nb | Мо | 7.5 | | Rh | Pd | | Cd | - | Sn | Sb | Te | ï | Xe | | Rb | 100000000000000000000000000000000000000 | | | 933127755555 | | | Тс | Ru | | 22.7 (2.20.2) | Ag | 1000 | In | A 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 0.0000000000000000000000000000000000000 | | 120000000000000000000000000000000000000 | | 85,468
caesium | 87.62
barium | | 88.906
lutetium | 91.224
hafnium | 92.906
tantalum | 95.94
tungsten | [98]
rhenium | 101.07
osmium | 102.91
iridium | 106.42
platinum | 107.87
gold | 112.41
mercury | 114.82
thallium | 118,71
lead | 121.76
bismuth | 127.60
polonium | 126.90
astatine | 131.29
radon | | 55 | 56 | 57-70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | ΤI | Pb | Bi | Po | At | Rn | | 132.91 | 137.33 | | 174.97 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | [209] | [210] | [222] | | francium
87 | radium
88 | 89-102 | lawrencium
103 | rutherfordium
104 | dubnium
105 | seaborgium
106 | 107 | hassium
108 | meitnerium
109 | ununnilium
110 | unununium
111 | ununbium
112 | | ununquadium
114 | | | | | | | 100000000000000000000000000000000000000 | -53 | | 0.000 | | 533,030 | 100000000000000000000000000000000000000 | A 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100000000 | | | | | | | | | | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | | Uuu | auu | | Uuq | | | | | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | l, | | | | Group 1 Lose 1 electron to form 1+ Group 15 Gain 3 electrons to form 3- Group 16 Gain 2 electrons to form 2- Group 17 Gain 1 electrons to form 1- Groups 3-12 (Transition Metals) d-block elements form variable charges *Ex*: | hydrogen
1
H | - Copper can be Cu ⁺ or Cu ²⁺ - Iron can be Fe ²⁺ or Fe ³⁺ | | | | | | | | | helium
2
He | | | | | | | | | |--------------------------------------|--|--|-------------------------------------|--|---------------------------------------|-------------------------|---------------------------------------|--------------------------------|-----------------------------|------------------------------------|-----------------------------------|----------------------------------|-------------------------|---------------------------|------------------------|-------------------------|-------------------------|-------------------------| | Ithlum
3
Li
6,941
sodium | Be
9,0122
magnesium | Doron Carbon nitrogen Oxygen fluorine neon | | | | | | | | | neon
10
Ne
20.180 | | | | | | | | | Na
22,990
potassium | Mg
24,305
calcium | | scandium | titanium | vanadium | chromium | manganese | iron | cobalt | nickel | copper | zine | AI
26,982
gallium | Si
28.096
germanium | P
30.974
arsenic | S
32.065
selenium | CI
35,453
bromine | Ar
39,948
krypton | | 19
K
39,098 | Ca
40.078 | | Sc
44.966 | 71
47.867 | 23
V
50.942 | Cr
51,996 | Mn
54.938 | Fe | Co
58.933 | 28
Ni
58.693 | Cu | Zn | 31
Ga
69.723 | 32
Ge | 33
As
74.922 | 34
Se
78.96 | 35
Br
79,904 | 36
Kr
83.80 | | 77
Rb | strontium
38
Sr
87.62 | | yttrium
39
Y
88,906 | 2irconium
40
Zr
91,224 | Nb
92,906 | Mo
95,94 | TC | Ru
101,07 | 45
Rh | Pd
106.42 | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb
121.76 | 52
Te | 53
126.90 | Xe
131,29 | | caesium
55
Cs | barium
56
Ba | 57-70
X | lutetium
71
Lu | hafnium
72
Hf | tantalum
73
Ta | tungsten
74 | rhenium
75
Re | osmium
76
Os | iridium
77 | platinum
78
Pt | gold
79
Au | mercury
80
Hg | thallium
81 | Pb | bismuth
83
Bi | Polonium
84
Po | astatine
85
At | radon
86
Rn | | francium
87 | 137.33
radium
88
Ra | 89-102
X X | 174.97
lawrencium
103 | 178.49
rutherfordium
104
Rf | 180.95
dubnium
105
Db | seaborgium
106
Sg | 186.21
bohrium
107
Bh | 190.23
hassium
108
Hs | 192.22
meitnerium
109 | 195.08
ununnilium
110
Uun | 196.97
unununium
111
Uuu | 200.59
ununbium
112
Uub | 204.38 | ununquadium
114
Uuq | 208,98 | [209] | [210] | [222] | | [223] | [226] | | [262] | [261] | [262] | [266] | [264] | [269] | [268] | [271] | [272] | [277] | | [289] | , | | | | ### BINARY IONIC COMPOUNDS Binary compounds: compounds composed of two different elements - For ionic compounds... - The total # of positive charges and negative charges must be equal ## WRITING IONIC COMPOUND FORMULAS # Rules for writing formulas for ionic compounds: - Write the symbols & charges for the ions (cations first) - Cross over the charges as subscripts - 3 Check to make sure the charges are equal #### Ex: Aluminum Oxide Write the symbols for the ions (cations first) $$AI^{3+}$$ O^{2-} Cross over the charges as subscripts 3. Check to make sure the charges are equal $$2 \times (+3) = +6$$ $3 \times (-2) = -6$ - Write the formulas for the binary ionic compounds formed between the following elements: - Potassium and iodine - $\times KI$ - Magnesium and chlorine - \times MgCl₂ - Sodium and sulfur - \times Na₂S ## NAMING BINARY IONIC COMPOUNDS - Involves combining the names of cations and anions - Rules for naming ionic compounds: - 1) Name the cation first: full name of cation - 2 Name anion last: base of anion + -ide - \circ Ex: Al₂O₃ - × Al = aluminum - \times O = oxygen \rightarrow oxide - ★ Aluminum oxide - Name the binary ionic compounds indicated by the following formulas: - AgCl - Silver chloride - o ZnO - o CaBr₂ - Calcium bromide - Use the Stock System of nomenclature for compounds with transitional metals - Roman numerals represents charges in parentheses <u>Ex</u>: CuCl₂ <u>Hint</u>: undo the crisscross to determine cation charge! Copper(II) chloride - Give the names for the following ionic compounds: - o CuBr₂ - o PbCl₂ - ★ Lead(II) chloride - \circ Fe₂O₃ ### COMPOUNDS CONTAINING POLYATOMIC IONS - Polyatomic ions are mostly anions (except NH₄⁺) - Most are oxyanions - <u>■ Oxyanion</u>: polyatomic ions that contain oxygen - Most common anions have –ate endings (Ex: ClO₃- chlorate) - Use parentheses if more than one polyatomic ion is present - \times Ex: Al₂(SO₄)₃ - Rules for naming compounds with polyatomic ions: - Same as naming for regular ionic compounds except: - Name polyatomic ion as one unit - \circ Ex: AgNO₃ = silver nitrate - Name the following binary compounds: - o Na₂CO₃ - Sodium carbonate - O Ag₃PO₄ - Silver phosphate - \circ Fe(NO₃)₃ - Sample for writing formulas for compounds with polyatomic ions: - <u>Ex</u>: Aluminum hydroxide ``` Al^{3+} + (OH)^{-} Use crisscross method! Al(OH)_3 ``` #### You Try! - Give the formula for the following ionic compounds: - Barium hydroxide - \times Ba(OH)₂ - Copper(II) nitrate - \times Cu(NO₃)₂ # BINARY MOLECULAR COMPOUNDS - Prefixes used to note how many atoms in a compound - 1. mono- - 6. hexa- 2. di- 7. hepta- 3. tri- 8. octa- 4. tetra- - 9. nona- - 5. penta- - 10. deca- - Rules for naming molecular compounds: - 1 Less-electronegative element is given first - First element only gets a prefix if it has more than one - 3 Second element is named by combining... - A prefix indicating the number of atoms - The root name of the second element - The ending -ide - The <u>o</u> or <u>a</u> at the end of a prefix is usually dropped when the word following the prefix begins with another vowel ### The Molecular Compounds of Nitrogen and Oxygen | Formula | Prefix-System Name | |----------|----------------------| | N_2O | Dinitrogen monoxide | | NO | Nitrogen monoxide | | NO_2 | Nitrogen dioxide | | N_2O_3 | Dinitrogen trioxide | | N_2O_4 | Dinitrogen tetroxide | | N_2O_5 | Dinitrogen pentoxide | # Name the following molecular compounds: - \circ SO₃ - o ICl₃ - ▼ lodine trichloride - o PBr₅ - ▼ Phosphorus pentabromide # Write the formulas for the following molecular compounds - Carbon tetraiodide - \times Cl₄ - Phosphorus trichloride - × PCI₃ - Oxygen difluoride - \times OF₂