SUGGESTED CHAPTER **PROBLEMS** • 2.10 - 2.11 CHEMISTRY 131 • 2.15 - 2.16 • 2.24 - 2.26 CHAPTER 2: ATOMS • 2.28 - 2.30 • 2.32 • 2.34 - 2.35 • 2.43 • 2.46 - 2.48 • 2.51 - 2.56

ATOMIC MASS UNIT

• 2.59

• 2.62

• 2.76

• 2.78

• 2.80

• 2.87 • 2.89

• 2.64 - 2.68

• 2.83 - 2.85

- amu atomic mass units are used to describe mass since mass of atoms is very small.
- 1 amu = 1.6605×10^{-24} g
- Exactly 1/12th the mass of a ______ atom.
- The atomic mass of any atom is determined by comparing it with the mass of one C-12 atom, or 1 amu.
- Mass of subatomic particles:
 - Proton 1.6726 x 10⁻²⁴g = 1.0073 amu
 - Neutron 1.6749 x 10⁻²⁴g = 1.0087 amu
 - Electron 9.1094 x 10⁻²⁸g = 5.4858 x 10⁻⁴ amu

MASS NUMBER

- Atoms have a fixed number of protons, neutrons, and electrons. Adding the masses of the protons and neutrons gives each atom a unique (A).
 - The mass of an electron is so small compared to protons and neutrons they are not counted into the mass number.
- Example:
 - An atom containing 17 protons, 17 electrons, and 18 neutrons would have a mass number of amu.

WHAT IS THE MASS NUMBER?

- What is the mass number if the nucleus contains 92 protons and 143 neutrons?
- What is the mass number of an atom containing 33 protons and 42 neutrons?
 - *This will be important with isotopes*

ATOMIC NUMBER (Z)

- The number of _____ in an atoms nucleus.
- In a ______the number of protons and neutrons are equal.

USING MASS & ATOMIC NUMBERS

• How many protons, electrons, and neutrons are there in an atom of chlorine – 37?

ATOMIC WEIGHT

- Most elements occur as mixtures of isotopes.
 The % of each isotope occurring in the element naturally is nearly always the same, no matter where the element is found.
- ______ a weighted average of the masses of all the naturally occurring isotopes of an element.
- Atomic numbers are very close to the mass number...
- ...the number of protons and neutrons in its nucleus.

HOW TO CALCULATE A WEIGHTED AVERAGE

• In a box that contains two different sizes of marbles, 25% have masses of 2.00g each. 75% have masses of 3.00g each. What is the weighted average of the marbles?

SOLUTION

• Multiply the mass of each marble by the decimal fraction representing its percentage in the mixture. Then add the products.

NOW, WITH AN ELEMENT

• Naturally occurring copper consists of 69.15% copper – 63, which has an atomic of mass of 62.929601 amu, and 30.85% copper – 65, which has an atomic mass of 64.927794 amu.

ISOTOPE EXAMPLE

 Chlorine consists of two main isotopes where one isotope chlorine – 35 has a mass of 34.96885 amu and the average atomic mass is 35.453 amu. If chlorine – 35 occurs at 75% and the second isotope occurs at 25%, what is the mass of the second chlorine isotope?

ISOTOPES, REVIEW

• Isotopes are:

- Atoms with the same number of protons but a different number of neutrons.
- Most elements on earth are found as a mixture of isotopes.
 - For example: Carbon
 - Carbon 12: 98.93%
 ¹²₆C : Carbon with 6 protons and 6 neutrons
 - Carbon 13: 1.07% ¹³₆C : Carbon with 6 protons and 7 neutrons
 - Carbon 14: 0.000000001% (1ppt) : Trace ¹⁶₆C : Carbon with 6 protons and 8 neutrons

PERIODIC TABLE DOES

- Organized to ______
- Can be used to ______ of undiscovered or unfamiliar elements.
- Can <u>between elements</u> without actually doing the experiment.

PERIODIC TABLE HISTORY

Dimitri Mendeleev -

- Credited with creating the periodic table
- Arranged elements according to their _____ and looked for _____.
- Noticed ______in chemical and physical properties of elements.
- Some atoms didn't fit when they were arranged by

• Ex: ____

- Left empty spaces on the table where he thought undiscovered elements would fit.
 - Predicted the properties of these elements.

Two QUESTIONS

- 1. Why could most of the elements be arranged in order of increasing atomic mass but a few could not?
- 2. Why did chemical periodicity, or similar chemical properties recurring in intervals occur?

ANSWERS

• Henry Mosely -

- Worked with Ernest Rutherford.
- Examined the spectra of 38 different metals 40 years after Mendeleev's first table.
- Discovered a _____with the number of _____in the nucleus.
- This is known as the _____
- This is the current organization of the periodic table.

TODAY'S PERIODIC TABLEChanged extensively since Mendeleev's time. New elements have been discovered. 60 elements in 1860, ~115 elements currently Some new elements have been synthesized in the lab. All fit into a _____ having similar properties. The periodic table is an arrangement of the elements in order of their _____ fall into the same _____, or _____.

SIMILARITIES IN THE TABLE

- _____ : ____ rows on the periodic table.
 - ____ periods on the table
 - _____ have similar properties.
 - The length of the period is determined by the ______that can occupy the

sublevels being filled in that period.

______in a period always an extremely
 ______in a period is always an ______.

SIMILARITIES IN THE TABLE

- (or _____): _____ columns on the
- periodic table have _____ properties.
- _____ families on the periodic table
- For example: Li, Na, K, Rb, Cs, Fr are all soft, white, shiny metals.
- All elements in a family have the ____
 - of ______ and react similarly in chemical reactions.

]	[']	M	S'	ГІ	LI	1]	Ē	NI	NJ	Z I	R	0	M	T	HI	0	
]	BI	0	C]	K							
н																		He
Li		Be											В	С	Ν	0	F	Ne
Na	a 1	Иg											AI	Si	Р	S	Ci	Ar
К		Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	,	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	;	Ba	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr		Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
																	I	

THE P-BLOCK

- Contains the Boron, Carbon, Nitrogen, Oxygen, Halogen, and Noble gas groups.
 – Except _____! It has no _____
- Are non-metals, metals, and semi-metals.
- Have valence electrons in ____, and ____
- Have between _____ valence electrons.
- _____Number (or how many _____ they _____ or ____) very predictable.

THE D-BLOCK

- The "_____ Metals"
- Have valence electrons in the ____ and ____ orbitals.
- Oxidations states more ______
- They are all metals ______
- Some deviations occur in the ______ of these ______ by _____.

THE F-BLOCK

- Or the "_____ transition metals"
- Contains the _____ and _____ series.
- _____ are shiny metals, similar in reactivity to group _____ elements.
- _____ are all _____
- Only the first <u>____</u> actinides have been found naturally, the rest are synthetic.

TRENDY

- Trends we will study:
 - Atomic Mass
 - Atomic Number
 - State of Matter
 - Metallic Character
 - Atomic Radius
 - Ionization Energy
 - Reactivity / Bonding
 - Electronegativity

ATOMIC RADII

• An atoms size is ideally defined by the edge of its _____.

are not clearly defined, they are a

- Vary under different conditions.
- Atomic _____between the _____of identical atoms bonded together

– Estimation:

• Dividing this distance by two gives the radius.

ATOMIC ENERGY

- _____state: _____ energy of atom. All electrons are in the lowest possible energy levels.
- _____state: A state in which an atom has a _____ PE then it does in the ground state.

BOHR MODEL OF THE ATOM

- The Bohr Model of the Hydrogen Atom
 - Neils Bohr (1911) put together Rutherford's and Planck's ideas.
 - An electron is allowed to have only ______ corresponding to different amounts of _____
- Bohr labeled each energy level/orbit by quantum number, n.
 - Lowest energy level is the _____
 - It is the orbital ______ to the nucleus
 - When an electron ______ the correct amount of ______, it jumps to a higher level called the excited state having quantum numbers n=__, n=__, n=__, etc. _____.
 This is called ______.
 When an electron ______ from an excited state back to ground state, ______.
 - This is called ______.
 - _____

Regions around the nucleus of an atom where an electron with a given energy is likely to be found.

- orbitals have characteristic _____, ____ and
- orbitals do NOT describe the path of an electron.
- Four different kinds of orbitals determined by fundamental shape.
 - ____ spherical
 - ____ dumb-bell
 - ____- more complex
 - ____ more complex

ORBITALS

- n=___has ___ sublevels, ___, ___ and ____
- Orbitals
 - _____ spherical and larger than _____
 - 3px, 3py and 3pz
 - -5 d orbitals: 3dxy, 3dx_z, 3dy_z, 3dy_z, 3d_x², 3d_z²
 - n=___has ___sublevels, ___, ___ and ____
- Orbitals
 - ____4s orbital
 - _____4p orbitals
 - _____4d orbitals
 - _____4f orbitals

QUANTUM NUMBERS

- n = principal quantum number.
 - Energy levels _____
- ____= angular momentum quantum number.
 - Sublevels
 - $l = _ \rightarrow s sublevel$
 - $l = _ \rightarrow p$ sublevel
 - $l = _ \rightarrow d$ sublevel
 - $l = _ \rightarrow f sublevel$
- $m_t = magnetic quantum number$
 - Orientation of orbital
 - $-\ell \leq m_\ell \leq \ell$
- m_s = spin quantum number
 - $s = \pm \frac{1}{2}$

LEWIS DOT & THE VALENCE SHELL

_ shell

- So what exactly is a valence shell? - The
- Lewis Dot Structure
 - An easy way to show valence or "bonding" electrons.
 - The symbol of the element represents the nucleus and all filled shells.
 - Dots are placed around the symbol to represent valence electrons available for bonding.

NOBLE GAS NOTATION & LEWIS DOT STRUCTURE

• Alkali Metals:

Element	Noble Gas Notation	Lewis dot Structure
Li	[He]2s ¹	Li•
Na	[N e]3s ¹	Na•
К	[A r]4s ¹	K•
Rb	[Kr]5s ¹	Rb•
Cs	[Xe]6s ¹	Cs•

PERIODIC TRENDS Now that we have a better understanding of electron configuration, let's look at some more trends. Let's take a look at two in particular: Atomic Size Ionization Energy -_____

ATOMIC SIZE

- As we move from the top of the table to the bottom the size of the atoms ______. Why?
 - What is important with magnets?

_

- What is happening to the magnet's size as we move down the columns?
- What is happening to the distance between the charges as we move down the column?
- If you recall, I mentioned one of this is more important than the other, which one?

IONIZATION ENERGY

• Why does it increase as we move from left to right across a row?

IONIZATION ENERGY

• Why does it increase as we move up a row?