Name: KEY

Chemistry 20

Worksheets

Worksheet 1.1: Atomic Structure

1. Complete the following table. Using symbols, provide an example of each category using the element provided. For the average atom assume that the mass number is the atomic mass rounded off. The first one is done. (8 marks) (1/2 mark off for each mistake in each row).

	Average Atom	Monoatomic Polyatomic or diatomic element	Most common simple Ion	Complex or polyatomic lon	Isotope of the average	lonic compound	Molecular compound	Acid compound
chromium	⁵² Cr	Cr	Cr ³⁺	CrO ₄ ²⁻	⁵³ Cr	Cr ₂ O ₃	NONE	NONE
sulphur	³² S	S _{8(s)}	S ²⁻	SO ₄ ²⁻ or SO ₃ ²⁻	³³ S	Na ₂ S _(aq)	SO _{2(g)}	$\begin{array}{c} H_2SO_{4(aq)} \\ H_2SO_{3(aq)} \end{array}$
nitrogen	¹⁴ N	N _{2(g)}	N ³⁻	NO ₃ or NO ₂	¹³ N	Na ₃ N _(aq)	NO _{2(g)}	HNO _{3(aq)} HNO _{2(aq)}

2. Complete the following table. Note that the mass number can change for isotopes. If there is not a noble gas with the same # of electrons, than put NONE. The first one is done.(6 marks) (1/2 mark off for each mistake in each row)

Atom or lon name	Atom or ion symbol	Atomic number	Mass number	Protons	Electrons	Neutrons	Noble Gas with same # of electrons
sodium ion	²³ Na⁺	11	23	11	10	12	neon
aluminum atom	²⁸ AI	13	28	13	13	15	neon
chloride ion	CI ¹⁻	17	34	17	18	17	argon

Worksheet 1.2: Compounds

Complete the following table (Assume water is used with ionic compounds): (16 marks)

I = M (NH ₄) + N M = non metals A = H (acid) pg 8/9 in databook	chemical formula(add states)	chemical name
Ionic	K ₂ SO _{3(aq)}	Metal name + polyatomic name potassium sulfite
ACID	H ₂ SO _{4(aq)}	sulphuric acid
IONIC	Na ₂ S ₂ O ₃ •1 H ₂ O _(s)	sodium thiosulfate monohydrate
MOLECULAR	C ₂ H ₅ OH(I)	ethanol
IONIC	Pb $^{2+/4+}$ (SO ₄) $^{2-}$ _{2 (aq)}	lead (IV) sulphate
MOLECULAR	P ₅ O _{10 (g)}	Pentaphosphorus dexaoxide
MOLECULAR	C ₁₂ H ₂₂ O ₁₁ (s)	sucrose
IONIC	Na₂SIO₃(aq)	sodium silicate
MOLECULAR	NH ₃ (g)	Ammonia is not ammonium

MOLECULAR (NOT AN ACID)	H ₂ O _{2 ()}	Hydrogen peroxide
MOLECULAR	SO _{3 (g) does not equal} SO ₃ ²⁻ (aq)	Sulfur trioxide (NOT sulfite)
IONIC (NH4+ is an ion)	(NH ₄) ₃ PO _{4 (aq)}	ammonium phosphate
IONIC	Cu ²⁺ SO ₄ ²⁻ CuSO ₄ * 5H ₂ O(s)	copper (II) sulphate pentahydrate
MOLECULAR (MEMORIZED)	C ₃ H ₈ (g)	propane
ACID	CH₃COOH(aq)	ethanoic acid
MOLECULAR	O _{3(g)}	OZONE
MOLECULAR	HOH _(g,l,s)	water

Worksheet 1.3: Reactions

Complete the following reactions, identify the reaction type and balance the equation.(3 marks each; 15 marks total)

1) mercury (II) oxide is broken down into its elements by heating.

$$2 \text{ HgO (s)} \rightarrow 2 \text{ Hg(I)} + O_2(g)$$

Decomposition

2) a nickel strip is placed in a gold (III) sulfate solution

$$Ni^{2+}$$
 (aq) + $Au_3S_8 \rightarrow$

Ni(s) + Au₂(SO₄)_{3(aq)}
$$\rightarrow$$
 Au(s) + (Ni $^{2+/3+}$ SO4 $^{2-}$) NiSO₄(aq)

3 Ni(s) +
$$Au_2(SO_4)_{3(aq)} \rightarrow 2 Au(s) + 3 NiSO_4(aq)$$
 single replacement

3) phosphoric acid reacts with iron (III) oxide.

$$2 H_3PO_4(aq) + Fe2O_3(s) \rightarrow 2 Fe PO_4(s) + 3 H2O(l) Double Replacement$$

$$H = 3 6$$

$$H = 2 \times 2$$

$$O = 3$$

$$0 = 43$$

$$PO4 = 1 \times 2$$

$$Fe = 1 \times 2$$

4) butane is burned in air

$$C_4H_{10(q)} + 6.5 O_{2(q)} \rightarrow 4CO_{2(q)} + 5 H_2O_{(q)}$$

$$2 C_4 H_{10(q)} + 13 O_{2(q)} \rightarrow 8 CO_{2(q)} + 10 H_2 O_{(q)}$$

5) sulfur combines with oxygen to from sulfur trioxide $S_{8(s)} + \frac{12}{12} O_{2(g)} \rightarrow \frac{8}{12} SO_{3(g)}$ Formation

Worksheet 1.4: Mole Problems

1. What is the molar mass of hydrogen peroxide?

 H_2O_2 Hx 2 = 2.02 O x2 = 32.00Total = 34.02 g/mol

2. What is the molar mass of lead (II) nitrate?

Pb (NO3)2 Pb x1 = 207.2 N x 2 = 28.02 O x 6 = 96.00 TOTAL = 231.22 g/mol

3. How many moles in 30.6 g of copper? Step 1) n=?; m = 30.6g; M = 63.55g/mol

. , ,

Step 2) n = m/M

Step 3) n = 30.6g/63.55g/mol

Step 4) n = 0.481510... mol; 0.482 mol or 482 mmol (3 significant digits; divide by E-3 to get mmol)

4. How many moles in 6.55 x 10¹⁹ atoms of zinc?

Step 1) n=?; p = 6.55E19 atoms; P = 6.02E23 atoms/mol

Step 2) n = p/P

Step 3) n = 6.55E19 atoms / 6.02E23 atoms/mol

Step 4) n = 0.0001088039... mol; 0.000109 mol or 1.09×10^{-4} mol or 0.109 mmol or 109 umol

5. Determine the number of moles in 33.6 L of methane at STP?

Step 1) n=?; v = 33.6L; V = 22.4L/mol

Step 2) n = v/V

Step 3) n = 33.6g/22.4L/mol

Step 4) n = 1.50 mol (3 significant digits)

6. How many formula units in 3.99 mol of potassium carbonate? (K₂CO₃)

Step 1) p=?; n = 3.99mol; P = 6.02 E23 formula units/mol

Step 2) $p = n \times P$

Step 3) p = 3.99mol x 6.02E23 formula units/mol

Step 4) p = 2.40198 E24 formula units; 2.40E24 formula units or 2.40 X10²⁴ formula units

7. What volume of gas would be present in 0.955 mol at STP?; SATP?

Step 1) v=?; n = 0.955 mol; V = 22.4 L/mol

Step 2) v = nV

Step 3) $v = 0.955 \text{mol } x \ 22.4 \ \text{L/mol} \ (STP)$ $v = 0.955 \text{mol } x \ 24.8 \text{L/mol}$

Step 4) v = 21.392 L; 21.4 L of gas at STP v = 23.684; 23.7 L of gas at SATP

8. What is the mass of 2.3 mol of carbon dioxide at STP?

Step 1) n=?; m = 30.6g; $M = C = 12.01 \times 1 = 12.01$

O = 16.00 x 2 = 32.00

TOTAL = 48.01g/mol

Step 2) m = nM

Step 3) m = 2.3 mol x 48.01 g/mol

Step 4) m = 110.423 g; $\frac{1.1 \times 10^2 \text{ g or } 0.11 \text{ kg}}{1.1 \times 10^2 \text{ g or } 0.11 \text{ kg}}$ (divide by E3 to change to kmol)

NOTE: You have to change to scientific notation since you need 2 sig digs and 100 has 3/

9. How many moles in 100 mL of carbon dioxide at SATP?

Step 1) n=?; v = 100mL OR 0.100 L; V = 24.8L/mol

Step 2) n = v/V

Step 3) n = 0.100 L / 24.8 L/mol

Step 4) n = 0.004032258... mol; 0.00403 mol or 4.03×10^{-3} mol or 4.03×10^{-3} mol or 4.03×10^{-3}

10. What volume of nitrogen monoxide would be present in 2.7 mol if the temperature is 25C and the pressure is 100 kPa?

Step 1) v=?; n = 2.7 mol; V = 24.8L/mol (SATP conditions)

Step 2) v = nV

Step 3) v = 2.7 mol x 24.8 L/mol

Step 4) v = 66.96 L; 67 L (2 significant digits)

Worksheet 1.5: More difficult mole problems

1. How many molecules in 2.00 mol of sulphur dioxide?

p=nP; p=2.00 mol x 6.02E23 molecules/mol

p= 1.20E24 molecules of sulphur dioxide

2. How many molecules in 7.5 mol of chlorine?

p=nP; p=7.5 mol x 6.02E23 molecules/mol

p= 4.5E25 molecules of chlorine

3. How many atoms of **copper** are in 0.088 mol of copper (I) oxide?

p=nP; p=0.088 mol x 6.02E23 molecules/mol

p= 5.2976E22 molecules of Cu₂O

 Cu_2O ; $p_{cu} = 2 \times = 1.059E23$; 1.1E23 atoms of copper

4. How many mol of **magnesium ions** are in 1.00×10^{20} formula units of magnesium nitride?

n=p; n=1.00E20 formula units

; $n = \frac{1.66 \times 10^{-4} \text{ mol or } 0.166 \text{ mmol}}{1.00 \times 10^{-4} \text{ mol or } 0.166 \text{ mmol}}$

P 6.02E23 formula units/mol

NOT DONE YET....

 Mg_3N_2 ; n_{Mg} = 3 x 0.166 mmol = 0.498 mmol

5. What is the mass of 14.6 L of carbon monoxide at STP?

<u>O = 16.00</u> m=nM; m=0.651785714...mol x 28.01g/mol; m= 18.256... g; <mark>18.3g</mark> 28.01g/mol

6. How many atoms of xenon are in 15 L at SATP?

n=v/V; n=15L/24.8L/mol; n = 0.6048387...mol

p=nP; p= 0.6048387...mol x6.02E23 atoms/mol; p=3.6411...E23

p = 3.6 E 23 atoms

7. How many moles of **carbon and oxygen** are in 6.02 x 10²³ molecules of carbon dioxide?

n=p; n=6.02E23 formula units ; n= 1.00 mol P 6.02E23 formula units/mol NOT DONE YET....

 CO_2 ; $n_C = 1 \times 1.00 = \frac{1.00 \text{ mol of carbon}}{1.00 \text{ mol of carbon}}$; $n_O = 2 \times 1.00 = \frac{2.00 \text{ mol of oxygen}}{1.00 \times 1.00 \times 1.00}$

- 8. When studying reactions what unit are most quantities converted into? (HINT: What do the coefficients in front of a balanced equation represent?)

 Most quantities are converted into moles. The coefficients represent moles
- 9. What are the temperature, pressure and molar volume of a gas at STP? T = OC (273.15K); P=101.325 kPa; V=22.4 L/mol
- 10. What are the temperature, pressure and molar volume of a gas at SATP?

 T= 25 C (298.15 K); P = 100 kPa; V = 24.8 L/mol

Worksheet 2.1: Mole to Mole Stoichiometry

Directions: Write balanced equations with states. Solve the problem. Assume water is available.

1. Liquid water decomposes into its elements. How many moles of hydrogen gas are produced if 0.500 mol of water is used?

G R

step 1) $2H_2O_{(f)} \rightarrow 2H_{2(g)} + O_{2(g)}$ 0.500 mol ?

step 3) $0.500 \text{ mol of } H_2O_{(g)} \times 2 \text{ mol of } H_{2(g)} = 0.500 \text{ mol of } H_2 \text{ (g)}$ 2 mol of $H_2O_{(g)}$

2. Sulphur reacts with barium oxide. How many moles of sulphur are needed if 2.00 mol of barium oxide is used?

R G
1) 1 S₈ (s) + 8 BaO (s) \rightarrow 4 O₂(g) + 8 BaS (s)
? 2.00 mol
3) 2.00 mol of BaO_(s) x 1 mol of S_{8(s)} = 0.250 mol of S_{8(s)}
8 mol of BaO_(s)

3. Methane gas burns. How many moles of oxygen gas are needed to completely burn 3.00 mol of methane?

G R
1) 1 $CH_{4(g)}$ + $2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$ 3.00 mol ?
3) 3.00mol of $CH_{4(g)}$ x 2 mol of $O_{2(g)} = 6.00$ moles of $O_{2(g)}$ 1 mol of $CH_{4(g)}$

4. Sodium and phosphorus react. How many moles of phosphorus are needed if 0.600 mol of sodium metal is used?

G R
1) $12Na_{(s)}$ + $1P_{4(s)}$ \rightarrow $4Na_3P_{(aq)}$ 0.600 mol ?

- 3) <u>0.600 mol of Na_(s) x 1 mole of P_{4(s)} = 0.0500 moles of P₄(s) 12 moles of Na_(s)</u>
- 5. Magnesium phosphate reacts with lithium carbonate. How many moles of lithium carbonate are needed when 1.50 mol of magnesium phosphate is used?

1) 1 $Mg_3(PO_4)_{2(s)} + 3Li_2CO_{3(aq)} \rightarrow 3MgCO_{3(s)} + 2Li_3PO_{4(aq)}$ 1.50 mol ?

3) 1.50 mol of $Mg_3(PO_4)_{2(s)} \times 3$ mol of $Li_2CO_{3(aq)} = \frac{4.50 \text{ mol of } Li_2CO_{3(aq)}}{1 \text{ mol of } Mg_3(PO_4)_{2(s)}}$

6. Sulphur dioxide decomposes. How many moles of sulphur dioxide are needed to produce 0.30 mol of sulphur?

R G
1)
$$8SO_{2(g)}$$
 \rightarrow 1 $S_{8(s)}$ + $8O_{2(g)}$

3) 0.30 mol of
$$S_{8(s)}$$
 x 8 mol of $SO_{2(g)}$ = 2.4 mol of Sulphur dioxide
1 mol of $S_{8(s)}$

7. Magnesium chloride reacts with sodium. How many moles of sodium are needed to react with 0.0250 mol of magnesium chloride?

G R
1) 1 MgCl_{2(aq)} + 2Na_(s)
$$\rightarrow$$
 Mg_(s) + 2NaCl_(aq)

3)
$$0.0250 \text{ mol MgCl}_{2(aq)} \text{ of } x \text{ 2 mol of Na}_{(s)} = \frac{0.0500 \text{ mol of Na}_{(s)} (5.00 \times 10^{-2} \text{ mol})}{1 \text{ mol of MgCl}_{2(aq)}}$$

8. Iron (II) phosphate reacts with tin (IV) nitride. How many moles of tin (IV) nitride are needed to produce 0.500 mol of iron (II) nitride?

R G
1) 2 Fe₃(PO₄)_{2(s)} + 1 Sn₃N_{2(s)}
$$\rightarrow$$
 2Fe₃N_{2(s)} + Sn₃(PO₄)_{4(s)}

9. Gasoline $(C_8H_{18(l)})$ is burned. How many moles of carbon dioxide are produced when 3.00 mol of gasoline is reacted?

G R
2 25 16 18
1) 1
$$C_8H_{18(s)} + 25/2 O_{2(g)} \rightarrow 8CO_{2(g)} + 9H_2O_{(g)}$$

3) 3.00 mol of
$$C_8H_{18(l)}$$
 x 8 (16) mol of $CO_{2(g)}$ = 24.0 mol of carbon dioxide.
1 (2)mol of $C_8H_{18(l)}$

10. Chlorine reacts with potassium bromide. How many moles of chlorine would be needed to completely use up 25 mol of potassium bromide?

R G
1) 1
$$Cl_{2(g)}$$
 + 2 $KBr_{(aq)} \rightarrow 2 KBr_{(aq)} + Br_{2(l)}$

Worksheet 2.2: Mole to Quantity Stoichiometry

Directions: Solve the following hypothetical stoichiometry problems. Assume water is available. 1. When 6.5 mol of solid potassium chlorate breaks into solid potassium chloride and oxygen gas, what mass of solid potassium chloride is produced? 1) $2KCIO_{3(s)} \rightarrow 2KCI_{(s)} + 3O_{2(q)}$ 6.5 mol LINEAR METHOD n = 6.5mol \times 2 mol of KCl_(s) | x 74.55 g of KCl_(s) = 484 g = $\frac{4.8 \times 10^2}{9}$ of KCl_(s) 2 mol of KClO_(s) 1 mol of KCl_(s) STEP BY STEP METHOD 2) no conversion 3) mol ratio: $n_R = n_G \times R/G$ 6.5 mol of KCl_(s) x 2mol of KCl_(s) /2 mol of KCl_(s) = 6.5 moles of KCl_(s) $m=74.55 \text{ g/mol } \times 6.5 \text{ mol} = 484g = \frac{4.8 \times 10^2 \text{ g}}{4.8 \times 10^2 \text{ g}} \text{ of } \text{KCl}_{(s)}$ 2. When 5.00 mol of methane burns, what volume of carbon dioxide at STP, will be produced? $1~\text{CH}_{4(g)} + 2~\text{O}_{2(g)} \rightarrow 1~\text{CO}_{2(g)} + 2\text{H}_2\text{O}_{(g)}$ 1) **LINEAR METHOD:** 5.00 mol of CH₄ | 1 mol of CO₂ | 22.4 L of CO₂ = $\frac{112 \text{ L of CO}_2}{12.4 \text{ CO}_2}$ 1 mol of CH₄ 1 mol of CO₂ STEP BY STEP METHOD: 2) no conversion 3) $n_R = n_G \times R/G = 5.00 \text{ mol of } CH_4 \times 1 \text{mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CH_4 = 5.00 \text{ mol of } CO_2 / 1 \text{mol of } CO_2 / 1 \text$ 4) v = nV $v = 5.00 \text{ mol of } CO_2 \times 22.4 \text{L/mol} = \frac{112 \text{ L of } CO_2}{112 \text{ L of } CO_2}$ 3. How many particles of hydrochloric acid is needed to neutralize 2.50 mol of calcium hydroxide? 1) $2HCI_{(aq)} + 1Ca(OH)_{2(s)} \rightarrow 2H_2O_{(q)} + CaCI_{2(aq)}$ 2.5 mol **LINEAR METHOD:** n= 2.5 mol of Ca(OH)_{2(s)} x 2 mol of HCl_(aq) x 6.02 x 10 23 particles of HCl_(aq) = $\frac{3.01}{2}$ E 24 particles 1 mol of $Ca(OH)_{2(s)}$ 1 mol of $HCI_{(aq)}$ STEP BY STEP: 2) no conversion 3) $n_R = n_G \times R/G = 2.5 \text{ mol of } Ca(OH)_{2(s)} \times 2 \text{ mol of } HCI_{(aq)}$ 1 mol of Ca(OH)_{2(s)} n=5.0 mol $p = 6.02 \times 10^{23} \times 5.0 \text{ mol} = \frac{3.01 \text{ E } 24 \text{ or } 3.01 \times 10^{24} \text{ particles of HCl}_{(ac)}$ *4) p*=nxP 4. When 5.25 mol of butane ($C_4H_{10(l)}$) burns, what volume of water vapour will be produced at SATP? 1) $1 C_4H_{10}(I) + 6.5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$ **LINEAR METHOD:**

STEP BY STEP METHOD: 2) no conversion

3) $n_R = n_G \times R/G = 5.25 \text{ mol of } C_4H_{10(1)} \times 5 \text{mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } H_2O_{(g)}/1 \text{mol of } C_4H_{10(1)} = 16.25 \text{ mol of } C_4H_{10(1)} = 16.25 \text{ mol$

 $v = 16.25 \text{ mol of H}_2O \times 24.8 \text{L/mol} = 651 \text{ L of water}$ 4) v = nV

5.	When excess silver reacts with 3.45 mol of zinc phosphate, what mass of silver phosphate would be produced?
	G R
	1) $6Ag_{(s)} + 1Zn_3(PO_4)_{2(s)} \rightarrow 2Ag_3(PO_4)_{(s)} + 3Zn_{(s)}$ 3.45 mol ?
	LINEAR METHOD:
	3.45 mol of $Zn_3(PO_4)_2 \times 2$ mol of $2Ag_3PO_4 \times 418.58$ g of $Ag_3PO_4 = 2888$ g = 2.89 kg
	1 mol of Zn ₃ (PO ₄) ₂ 1 mol of Ag ₃ PO ₄
	STEP BY STEP METHOD: 2) no conversion
	3) $n_R = n_G \times R/G = 3.45 \text{ mol of } Zn_3(PO_4)_2 \times 2 \text{ mol of } 2Ag_3PO_4 = 6.90 \text{ mol}$ 1 mol of $Zn_3(PO_4)_2$
	4) m=Mn = (418.58 g/mol)(6.90 mol) = 2888 g <mark>= 2.89 x 10³g or 2.89 kg</mark>
6.	When 3.00 mol of iron (II) hydroxide reacts with cobalt (II) phosphate, what mass of cobalt (II) phosphate is needed? G
	1) 3 Fe(OH) _{2(aq)} + Co ₃ (PO ₄) _{2(aq)} \rightarrow 3 Co(OH) _{2(s)} + Fe ₃ (PO ₄) _{2(aq)} 3.00 mol ?
	LINEAR METHOD:
	3.00 mol of Fe(OH) _{2(aq)} x 3 mol of Co(OH) _{2(s)} x 552.55 g of Co ₃ (PO ₄) _{2(s)} = 278.85 = 279 g of Co(OH) ₂
	3 mol of Fe(OH) _{2(aq)} 1 mol of Co3(PO4) _{2(s)}
ST	EP BY STEP METHOD:
	2) no conversion
	3) $n_R = n_G \times R/G = 3.00 \text{ mol}$ of $Fe(OH)_{2(aq)} \times 3 \text{ mol of } Co(OH)_{2(s)} = 3.00 \text{ mol of } Co(OH)_{2(s)}$ 3 mol of $Fe(OH)_{2(aq)}$
	4) m=Mn =(92.95 g/mol)(3.00 mol) = $\frac{278.85}{279} = \frac{279}{9}$ of Co(OH) ₂
7.	In a neutralization reaction, 4.56 mol of sodium hydroxide neutralizes the sulphuric acid. What mass of water is produced? G
	1) $2NaOH_{(aq)} + H_2SO_{4(aq)} \rightarrow 2H_2O_{(g)} + Na_2SO_{4(aq)}$ 4.56 mol ?
	LINEAR METHOD:
	4.56 mol of NaOH _(aq) x 2 mol of H ₂ O _(g) x 18.02 g of H ₂ O _(g) = 8.22x10 ¹ g of water 2 mol of NaOH _(aq) 1 mol of H ₂ O _(g)
	(~9) – (3)
	STEP BY STEP METHOD:
	2) no conversion
	3) $n_R = n_G \times R/G = 4.56 \text{ mol of NaOH} \times 2 \text{ mol of H}_2O = 4.56 \text{ mol of H}_2O$
	2 mol of NaOH
	4) m=Mn =(18.02 g/mol)(4.56 mol) <mark>= 8.22x10¹ g</mark> of water
8.	Hydrogen and 2.5 mol of nitrogen react to form ammonia. How many moles of ammonia will be produced at STP? SATP? G R
	1) $3 H_{2(g)} + 1 N_{2(g)} \rightarrow 2 NH_{3(g)}$
	LINEAR METHODE STP SATP
	2.5 mol of $N_{2(g)}$ x 2 mol of $NH_{3(g)}$ x 22.4L (24.8 L) of $NH_{3(g)}$ = (112) 1.1E2 L of $N_{2(g)}$; (124) 1.2E2 L of $N_{2(g)}$ 1 mol of $NH_{3(g)}$
	STEP BY STEP METHOD:
	2) no conversion
	3) $n_R = n_G \times R/G = 2.5 \text{ mol of } N_2 \times 2 \text{ mol of } H_2O$ =5.00 mol of N_2
	1 mol of NaOH
	4) $v=nV = (5.00 \text{mol})(22.4 \text{L/mol}) = 1.1 \text{E2 L of N}_2 \text{ STP}; v=nV = (5.00 \text{mol})(24.8 \text{L/mol}) = 1.2 \text{E2 L of N}_2 \text{ SATP}$

Worksheet 2.3: Quantity to Mole Stoichiometry

Directions: Solve the following hypothetical stoichiometry problems. Assume water is available.

```
How many moles of iron (III) oxide is produced when 5.6 g of iron burns with oxygen gas?
             1) 2 Fe<sub>(s)</sub> + 3/2 O_{2(g)} \rightarrow 1Fe<sub>2</sub>O_{3(s)}
                     5.6 g
             LINEAR METHOD:
             5.6 g of Fe<sub>(s)</sub> x 1 mol of Fe<sub>(s)</sub> x 1 mol of Fe<sub>2</sub>O<sub>3(s)</sub> = 0.050 mol of Fe<sub>2</sub>O<sub>3(s)</sub>
                                                                                                                                 2 mol of Fe<sub>(s)</sub>
                                                              55.85 g of Fe<sub>(s)</sub>
             STEP BY STEP METHOD:
             2) n=m/M = 5.6g / 55.85 g/mol = 0.10 mol
             3) n_R = n_G \times R/G = 0.10 \text{mol} of Fe_{(s)} \times 1 \text{ mol of } Fe_2O_{3(s)} n = 0.050 \text{ mol} of Fe_2O_{3(s)}
                                                                                                                                                           2 mol of Fe<sub>(s)</sub>
                         When 4.00 x 10<sup>23</sup> particles of methanol is burned, how many moles of water vapour are produced?
2.
             1) 1 \text{ CH}_3\text{OH}_{(l)} + 3/2 \text{ O}_{2(g)} \rightarrow 1 \text{ CO}_{2(g)} + 2 \text{ H}_2\text{O}_{(g)}
             LINEAR METHOD:
            \underline{4.00 \times 10^{23} \text{ part of CH}_{3} \text{OH}_{(l)} \times 1 \text{ mol of CH}_{3} \text{OH}_{(l)}} \qquad \qquad \text{x 2 mol of H}_{2} \text{O}_{(g)} = 1.3289... \text{mol} = \frac{1.33 \text{ mol of H}_{2} \text{O}_{(l)}}{1.33 \text{ mol of H}_{2} \text{O}_{(l)}} = \frac{1.3289... \text{mol}}{1.33 \text{ mol of H}_{2} \text{O}_{(l)}} = \frac{1.3289... \text{mol}}{1.33 \text{ mol}} = \frac{1.33 \text{ mol}}{1.33 \text{ mol}} = \frac{1.33 \text{ mol
                                                                                                      6.02E23 part of CH<sub>3</sub>OH<sub>(1)</sub> 1 mol of CH<sub>3</sub>OH<sub>(1)</sub>
             STEP BY STEP:
            2) n=p/P = 4.00 \times 10^{23} part of CH<sub>3</sub>OH<sub>(I)</sub>/6.02E23 part of CH<sub>3</sub>OH<sub>(I)</sub> per mol = 0.66445...mol of CH<sub>3</sub>OH<sub>(I)</sub>
             3) n_r = n_q \times R/G = 0.66445... mol of CH_3OH_{(1)} \times 2 mol of H_2O_{(q)} = 1.3289... mol = 1.33 mol of H_2O_{(1)}
                                                                                                                                                                                  1 mol of CH<sub>3</sub>OH<sub>(I)</sub>
3.
                          If 122.6 g of solid potassium chlorate is heated, the crystals melt and decompose into solid potassium
                          chloride and oxygen gas. How many moles of potassium chloride are formed?
                                                                                                                                                                                                                                                                           K = 39.10 \text{ x}1 = 39.10
             1) 2 KCIO<sub>3(s)</sub> \rightarrow 2 KCI<sub>(s)</sub> + 3 O<sub>2(q)</sub>
                                                                                                                                                                                                                                                                           CI = 35.45x1 = 35.45
                                                                                                                                                                                                                                                                           O = 16.00x3 = 48.00
                       122.6 g
             LINEAR METHOD:
                                                                                                                                                                                                                                                                           TOTAL
                                                                                                                                                                                                                                                                                                                         125.55g/mol
             122.6 g of KClO<sub>3(s)</sub> x 1 mol of KClO<sub>3(s)</sub> x 2 mol of KCl<sub>(s)</sub> = 1.000 mol of KCl<sub>(s)</sub>
                                                                                  122.55 g of KCIO_{3(s)} 2 mol of KCIO_{3(s)}
             STEP BY STEP METHOD
             2) n=m/M =122.6 g / 122.55 g/mol =1.000 mol of KClO_{3(s)}
             3) n_R = n_G \times R/G = 1.000 \text{ mol of KClO}_{3(s)} \times 2 \text{ mol of KCl}_{(s)} = 1.000 \text{ mol of KCl}_{(s)}
                                                                                                                                                           2 mol of KCIO<sub>3(s)</sub>
                          Black iron (III) oxide solid can be converted into water and iron metal when the iron (III) oxide is
4.
                         reacted with hydrogen gas. If 125 g of iron (III) oxide is reacted, how many moles of water are formed?
             1) 1 Fe_2O_{3(s)} + 3 H_{2(g)} \rightarrow 2 Fe_{(s)} + 3 H_2O_{(g)}
                                                                                                                                                                                                                                                                           Fe = 55.85x2 = 111.70
                                                                                                                                                                                                                                                                           O = 16.00 \times 3 = 48.00
                           125 g
             LINEAR METHOD:
                                                                                                                                                                                                                                                  TOTAL
                                                                                                                                                                                                                                                                                                                               159.70q/mol
             125 g of Fe<sub>2</sub>O<sub>3(s)</sub>x 1 mol of Fe<sub>2</sub>O<sub>3(s)</sub> x 3 mol of H<sub>2</sub>O<sub>(q)</sub> = 2.34815... mol = 2.35 mol of H<sub>2</sub>O<sub>(q)</sub>
                                                                         159.70 g of Fe_2O_{3(s)} 1 mol of Fe_2O_{3(s)}
             STEP BY STEP METHOD:
             2) n=m/M = 125g / 159.70 g/mol = 0.7827175... mol of Fe<sub>2</sub>O<sub>3(s)</sub>
             3) n_R = n_G \times R/G = 0.7827175... mol of Fe_2O_{3(s)}\times 1 mole of H_2O_{(q)} = 2.34815... mol = \frac{2.35}{1.00} mol of \frac{1}{1.00} mol = \frac{2.35}{1.00} mol = \frac{2.35} mol = \frac{2.35}{1.00} mol = \frac{2.35}{1.00} mol = \frac{2.35}
                                                                                                                                                                              2 moles of Fe<sub>2</sub>O<sub>3(s)</sub>
```

5. How many moles of zinc can react with hydrochloric acid to form 44.8 L of hydrogen gas at STP?

1) 1 $Zn_{(s)}$ + 2 $HCl_{(aq)} \rightarrow$ 1 $H_{2(g)}$ + $ZnCl_{2(aq)}$? 44.8 L

LINEAR METHOD:

44.8 L of H_2 x 1 mol of H_2 x 1 mol of Z_1 = 2.00 mol of Z_1 22.4 L of Z_2 1 mol of Z_2 1 mol of Z_2 1 mol of Z_2 2.00 m

STEP BY STEP METHOD:

- 2) n=v/V = 44.8 L / 22.4 L/mol =2.00 mol of H2
- 3) $n_R = n_G \times R/G = 2.00 \text{ mol of } H_2 \times 1 \text{ mol of } Zn = 2.00 \text{ mol of } Zn$ 1 mol of H_2
- 6. Solutions of copper (II) sulphate and potassium phosphate are mixed. If 8.5 g of copper (II) phosphate form, how many moles of copper (II) sulphate react? Cu = 63.55x3=190.65

R G P = 30.97x2=61.94 1) $3 \text{ CuSO}_{4(aq)} + 2 \text{ K}_3 \text{PO}_{4(aq)} \rightarrow 3 \text{ K}_2 \text{SO}_{4(aq)} + 1 \text{ Cu}_3 (\text{PO}_4)_{2(s)}$ O = 16.00x8=128.00

? mol 8.5 g TOTAL = 380.59g/mol

- 2) n=m/M = 8.5 g of $Cu_3(PO_4)_{2(s)} / 380.59g/mol$ of $Cu_3(PO_4)_{2(s)} = 0.02233...$ mol of $Cu_3(PO_4)_{2(s)}$
- 3) $n_R = n_G \times R/G = 0.500 \text{ mol of } Fe_3N_{2(s)} \times 1 \text{ mol of } Sn_3N_{2(s)} = 0.250 \text{ mol of tin (IV) phosphate}$ 2 mol of $Fe_3N_{2(s)}$

LINEAR: 8.5 g of $Cu_3(PO_4)_{2(s)}$ x $1 mol of <math>Cu_3(PO_4)_{2(s)}$ x $1 mol of Sn_3N_{2(s)}$ = $0.250 mol of tin (IV) phosphate 380.59g/mol of <math>Cu_3(PO_4)_{2(s)}$ 2 mol of $Fe_3N_{2(s)}$

- 7. In the manufacturing of nitric acid, nitrogen dioxide gas reacts with water to from nitric acid and nitrogen monoxide gas. How many moles of nitrogen dioxide gas reacts if 120.6 L of nitrogen monoxide gas is formed at SATP?
 - 1) $3 \text{ NO}_{2(g)} + \text{H}_2\text{O}_{(l)} \rightarrow 2 \text{ HNO}_{3(aq)} + 1 \text{ NO}_{(g)}$? 120.6 L

LINEAR METHOD:

120.6 L of $NO_{2(g)} \times 1 \text{ mol of } NO_{2(g)} \times 3 \text{ mol of } NO_{(g)} = 14.59 \text{ moles}$ of $NO_{(g)} \times 1 \times 100 \times 100 \times 100 \times 100 \times 100 \times 100 \times 1000 \times 1$

STEP BY STEP METHOD:

- 2) n=v/V = 120.6 L / 24.8 mol/L = 4.863 mol of NO_{2(q)}
- 3) $n_R = n_G \times R/G = 4.863 \text{ mol of } NO_{2(g)} \times 3 \text{ mol of } NO_{(g)} = 14.59 \text{ moles} \text{ of } NO_{(g)}$ 1 mol of $NO_{2(g)}$
- 8. The thermite reaction is used in welding iron and steel. Aluminium and iron (III) oxide are ignited at high temperatures to produce aluminium oxide and iron. If 15.0 g of aluminium is used in this reaction, how many moles of aluminium oxide will be produced?

G R Step 1) 2 $Al_{(s)}$ + $Fe_2O_{3(s)}$ \rightarrow 1 $Al_2O_{3(s)}$ + 2 $Fe_{(s)}$ 15.0g ? mol

Step 2) n=m/M = 15.0g of Al(s)/26.98g/mol = 0.55596...mol of Al(s)

Step 3) $n_R = n_G x R/G = 0.55596...$ mol of Al₂O_{3(s)} /2 mol of Al₂O_{3(s)} /2 mol of Al₂O_{3(s)} = 0.278 mol of Al₂O_{3(s)}

LINEAR: $\underline{15.0g \text{ of Al(s)} \times 1 \text{ mol of Al_2O}_{3(s)}}$ $\underline{26.98g \text{ of Al(s)}}$ $\underline{2 \text{ mol of Al_2O}_{3(s)}}$

Worksheet 2.4: Quantity to Quantity Stoichiometry

Directions: Solve the following hypothetical stoichiometry problems. Assume water is available.

1. How many particles of aluminium oxide must be decomposed to produce 80.0 g of oxygen gas at STP?

R G

1) $2 Al_2O_{3(s)} \rightarrow 4 Al_{(s)} + 3 O_{2(g)}$

LINEAR METHOD:

80.0 g of $O_{2(g)}x1$ mol of $O_{2(g)}$ x 2 mol of $Al_2O_{3(s)}x6.02E23$ particles of $Al_2O_{3(s)}=1.00E24$ part of $Al_2O_{3(s)}=1.00E24$

STEP BY STEP:

- 2) $n = m/M = 80.0g/32.00 g/mol = 2.5 mol of O_2$
- 3) $n_R = n_G \times R/G = 2.5 \text{ mol of } O_2 \times 2 \text{ mol of } Al_2O_3 = 1.66666... \text{ mol of } Al_2O_{3(s)}$ 3 mol of O_2
- 4) p = n P = 1.6666...mol x 6.02 E 23 particles/mol = $\frac{1.00 \text{ E 24 or } 1.00 \text{ x } 10^{24} \text{ particles of Al}_2\text{O}_{3(s)}}{10^{24} \text{ particles of Al}_2\text{O}_{3(s)}}$
- 2. Natural gas is mainly made up of methane. What mass of methane must be burned to produce 56.0 L of carbon dioxide at STP?

1) $1 \text{ CH}_4(g) + 2 \text{ O}_2(g) \rightarrow 1 \text{ CO}_2(g) + 2 \text{ H}_2\text{O}(g)$

LINEAR: $56.0 \text{ L of } CO_2 \times 1 \text{ mol of } CO_2 \times 1 \text{ mol of } CH_4 \times 16.05 \text{ g of } CH_4 = 40.1 \text{ g of } CH_{4(g)}$ 22.4 L of $CO_2 \times 1 \text{ mol of } CO_2 \times 1 \text{ mol of } CO_2 \times 1 \text{ mol of } CH_4 \times 16.05 \text{ g of } CH_4 \times 16$

STEP BY STEP:

- 2) $n=v/V = 56.0 L of CO_2/22.4 L of CO_2 = 2.5 mol of CO_2$
- 3) $n_R = n_G \times R/G = 2.5 \text{ mol of CO}_2 \times 1 \text{ mol of CH}_4/1 \text{ mol of CO}_2 = 2.5 \text{ mol of CO}_2$
- 4) m = nM = 2.5 mol of CO_2 x 16.05g/mol of CO_2 = 40.1 g of $CH_{4(q)}$
- 3. Aluminium metal is refined from bauxite ore. In the refining process, aluminium oxide decomposes to aluminium and oxygen gas. What mass of aluminium can be produced from **2.04 kg** of aluminium oxide?
 - 1) $2 \text{ Al}_2\text{O}_3 (s) \rightarrow 4 \text{ Al} (s) + 3 \text{ O}_2(g)$

LINEAR: $2040 \text{ g of Al}_2\text{O}_3 \times 1 \text{ mol of Al}_2\text{O}_3 \times 4 \text{ mol of Al} \times 26.98 \text{ g of Al} = 1079.6 \text{ g} = 1.08 \text{ kg of Al}$ $101.96 \text{ g of Al}_2\text{O}_3 \times 2 \text{ mol of Al}_2\text{O}_3 \times 1 \text{ mol of Al}$

STEP BY STEP:

- 2) n =m/M = 2040 g of Al_2O_3 / 101.96g/mol of Al_2O_3 = 20.0078... mol of Al_2O_3
- 3) $n_R = n_G \times R/G = 20.0078...$ mol of Al₂O₃ × 4 mol of Al/2 mol of Al₂O₃ = 40.0156... mol of Al(s)
- 4) m = nM = 40.0156... mol of Al(s) x 26.98 g/mol of Al = 1079.6 g = 1.08 kg of Al
- 4. Sodium hydrogen carbonate can be used to neutralize acids. If sodium hydrogen carbonate reacts with hydrochloric acid, what volume of carbon dioxide gas at STP can be produced by 16.8 g of sodium hydrogen carbonate? NOTE: Sodium chloride and water vapour is also produced.

G R

1) 1 NaHCO₃ (aq) + 1 HCl(aq) \rightarrow 1 CO₂ (g) + 1 NaCl (aq) + 1 H₂O(l)

LINEAR: $\underline{16.8 \text{ g of NaHCO}_3 \times 1 \text{ mol of NaHCO}_3 \times 1 \text{ mol of CO}_2} \times 22.4 \text{ L of CO}_2 = 4.48 \text{ L of CO}_{2(g)}$ 84.01 of NaHCO₃ 1 mol of NaHCO₃ 1 mol of CO₂

STEP BY STEP:

- 2) n=m/M = 16.8 g of NaHCO₃/ 84.01 g/mol of NaHCO₃ = 0.19997...mol of NaHCO₃
- 3) $n_R = n_G \times R/G = 0.19997...mol of NaHCO₃ x 1 mol of CO₂/1 mol of NaHCO₃ = 0.19997...mol of NaHCO₃$
- 4) v = nV = 0.19997...mol of NaHCO₃ x 22.4 L of CO₂ = 4.48 L of CO₂(q)

- 5. Photography film is coated with silver chloride, which is produced when silver nitrate reacts with sodium chloride. What mass of silver chloride can be made from 11.7 q of sodium chloride? G 1) 1 NaCl (aq) + 1 AgNO₃ (aq) \rightarrow 1 AgCl (aq) + 1 NaNO₃(aq) LINEAR:11.7 g of NaCl x 1 mol of NaCl x 1 mol of AgCl x 143.32 g of AgCl = 28.7 g of AgCl 58.44g of NaCl 1 mol of NaCl 1 mol of AgCl STEP BY STEP: 2) n = m/M = 11.7 g/58.44 g/mol = 0.200205...mol of NaCl3) $n_R = n_G \times R/G = 0.200205...$ mol of NaCl x 1 mol of AgCl = 0.200205...mol of AgCl 1 mol of NaCl 4) m = nM = 0.200205...mol of AqCl x 143.32q/mol = 28.693...q = 28.7q of AqCl 6. Ammonia reacts with hydrochloric acid to produce ammonium chloride. What volume of ammonia at SATP is needed to produce 36.1 g of ammonium chloride? 1) 1 NH₃ (g) + 1 HCl(aq) \rightarrow 1 NH₄Cl(aq) LINEAR: 36.1 g of NH₄Cl x 1 mol of NH₄Cl x 1 mol of NH₃ x 24.8 L of NH₃ = 16.7 L of NH₃ 53.50 g of NH₄Cl 1 mol of NH₄Cl 1 mol of NH₃ STEP BY STEP: 2) n = m/M = 36.1g / 53.50g/mol = 0.674766...mol of NH4Cl3) $n_R = n_G \times R/G = 0.674766...$ mol of NH4Cl x 1 mol of NH3 = 0.674766... mol of NH3 1 mol of NH4Cl 4) v = n V = 0.674766... mol of NH3 x 24.8L/mol = 16.734... L = 16.7 L of NH₃7. If sulphuric acid reacts with 29.4 g of potassium hydroxide, what mass of potassium sulphate is produced? 1) $2 H_2SO_4(aq) + 2 KOH(aq) \rightarrow 1 K_2SO_4(aq) + 2 HOH(l)$ LINEAR: $\underline{29.4 \text{ g of KOH x 1 mol of KOH}}$ x 1 mol of $\underline{K_2SO_4}$ x 174.27 g of $\underline{K_2SO_4}$ = 45.7 g of $\underline{K_2SO_4}$ 56.11 g of KOH 2 mol of KOH 1 mol of K₂SO₄ STEP BY STEP: 2) n = m/M = 29.4g / 56.11g/mol =3) $n_R = n_G \times R/G =$ 4) m = nMof precipitate? G R
 - 8. If sodium iodide reacts with lead (II) nitrate, what mass of lead (II) nitrate will be required to produce 150 g

1) 2 NaI (aq) + 1 Pb(NO₃)₂(aq) \rightarrow 1 PbI₂ (s) + 2 NaNO₃(aq)

LINEAR: $150 \text{ g of Pbl}_2 \times 1 \text{ mol of Pbl}_2 \times 1 \text{ mol of Pb}(NO_3)_2 \times 331.22 \text{ g of Pb}(NO_3)_2 = 108 \text{ g of Pb}(NO_3)_2$ 461 g of Pbl₂ 1 mol of Pbl₂ 1 mol of Pb(NO₃)₂

STEP BY STEP:

- 2) n = m/M =
- 3) $n_R = n_G \times R/G =$
- 4) m = nM

Worksheet 2.5: Limiting & Excess Reagents

Directions: For each of the following, write a balanced equation and determine the limiting reagent & the excess reagent (if they are present).

1. 5.0 mol of gasoline (C₈H₁₈₍₁₎) burns 47.0 mol of oxygen at STP. How many moles of carbon dioxide are present at STP? **G G R**

(2) (25) (16) (18)
Step 1)
$$1 C_8 H_{18(I)} + 12.5 O_{2(g)} \rightarrow 8 CO_{2(g)} + 9 H_2 O_{(g)}$$

Step 3) $5.0 \text{ mol of } C_8H_{18} \times 8 \text{ mol of } CO_2 = 40 \text{ mol of } CO_{2(g)}$ 1 mol of $C_8H_{18(1)}$

47.0 mol x 8 mol of $CO_{2(g)}$ = 30.08 mol of $CO_{2(g)}$ (LIMITING)=30.1 mol of $CO_{2(g)}$ 12.5 mol of $O_{2(g)}$

Step 4) not necessary.

2. 18.0 g of water breaks up into 6.0 g of oxygen. How many grams of hydrogen are formed?

Step 1) $2 H_2O_{(1)} \rightarrow O_{2(g)} + 2 H_{2(g)}$

Step 2) n=m/M = 18.0g/18.02g/mol of water = 1.0...mol of water

THIS IS NOT A LIMITING QUESTION BECAUSE THERE IS ONLY ONE REACTANT.

n = m/M = 6.0g/36.0g/mol = 0.166... mol of oxygen

THIS QUESTION CAN NOT BE SOLVED BECAUSE YOU DON'T KNOW WHICH ONE IS GIVEN. THIS COULD BE A PERCENT YIELD QUESTION (NEXT LESSON.)

3. 22.4 mL of methane reacts with 22.4 mL of oxygen at SATP. How many moles of water

= 0.0224/24.8 = 0.0224/24.8 = 9.03...E4 mol = 9.03...E -4 mol = 9.03...E -4 mol = 9.03...E -4 x 2mol = 9.03...E -4 x 2mol = 9.03...E -4 x 2mol

 $\begin{array}{ccc}
\text{1mol CH}_{4(g)} & & & & \text{2mol H}_{2}O_{(g)} \\
& & & & \text{2mol O}_{2(g)} \\
& & & & \text{2mol O}_{2(g)}
\end{array}$ = 1.806..E-3 mol (EXCESS) = \frac{9.03E-4 mol}{9.03E-4 mol} (LIMIT)

Step 4) If we changed it to volume

9.03...E-4mol x 24.8L/mol = 0.0224 L of water or 22.4 mL of water

- 4. 26 g of magnesium react with 1.00 mol of hydrochloric acid.
 - a) What volume of Hydrogen gas is made at STP?

```
G
                                                            2 HCI<sub>(aq)</sub> →
                                                                              1 H_{2(g)} + MgCl_{2(aq)}
Step 1)
                          1 Mg_{(s)}
                          = 26/24.31g/mol
Step 2) n = m/M
                                                             1.00 mol
                          = 1.069...mol
                          1.069...mol x 1mol H_{2(q)}
                                                            1.00 mol x1 mol H<sub>2(a0</sub>
Step 3)
                                                                          2 mol HCI<sub>(aq)</sub>
                                           1mol Mg<sub>(s)</sub>
                          =1.0695...mol (EXCESS)
                                                            = 0.500 mol (HCl is LIMITing)
```

b) How much excess reagent is left over?

Step 4) v = nV

0.500 mol of $H_{2(q)}$ x 22.4L/mol = 11.2 L of $H_{2(q)}$

Step 3) $\frac{1.00 \text{ mol of HCl}_{(aq)} \text{ x1 mol Mg}_{(s)} = 0.500 \text{ mol of Mg}_{(s)} \text{ is used}}{2 \text{mol HCl}_{(aq)}}$

Step 4) Excess = Original-used=1.0695...mol-0.500mol = $\frac{0.570 \text{ mol of Mg}_{(s)} \text{ left}}{\text{m= n M}} = 0.5695... \text{ mol of Mg x } 24.31g/\text{mol} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} \text{ left over}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of Mg}_{(s)} = \frac{13.8 \text{ g of Mg}_{(s)}}{\text{mol of Mg}_{(s)}} = \frac{13.8 \text{ g of M$

5. 3.02 x 10²³ formula units of sodium react with 12 L of chlorine gas at STP. How much excess reagent is left over if the limiting is all used up?

Step 4) Excess = original – used = 1.0714... mol – 0.2508.. mol = $\frac{0.821 \text{ mol of Cl}_{2(g)}}{\text{v=nV}}$; v = 0.821...mol of Cl_{2(g)}x 22.4L/mol = 18.380...L= $\frac{18.4 \text{ L of Cl}_{2(g)}}{\text{cl}_{2(g)}}$

- 6. Describe a limiting reagent and an excess reagent.
 - A limiting reagent is a reactant that controls how much product you have (it is the first reagent to be used up.
 - An excess reagent is a reactant that is left over (it is not all used up)

Worksheet 2.6: Percent yield and Percent error

Directions: For each of the following write a balanced equation and determine the theoretical yield, actual yield, percent yield & the percent error.

```
8.0 mol of sulphur dioxide decomposes and actually produces 7.0 mol of oxygen gas.
1.
         G
                                   R
                                + 8 O<sub>2(g)</sub>
Step 1) 8 SO_{2(q)} \rightarrow S_{8(s)}
                                   7.0 \text{ mol} = AY; TY = ?
         8.0 mol
Step 3) 8.0 mol x 8 mol of O_{2(g)} = 8.0 mol of O_{2(g)} is the TY
                     8 mol of SO_{2(g)}
Step 5) % yield = AY/TY \times 100
                                        7.0 mol/ 8.0 mol x 100 = 88\%
        % error = \TY - AY = 12.5 % (100 - 87.5 = 13%)
                        TY
        26.0 g of aluminum reacts with a solution of calcium nitrate and produces 3.00 moles of
calcium. G
                                3 Ca (NO_3)_{2(aq)} \rightarrow
Step 1) 2 Al (s)
                                                         3 Ca <sub>(s)</sub> +
                                                                         2 AI(NO<sub>3</sub>)<sub>3(aq)</sub>
Step 2) 26.0/26.98g/mol
                                                         3.00 \text{ mol} = AY
        = 0.964... mol
Step 3) 0.964... mol x 3 mol of Ca_{(s)} = 1.45... mol of Ca_{(s)} = TY
                           2 mol of Al<sub>(s)</sub>
                                        3.00 mol / 1.45... mol x 100 = 207% because of of the
Step 5) % yield = AY/TY \times 100
solution (not evaporated)
        % error = (AY – TY)/TY x 100
                                                 = 107%
3. 6.50 mol of potassium chlorate solid is heated and breaks down into potassium chloride
    solid and 223 L of oxygen gas at SATP.
                                                                 R(TY) = ?
                                        2KCI<sub>(s)</sub>
                                                                 3 O<sub>2(g)</sub>
Step 1)
                2 KCIO<sub>3(s)</sub> \rightarrow
                                                                 223L = AY
Step 2)
                6.50 mol
                                                          (n=v/V= 223L/24.8L/mol =8.99... mol)
                6.50 mol x 3 mol of O2 /2mol of KClO3 = 9.75... mol of O2 = TY
Step 4)v = nV = 9.75 \times 24.8 = 241.8 L = TY (Not necessary if you changed AY to moles)
Step 5) % yield AY/TY x 100 = 223L/241.8 L \times 100\% = \frac{92.2\%}{2000} (%yield =8.99.../9.75 x 100%)
        % error = (TY-AY)/TY \times 100\% = (241.8 - 223)/241.8 = 7.79\%
4.
        33.6 L of methane burns and produces 2.00 mol of carbon dioxide gas at STP.
                        G
                                                                  R
                        1 CH<sub>4(g)</sub>
                                                                 1 CO<sub>2(g)</sub>
                                                 2 O<sub>2(g)</sub> →
Step 1) balance
                                                                                          2 H<sub>2</sub>O<sub>(a)</sub>
Step 2) n = v/V = 33.6/22.4 = 1.5 \text{ mol}
                                                                 2.00 \text{ mol} = AY
Step 3) mole ratio
                        1.5 mol x 1 mol of CO_{2(g)} = 1.5 mol = TY
                                    1 mol of CH<sub>4(a)</sub>
Step 5) % yield = AY/TY x 100 = 2.00/1.5 \times 100 = 133 \%
        % error = 33.3% (answer becomes positive)
        Sulphuric acid reacts with 29.4 g of potassium hydroxide and produces 40.5 g of
5.
potassium sulphate
Step 1)
                        H_2SO_4 (aq) +
                                        2 \text{ KOH}_{(aq)} \rightarrow 2 \text{ HOH}_{(l)} +
                                                                         1 K<sub>2</sub>SO<sub>4 (aq)</sub>
Step 2)
                        n = m/M
                                       = 29.4/56.11g/mol
                                                                         40.5g/174.27= AY
                                                                         = 0.23239... mol = AY
                                        = 0.5239... mol of KOH
                                        0.5239... x 1mol of K_2SO_{4 (aq)} = 0.26195... mol TY
Step 3)
                                                      2mol of KOH<sub>(aq)</sub>
Step 4) Don't have to do this step because both AY and TY are in moles.
```

Step 5) %yield = AY/TY = 0.23239.../0.26195... x 100 = 88.7 % % error = (AY - TY)/TY x 100 = 11.3%

6. Describe percent yield and percent error.

Percent yield: a ratio between AY and TY as a percent; how much you produce compared to what you should produce.

Percent error: an indication of error (human, instrumental & experimental).

Worksheet 2.7: Limiting Reagents and Percent Yield

1. Methane gas burns at STP.

If 0.500 mol of methane is burned in 2.50 mol of oxygen, what is the limiting

reagent? G1 G2 2 O_{2(q)} → $CO_{2(g)}$ + 2 H₂O_(q) Step 1) 1 CH_{4(a)} 2.50 mol Step 2) 0.500 mol

Step 3) $0.500 \times 2 \text{mol of H}_2O_{(q)} 2.50 \times 2 \text{mol of H}_2O_{(q)}$ 1 mol of $CH_{4(q)}$ 2mol of $O_{2(\alpha)}$

= 1.00 mol ← TY 2.50 mol of water of water CH₄ is limiting O₂ is excess

b. What is the theoretical yield, in moles, of water?

1.00 mol of water is the theoretical yield (use the limiting side

2. Sodium and chlorine are mixed together.

What is the limiting reagent if there is 10.0 g of sodium and 20.0 g of chlorine?

G2 1 CI_{2(g)} 2 Na_(s) 2 NaCl_(aq) 2) n=m/M = 10.0g/22.99g/moln=20.0g/70.90g/mol

= 0.4349717...mol = 0.282087447...mol

x 2 mol of NaCl_(aq)/2mol of Na_(s) x 2 mol of NaCl_(aq)/1 mol of $Cl_{2(q)}$ 3) = 0.4349...mol of NaCl_(aq) (smaller) = 0.56417...mol of NaCl_(aq)

Na_(s) is LIMITING Cl_{2(g)} is EXCESS

LINE METHOD:

1)

10.0g x 1 mol of Na_(s) x 2 mol of NaCl_(aq) x 58.44 g of NaCl_(aq)= 25.419... g of NaCl LIMIT 1 mol of NaCl_(aq) 22.99 g 2 mol of Na_(s) 20.0g x 1 mol of Cl₂ x 2 mol of NaCl_(aq) x 58.44 g of NaCl_(aq) = 32.970... g of NaCl EXCESS 70.90 g 1 mol of Cl_{2(s)} 1 mol of NaCl_(aq)

- b. How many grams of the product are produced?
- $m = nM_{NaCl} = 0.4349717...mol of NaCl_(aq) x 58.44g/mol = 25.4 g of NaCl_(aq)$ 4)
- In the synthesis of sulphuric acid, one step involves the mixing of sulphur dioxide with oxygen to produce sulphur trioxide. If 175 L of sulphur dioxide was mixed with 85 L of oxygen at SATP, how many litres of sulphur trioxide is produced?

G1 = EG2 = L2SO_{3(g)} 10_{2(g)} STEP 1) 2SO_{2(q)} 175 L 85L

STEP 2) n = v/V = 175L/24.8L/moln = 85L/24.8L/mol

n = 7.0564...mol SO_{2(q)} $n = 3.4274...mol of O_{2(q)}$

STEP 3) x 2 mol $SO_{3(q)} = 7.0564...$ mol $x 2 \text{ mol } SO_{3(q)} = 6.8548...\text{mol of } SO_{3(q)} \text{ (LIMITING)}$ 2 mol SO_{2(g)} 1 mol of $O_{2(g)}$

STEP 4) v=nV = 6.8548...mol of $SO_{3(g)}$ x 24.8 = $\frac{170 \text{ L of } SO_{3(g)}}{1000}$

LINEAR METHOD

For $SO_{2(q)}$: 175L x 1 mol of $SO_{2(q)}$ x 2 mol of $SO_{3(q)}$ x 24.8 L of $SO_{3(q)}$ = 174.99 ... L of $SO_{3(q)}$ 24.8 L of $SO_{2(q)}$ 2 mol of $SO_{2(q)}$ 1 mol of $SO_{3(q)}$

For $O_{2(q)}$: 85L x 1 mol of $O_{2(q)}$ x 2 mol of $SO_{3(q)}$ x 24.8 L of $SO_{3(q)}$ = 170 L of $SO_{3(q)}$ 24.8 L of $O_{2(q)}$ 1 mol of $O_{2(q)}$ 1 mol of $SO_{3(q)}$

```
Adipic acid (C_6H_{10}O_{4(s)}), a raw material for nylon, is made by the oxidation (reacting with
oxygen) of cyclohexane (C_6H_{12(s)}). Water is a by-product.
```

a. How many moles of oxygen gas would be needed to make 40.0 mol of adipic acid?

```
R
STEP 1) C<sub>6</sub>H<sub>12(s)</sub>
                                                                   2.5O<sub>2(g)</sub>
                                                                                                               1 C_6H_{10}O_{4(s)} + H_2O(l)
STEP 2) Already in moles
                                                                                                               40.0mol = n_a
STEP 3) n_{q} \times 2.5 \text{ mol } O_{2(q)} = \frac{100 \text{ mol of } O_{2(q)}}{100 \text{ mol of } O_{2(q)}}
                      1 mol C<sub>6</sub>H<sub>12(s)</sub>
STEP 4) Not needed
LINEAR METHOD
For SO_{2(g)}: 40.0 mol of C_6H_{10}O_{4(s)} x 2.5 mol of O_{2(g)} = 100 mol of O_{2(g)}
                                                      1 mol of C_6H_{10}O_{4(s)}
```

b. If 2.00 mol of oxygen is reacted with 164 g of cyclohexane, what is the theoretical

```
yeild of adipic acid in grams?
                                               G1 = L
STEP 1) (G2)C_6H_{12(s)} +
                                                                                      \rightarrow
                                                         2.5O<sub>2(g)</sub>
                                                                                                1 C_6H_{10}O_{4(s)} + H_2O(I)
STEP 2) n=m/M=164g/84.18g/mol
                                                         2 mol
            n=1.9482... mol of C_6H_{12(s)}
STEP 3) n_a \times 1 \text{ mol } C_6 H_{10} O_{4(s)}
                                                         n_a \times 1 \text{ mol of } C_6 H_{10} O_{4(s)}
                  1 mol C_6H_{12(s)}
                                                               2.5 mo of O_{2(g)}
         _{1}= 1.9482... mol of C_{6}H_{10}O_{4(s)}
                                                         = 0.8 mol of C_6H_{10}O_{4(s)} (LIMITING)
STEP 4) 0.8 mol of C_6H_{10}O_{4(s)} x 146.16 g/mol = 116.928 g = 1 x 10^2 g of C_6H_{10}O_{4(s)} = TY(1 sig dig)
LINEAR METHOD
For O_{2(q)}: 2 mol of O_{2(q)}x1 mol
                                             x146.16g 	ext{ of } C_6H_{10}O_{4(s)} = \frac{1x10^2 	ext{ g of } C_6H_{10}O_{4(s)}}{(1 	ext{ sig dig})}
                             2.5 mol O_{2(q)} 1 mol of C_6H_{10}O_{4(s)}
For C_6H_{12(s)}: <u>164gx1mol x 1 mol</u> <u>x146.16g of C_6H_{10}O_{4(s)} = 285 g of C_6H_{10}O_{4(s)} (3 sig dig)</u>
```

84.18g 1 mol 1 mol of $C_6H_{10}\bar{O}_{4(s)}$

If 285 g of acid was produced in b) what is the percent yield? (Use rounded answer from b) % yield = AY/TY x 100% = 285 g / 1 x 10^2 g of $C_6H_{10}O_{4(s)}$ x 100% = 285% yield = $\frac{3 \times 10^2 \%}{100\%}$

- 5. A chemist, new to the behaviour of chlorine toward hydrocarbon compounds, tried to make dichloromethane (CH₂Cl_{2(a)}), by mixing 5500 mL of chloromethane (CH₃Cl_(a)) and 5500 mL of chlorine at STP. Hydrogen chloride gas was a by product. After the reaction was complete, some chloromethane remained unchanged and 12.8 g of dichloromethane was obtained.
 - Which reactant is excess?

```
G1 = E
                                                        G2 = L
STEP 1)
                        1 CH<sub>3</sub>CI<sub>(q)</sub>
                                                        1.5 Cl<sub>2(q)</sub>
                                                                                 CH<sub>2</sub>CI<sub>2(q)</sub>
                                                                                                         HCI<sub>(q)</sub>
                                                                                 12.8 g
                        5500 mL
                                                        5500 mL
STEP 2) n= v/V
                        = 5.5L/22.4L/mol
                                                        5.5L/22.4L/mol
                        =0.2455...mol
                                                        =0.2455...mol
                        x 1mol/1mol=0.2455...mol x 1 mol/1.5 mol = 0.1636...mol
STEP 3)
                        Chloromethane is excess
                        How much dichlormethane can theoretically be produced?
                b.
STEP 4)
                        m = nM = 0.1636...mol \times 84.93 g/mol = 13.89...g = 13.9 g = TY
                        What is the percent yield?
                C.
                        %yield = AY/TY x 100% = 12.8 g / 13.9 g x 100% = 92.086...% = \frac{92.1\%}{100}
```

d. What is the percent error? %error = (TY-AY)/TY x 100% = (13.9 – 12.8)/13.9 x 100% = 7.91 %

Worksheet 3.8: Stoichiometry Review

1. A 34.5 g sample of sodium hydroxide solution is reacted with excess phosphoric acid. What is the mass of sodium phosphate that will form? G 3 NaOH_(aq) $1 H_3PO_{4(aq)} \rightarrow 3 HOH +$ 1 Na₃PO_{4(aq)} Step 1) Step 2) n=m/M n=34.5g/40.00g/mol = 0.8625 mol $0.8625 \text{ mol of NaOH}_{(aq)} \times 1 \text{ mol of Na}_{3}PO_{4(aq)} = 0.2875 \text{ mol of Na}_{3}PO_{4(aq)}$ 3 mol of NaOH_(aq) Step 4) m=nM; m = 0.2875 mol of $Na_3PO_{4(aq)} \times 163.94$ g/mol of $Na_3PO_{4(aq)} = \frac{47.1}{9}$ of $Na_3PO_{4(aq)} = \frac{47.1}{9}$ LINE METHOD: 34.5g of NaOH_(aq) x 1mol of NaOH_(aq) x 1mol of Na₃PO_{4(aq)} x163.94g of Na₃PO_{4(aq)} = $\frac{47.1g}{47.1g}$ of Na₃PO_{4(aq)} 40.00g of NaOH_(aq) 3mol of NaOH_(aq) 1mol of Na₃PO_{4(an)} 2. A 75.0 g sample of lithium carbonate reacts with 120 g of aluminum nitrate. What mass of precipitate will form? G = LRG R 2 AI(NO₃)_{3(aq)} \rightarrow 1) $3 \text{ Li}_2\text{CO}_{3(aq)} +$ 6 LiNO_{3(aq)} + 1 Al₂(CO₃)₃ (s) 75.0 g/73.89 = 1.0150... mol 120g/213.01=0.56333...mol FOR Li₂CO_{3(aq)}: 1.0150...mol x 1 mol of Al₂(CO₃)₃ x 233.99 g of Al₂(CO₃)_{3(s)} =79.2 g 3 mol of Li₂CO_{3(aq)} 1 mol of Al₂(CO₃)_{3(s)} FOR Al(NO₃)_{3(a0)}: =0.56333...mol x 1mol Al₂(CO₃)₃ x 233.99g of Al₂(CO₃)_{3(s)}=65.9g(LIMITED) 2 mol of Al(NO₃)_{3(aq)} 1 mol of $Al_2(CO_3)_{3(s)}$ b) HOW MUCH EXCESS LEFT OVER GR EXCESS G = LR $2 \text{ Al(NO}_3)_3 \text{ (aq)} \rightarrow 6 \text{ LiNO}_3 \text{ (aq)} +$ $3 \operatorname{Li}_2 CO_3(aq) +$ $1 \text{ Al}_2(CO_3)_3 (s)$ 120g/213.01 = 0.563333...mol =0.56333...mol x 3 mol of Li₂CO₃ x 73.89 g of Li₂CO₃ = 62.4 g 2 mol of 75.0 - 62.4 = 12.6 g of EXCESS LEFT OVER3. A 45.0 g sample of ethanol burns in the presence of 105 L of oxygen gas. (assume STP). What is the percent yield if 50.0 g of carbon dioxide is formed? G1 = LG2 = E R = TY1 C₂H₅OH_(I) $3 O_{2(g)} \rightarrow$ $2 CO_{2(q)} + 3 H_2O_{(q)}$ Step 1) Step 2) n=m/M; n=45.0g / 46.08g/mol n=v/V; n = 105L/22.4L/mol AY = 50.0Gn=0.9765625 mol n = 4.6875 mol $x \ 2 \ mol \ of \ CO_{2(a)} = 1.953...mol$ Step 3) R/G x 2 mol of $CO_{2(q)} = 3.125$ mol of $CO_{2(q)}$ 3 mol of $O_{2(q)}$ 1 mol of C₂H₅OH₍₁₎ Step 4) m=nM; m = 1.953...mol of CO_{2(g)} x 44.01 g/mol of CO_{2(g)} = 85.957...g = $\frac{86.0 \text{ g of CO}_{2(g)}}{86.0 \text{ g of CO}_{2(g)}}$ LINE METHOD: For $C_2H_5OH_{(1)}$: 45.0g of $C_2H_5OH_{(1)}$ x1mol of $C_2H_5OH_{(1)}$ x 2mol of $CO_{2(g)}$ x44.01g of $CO_{2(g)}$ =86.0 g of $CO_{2(g)}$

For $O_{2(q)}$: 105L of $O_{2(q)}$ x 1 mol of $O_{2(q)}$ x 2 mol of $O_{2(q)}$ x 44.01 g of $O_{2(q)}$ = 137.53...g of $O_{2(q)}$

22.4 L of $O_{2(q)}$ 3 mol of $O_{2(q)}$

46.08g of $C_2H_5OH_{(1)}$ 1 mol of $C_2H_5OH_{(1)}$ 1 mol of $CO_{2(g)}$

1 mol of CO_{2(a)}

4. When 5.6×10^{24} particles of magnesium sulfide reacts with potassium hydroxide, then 500 g of precipitate forms. What is the percent error? 1 MgS_(s) 2 KOH_(aq) $K_2S_{(aq)}$ $1 \text{ Mg(OH)}_{2(s)}$ Step 1) Step 2) n=p/P=5.6E24/6.02E23 500q = AYn = 9.3023...mol Step 3) R/G x 1 mol of Mg(OH)_{2(s)} = 9.3023...mol of Mg(OH)_{2(s)} Step 4) m=nM; m = 9.23023... mol of Mg(OH)_{2(s)} x 58.33 g/mol of Mg(OH)_{2(s)}=542.604...g = TY LINE METHOD: 5.6E24 of MgS x 1 mol of MgS x 1 mol of Mg(OH)_{2(s)} x 58.33g of Mg(OH)_{2(s)} = 542.604...g of Mg(OH)_{2(s)} 6.02E23 of MgS 1 mol of MgS 1 mol of $Mg(OH)_{2(s)}$ Step 5) %error = $(TY-AY)/TY \times 100\% = (542.604...g - 500g)/542.604...g \times 100\% = 7.85 %$ 5. When 36.9 L of chlorine gas (SATP) reacts with 36.8 g of magnesium oxide, 38.9 g of magnesium chloride formed. What mass of magnesium chloride did you expect? G1 = E G2 = LR = TY $O_{2(g)} + 2 MgCl_{2(s)}$ Step 1) 2 Cl_{2(a)} 2 MgO_(s) Step 2) n=v/V; n=36.9L/24.8L/mol n=m/M; n=36.8g/40.31g/mol 38.9 q = AYn=1.4879...mol of Cl_{2(q)} n=0.9129...mol of MgO 0.9129...mol of MgO x 2 mol of MgCl_{2(s)}/2 mol of MgO = 0.9129...mol of MgCl_{2(s)} Step 4) m=nM; m = 0.9129...mol of MgCl_{2(s)} x 95.21g.mol = 86.9195...g = $\frac{86.9g}{9}$ of MgCl_{2(s)} = TY **LINE METHOD:** For Cl₂: 36.9L of Cl₂ x 1 mol of Cl_{2(q)} x 2 mol of MgCl_{2(s)} x 95.21 g of MgCl_{2(s)} = 141.66 g of MgCl_{2(s)} 1 mol of MgCl_{2(s)} 24.8L of $Cl_{2(\alpha)}$ 2 mol of $Cl_{2(\alpha)}$ For MgO: 36.8g of MgO x 1 mol of MgO x 2 mol of MgCl_{2(s)} x 95.21 g of MgCl_{2(s)} = 86.9 g of MgCl_{2(s)} 40.31g of MgO 2 mol of MgO 1 mol of $MgCl_{2(s)}$ 6. When 24.5 g of iron(II) chloride reacts with 35.0 g of zinc, 7.2 g of iron was formed. What is the percent yield and percent error is this experiment? G1=L G2 =E R = TYStep 1) 1 FeCl_{2(aq)} 1 Zn_(s) ZnCI_{2(aq)} $1 \, \text{Fe}_{(s)} +$ Step 2) n=m/M; n = 24.5g/126.75g/moln=35.0g/65.41g/mol 7.2g = AY n=0.19329... mol n = 0.53508...mol 0.19329... mol x 1 mol of Fe_(s)/1 mol of FeCl_{2(ac)} = 0.19329... mol of Fe Step 4) m=nM; m=0.19329...mol of Fe x 55.85 g/mol = 10.79...g of Fe = TY **LINE METHOD:** For FeCl₂: $\underline{24.5 \text{ g of FeCl}_{2(aq)} \times 1\text{mol of FeCl}_{2(aq)} \times 1\text{mol of Fe}_{(s)} \times 55.85 \text{ g of Fe}_{(s)} = 10.79... \text{ g of Fe}_{(s)} = TY$ 126.75 g of FeCl_{2(aq)} 1mol of FeCl_{2(aq)} 1 mol of Fe_(s) For Zn: 35.0g of $Zn_{(s)} \times 1 \mod of Zn_{(s)} \times 1 \mod of Fe_{(s)} \times 55.85g of Fe_{(s)} = 29.8845...$ of $Fe_{(s)}$ 65.41g of $Zn_{(s)}$ 1 mol of $Zn_{(s)}$ 1 mol of $Fe_{(s)}$ Step 5) %yield=AY/TY x $100\% = 7.2g/10.79...g x <math>100\% = 66.69...\% = \frac{66.7\%}{1000}$ %error = 100 - %vield = 33.3%

Worksheet 2.11: Introduction to Gases & Dalton's Gas Law

1. What are three physical properties of all gases?

Gases are do not have a fixed volume or shape (fill container), are compressible and diffuse.

2. What three variables affect gases?

Pressure, temperature and volume

3. What instrument measures pressure?

Barometer (manometer)

4. What is the SI unit for pressure?

KPa (kiloPascals)

5. What unit expresses the average kinetic energy of a gas?

Kelvin or degrees Celcius

- 6. A 1.00 L bottle of gas contains oxygen at 10.0 kPa, nitrogen at 12.1 kPa and hydrogen at 97.5 kPa
 - a. What is the total pressure?

$$P_T = P_1 + P_2 + P_3$$

P_T=10.0 kPa + 12.1 kPa + 97.5 kPa

P_T=119.6 kPa (one decimal place for significant digits)

- b. What percent of each gas is present? (HINT % = P_{gas}/P_{total} x 100) oxygen = 8.36 %; nitrogen = 10.1 %; hydrogen = 81.5 % (3 significant digits)
- c. What is the volume of each gas?

V of oxygen = $1.00L \times 0.0836 = 0.0836 L = 83.6 mL$

7. Four gases (A,B,C and D) make up a mixture with a pressure of 150 kPa. What is the partial pressure of gas A, if gas B has a pressure of 58.0 kPa, gas C has a pressure of 23.8 kPa and gas D has a pressure of 15.9 kPa.

$$P_1 = P_T - (P_2 + P_3 + P_4)$$

P=52.3 kPa

8. Three gases make up a mixture. At a particular pressure, the partial pressures are measured: Gas A = 67.00 kPa, Gas B, 6.70 kPa, and Gas C = 0.67 kPa. What is the pressure conditions under which this measurement is taken?

$$P_T = P_1 + P_2 + P_3$$

Worksheet 2.12: Boyles' Gas Law

- 1. What is the pressure when: (temperature is constant)
 - a. 130 mL of a gas at 740 mmHg is changed to 150 mL?

 $P_2 = P_1V_1/V_2$; $P_2=740$ mmHg x 130mL / 150mL $P_2=641$ mmHg

b. 25 mL of gas at 65 atm is changed to 30.0 mL?

 $P_2 = P_1V_1/V_2$; $P_2=65atm \times 25mL / 30.0mL$ $P_2=54 atm$

c. 1.0 L of gas at 70 kPa is changed to 1.2 L?

 $P_2 = P_1V_1/V_2$; $P_2=70$ kPa x 1.0L / 1.2L $P_2=58$ kPa

- 2. What is the volume when: (temperature is constant)
 - a. 75 mL of gas at 4.1 atm is changed to 7.0 atm? $V_2 = P_1 V_1 / P_2; \ V_2 = 4.1 atm \ x \ 75 mL \ / \ 7.0 atm$ $V_2 = 44 \ mL$
 - b. 60.0 mL of gas at 760 mmHg is changed to 10 mmHg?

 $V_2 = P_1V_1/P_2$; $V_2=760$ mmHg x 60mL / 10 mmHg $V_2=4.6$ L or 4.6×10^3 mL

c. 400.0 mL of gas at 760 kPa is changed to 300 kPa?

 $V_2 = P_1V_1/P_2$; $V_2=760$ kPa x 400ml/300kPa $V_2=1013.33$ mL; 1.01×10^3 mL or 1.01 L

Worksheet 2.13: Charles' Gas Law

1. What is the volume when: (pressure is constant)

> a. 125 mL of gas at 25° C is cooled to Standard temperature?

> > $T_1=25 + 273.15=298.15K$

 $T_2=0 + 273.15=273.15K$

 $V_2 = V_1 T_2 / T_1; V_2 =$

V₂=0.11L or 1.1x102 mL

300.0 mL of gas at 0.0°C is heated to 30.0°C? b.

 $T_1=0 + 273.15=273.15K$

 T_2 =30 + 273.15=303.15K

 $V_2 = V_1 T_2 / T_1$; $V_2 =$

 V_2 =0.333L or 333mL

220.0 mL of gas at 10.0°C is heated to 100.0°C? C.

 $T_1=10 + 273.15=283.15K$ $T_2=100 + 273.15=373.15K$

 $V_2 = V_1 T_2 / T_1; V_2 =$

V₂=0.290L or 290 mL

2. What is the temperature when: (pressure is constant)

> a. 30.0 mL (V1) of gas at 14°C (T1) is compressed to 22 mL (V2)?

> > $T_1=14 + 273.15=287.15K$

 $T_2 = V_2T_1/V_1$; $T_2=22mLx287.15/30mL$

 T_2 =210.6 K; 2.1 x 10²K or -63C

16.4 mL of gas at 28°C is expanded to 20.0 mL? b.

 T_1 =28 + 273.15=301.15K

 $T_2 = V_2 T_1 / V_1$; $T_2 = 20 \times 301.15 / 16.4$

 T_2 =367.25K; 3.7x10²K or 94C

39 mL of gas at 0.0°C is compressed to 35 mL? C.

 $T_1=0 + 273.15=273.15K$

 $T_2 = V_2T_1/V_1$; $T_2=35x273.15/39$

 T_2 =245.1K; 2.5 x10²K or -28C

Worksheet 2.14: Lusac's Gas Law

- What is the pressure when: (volume is constant) 1.
 - a. a gas at 130 C and 740 mmHg is changed to 150 C?

 T_1 =273.15 + 130 = 403.15K T_2 =273.15 + 150 = 423.15K

 $P_1=P_2T_1/T_2$; $P_1=740$ mmHg x 403.15K / 423.15K

P₁=777 mmHg

a gas at 25 C and 65 atm is changed to 30.0 C? b.

 T_1 =273.15 + 25 = 293.15K T_2 =273.15 + 30.0 = 303.15K

 $P_1=P_2T_1/T_2; P_1=$

P₁=66 atm

a gas at 1.0 K and 70 kPa is changed to 1.2 K? C.

 $P_1=P_2T_1/T_2; P_1=$

P₁= 84 kPa

- 2. What is the temperature in degrees Celcius when: (volume is constant)
 - a gas at 75.0 C and 4.10 atm is changed to 7.00 atm? a.

 T_1 =273.15 +75.0 = 348.15K

 $T_2=P_2T_1/P_1$; $T_2=7.00 \times 348.15/4.10$

T₂=594 K or 321C

b. a gas at 60.0 C and 760 mmHg is changed to 10.0 mmHg?

 T_1 =273.15 +75.0 = 348.15K

 $T_2=P_2T_1/P_1; T_2=$

 T_2 =4.38K or –269 C

a gas at 113 K and 760 kPa is changed to 300 kPa? C.

 $T_2=P_2T_1/P_1$; $T_2=300kPa \times 113K / 760kPa$

 T_2 =44.6K or -229 C

Worksheet 2.15: Combined Gas Law

Solve the following gas problems.

1. If 120 mL of oxygen is collected at 27°C and 740 mmHg, what will the volume of the dry gas be at STP? **T=0C**, **P=760 mmHg**

$$T_1=273.15+27=300.15 \text{ K}, V_1=0.120 \text{L}, P_1=740 \text{mmHg}$$

$$T_2$$
=273.15 + 0 = 273.15 K, V_2 =?, P_2 =760mmHg

$$P_1V_1T_2=P_2V_2T_1$$
; $V_2=$

$$V_2=0.11L$$
 or 1.1 x 10^2 mL

2. If 500.0 mL of hydrogen is collected at 293.15 K and 95.0 kPa, what will the volume of the gas by at SATP? **T=25C**, **P=100 kPa**

$$T_1$$
=293.15 K, V_1 =0.500L, P_1 =95.0kPa

$$T_2$$
=273.15 + 25 = 298.15 K, V_2 =?, P_2 =100kPa

$$P_1V_1T_2=P_2V_2T_1; V_2=$$

3. 113 mL of oxygen is collected at 22°C and 98.0 kPa and left over night. The next day, the volume was 109 mL and the temperature was 21°C. What was the pressure?

$$T_1=273.15 + 22 = 295.15 \text{ K}, V_1=0.113 \text{L}, P_1=98.0 \text{kPa}$$

$$T_2$$
=273.15 + 21 = 294.15 K, V_2 =0.109L, P_2 =?

$$P_1V_1T_2=P_2V_2T_1$$
; $P_2=$

$$P_2=101.25 \text{ kPa}, P_2=1.0 \times 10^2 \text{ kPa}$$

5. 36 mL of nitrogen was collected at 25°C, but the barometer was broken so the pressure could not be read. Three days later, the new barometer arrived. The new volume was 32 mL, the temperature was 21°C and the pressure reading was 739 mmHg. What was the original pressure?

$$T_1$$
=273.15 + 25 = 298.15 K, V_1 =0.036L, P_1 =?

$$T_2$$
=273.15 + 21 = 294.15 K, V_2 =0.032L, P_2 =739mmHg

$$P_1V_1T_2=P_2V_2T_1$$

$$P_1=665.8 \text{ mmHg}, P_1=6.7 \times 10^2 \text{ mmHg}$$

4. If 250 mL of helium was collected at STP, what will the temperature be if the volume is reduced to 200 mL and the pressure increased to 110 kPa?

$$T_1$$
=273.15 + 0 = 273.15 K, V_1 =0.250L, P_1 =101.325 kPa

$$T_2=?$$
, $V_2=0.200L$, $P_2=110$ kPa

$$P_1V_1T_2=P_2V_2T_1$$
; $T_2=110kPa \times 0.200L \times 273.15K/(101.325kPa \times 0.250L)$

T₂=237 K or -35.9 C

- 5. A certain 1.0L sample of gas has a temperature of 23°C and a pressure of 0.96 atm. The sample was left overnight and the next day had a pressure of 1.00 atm and a volume of
 - 1.1 L. What is the temperature on the second day?

$$T_1$$
=273.15 + 23 = 296.15 K, V_1 =1.0L, P_1 =0.96 atm

$$T_2=?$$
, $V_2=1.1L$, $P_2=1.00$ atm

$$P_1V_1T_2=P_2V_2T_1$$
; $T_2=1.1L \times 1.00 \text{ atm } \times 296.15 \text{K}/(0.96 \text{atm } \times 1.0 \text{ L})$

$$T_2$$
=339 K; T_2 =3.4 x 10² K or 66 C

Worksheet 2.16: Ideal Gas Law

Solve the following gas problems.

1. What pressure (kPa) is exerted by 1.0 mol of an ideal gas contained in a 1.0 L vessel at 0.0°C?

PV=nRT; P=1.0mol x 8.314LkPa/Kmol x 273.15K / 1.0 L

P=2270.969 kPa, P=2.3 x 10³ kPa

2. What volume will 5.0 mol of an ideal gas occupy at 25.0°C and 1.5 atm of pressure?

V=nRT/P; V=5.0mol x 0.0821Latm/Kmol x 298.15 K / 1.5 atm

V=81.59L; V=82L

3. Calculate the molar mass of gas if 4.5 L of the gas is at 785 mmHg, 23.5°C and the gas has a mass of 13.5 g.

n=PV/RT; n=785mmHg x 4.5L / (62.4LmmHg/Kmol x 296.65 K)

n=0.1915755...mol

M=m/n; M=13.5g / 0.19...mol; M=70.74gmol or 71g/mol

4. 0.453 mol of a gas confined to a 15.0 L container exerts a pressure of 1.24 atm on the walls of the container. What is the temperature of the gas?

T=PV/nR; T=1.24atm x 15.0L / (0.453mol x 0.0821Latm/Kmol)

T=500K or 227C

6. 5.4 g of carbon dioxide gas is confined to a 20.0 L container at a temperature of 315.5 K. What pressure (kPa) does the gas exert?

n=m/M; n=5.4g/44.01g/mol; n=0.122699...mol

P=nRT/V; P=0.12...mol x 8.314LkPa/Kmol x 315.15K/20.0L

P=16.09 kPa; P=16 kPa

5. 2.125 g of a gas in a 1.25 L container exerts a pressure of 86.0 kPa at 40.0°C. What is the molar mass of the gas?

n=PV/RT; n=86.0kPa x 1.25L / (8.314LkPa/Kmol x 313.15K)

n=0.041290...mol

M=m/n; M=2.125g/0.041290...mol; M=51.465 g/mol

M=51.46g/mol or 51.5 g/mol

6. To what temperature must 10.0 g of ammonia gas have to be heated in a 15.0 L container in order for it to exert a pressure of 3.50 atm?

n=m/M; n=10.0g / 17.04g/mol; n=0.5868...mol T=PV/nR; T=3.50atm x 15.0L / (0.5868...mol x 0.0821Latm/Kmol)

 $T=1089.6 K; T=1.09x10^3 K$

7. 2.0 x 10⁻⁵g of hydrogen gas at 327 K exerts a pressure of 50.5 kPa on the walls of a small tube. What is the volume of the tube?

n=m/M; n=m/M; $n=2.0x10^{-5}g$ / 2.02g/mol; $n=9.9... x 10^{-6} mol$

V=nRT/P; V=9.9...x10⁻⁶mol x 8.314LkPa/Kmol / 50.5kPa

 $V=5.3 \times 10^{-4} L$

Worksheet 2.17: Gas Stoichiometry

1. What mass of propane from a tank can be burned using 50 L of oxygen at STP?

Step 1) $C_3H_{8(g)}$ + $5O_{2(g)}$ + $3CO_{2(g)}$ + $4H_2O_{(g)}$

Step 2) ? n=PV/RT or n=v/V

n=50L/22.4L/mol; n=2.3...mol

Step 3) X/1mol = 2.3...mol/5mol

X=0.44...mol

Step 4) m=nM; m=0.44...mol x 44.11g/mol

m= 19.69 g; m=20g

2. Hydrogen gas is burned in pollution-free vehicles to produce water vapor. What volume of hydrogen at 40°C and 150 kPa can be burned using 300 L of oxygen gas measured at the same conditions?

Step 1) $2H_{2(q)} + O_{2(q)} \rightarrow 2H_2O_{(q)}$

Step 2) ? n=PV/RT

N=(150kPa x 300L) / (8.314LkPa/Kmol x 313.15K)

N=17.2...mol

Step 3) X/2mol= 17.2...mol/1mol

X=34.5...mol

Step 4) V=nRT/P

V=34.5...mol x 8.314LkPa/Kmol x 313.15K / 150kPa

V=600L; $V=6.0 \times 10^{2}L$

3. A Down's Cell is used in the industrial production of sodium from the decomposition of molten sodium chloride. What is the temperature of 250 L of chlorine gas produced at 100.1 kPa if 100.0 g of sodium is also produced?

Step 1) 2 NaCl $_{(l)}$ \rightarrow 2Na $_{(s)}$ + Cl $_{2(g)}$ Step 2) n=m/M ? K n=100g/22.99g/mol

Step 3) 4.3...mol/2mol= x/1mol

Step 4) X=2.1...mol T=PV/nR

T=100.1kPax250L / (2.1...mol x 8.314)

 $T=1.38 \times 10^3 \text{ K or } 1.11 \times 10^3 \text{ C}$

n=4.3...mol

4.	A typical home is heated with natural gas and consumes 2.00 ML of natural gas during the month					
	December. What volume of oxygen at STP is required to burn 2.00 ML of methane measured at 0°C					
	and 120 kPa?					

Step 1) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$ Step 2) n=PV/RT ? $N=120kPa \times 2.00\times 10^6/(8.314 \times 273.15K)$ N=105681...molStep 3) 105681...mol/1mol=x/2molX=211362...mol

Step 4) V=nV or V=nRT/P

V=211362...mol x 22.4L/mol V=4.73 x 10⁶ L or 4.73 ML

5. Methane reacts with steam to produce hydrogen gas and carbon dioxide gas. What volume of hydrogen gas, measured at 25°C and 120 kPa, can be produced from 1.0 t of steam?

Step 1) $CH_{4(g)} + 2H_2O_{(g)} \rightarrow CO_{2(g)} + 4H_{2(g)}$

Step 2) n=m/M

n=1000000g/18.02g/mol

n=55493...mol

Step 3) 55493...mol/2mol = x/4mol

X=11098...mol

Step 4) V=nRT/P

V=11098x8.314x298.15K/120kPa

 $V=2.3 ML or 2.3 \times 10^6 L$

6. Hydrogen gas can be produced from the electrolytic decomposition of water. What volume of hydrogen gas is produced, along with 52 kL of oxygen gas, at 25°C and 120kPa?

Step 1) $2H_2O_{(g)}$ \rightarrow $2H_{2(g)}$ + $O_{2(g)}$ Step 2) ? n=PV/RT

n=(120kPa x 52000L)/(8.314 x 298.15)

n=2517...mol

Step 3) X/2mol = 2517...mol/1mol

X=5034...mol

Step 4) V=nRT/P; V=5034...mol x 8.314 x 298.15K/120kPa

V=104000L; V=1.0 x 10⁵ L or 0.10 ML

Worksheet 2.18: Review of Gases

1. A volume of 20.0 L of oxygen is warmed from -30.0 C to 85.0 C. What is the new volume, if the pressure is kept constant?

 $V_2 = V_1 T_2 / T_1; V_2 =$

V₂=29.5L

2. A mass of air occupies a volume of 5.7 L at a pressure of 0.52 atm. What is the new pressure if the same mass of air at the same temperature is transferred to a 2.0 L container?

 $P_2=P_1V_1/V_2; P_2=$

P2=1.5 atm

3. Determine the total pressure of a gas mixture that contains CO, Ne and He if the partial pressures of the gases are $P_{CO} = 1.53$ atm, $P_{Ne} = 0.82$ atm, and $P_{He} = 0.34$ atm.

 $P_t = P_1 + P_2 + P_3$; $P_t =$

P_t=2.69 atm (2 decimal places are significant because you are adding.)

4. What is the volume of a sample of oxygen gas that has a mass of 50.0 g and is under a pressure of 1.20 atm at 27.0 C?

V=nRT/P; V=

V=32.1L

7. What is the volume at STP of a sample of carbon dioxide gas that has a volume of 75.0 mL at 30.0 C and 680 mmHg?

 $V_1=P_2V_2T_1/(T_2P_1); V_1=$

 V_1 =0.0605L or 60.5 mL

8. A rigid container holds a gas at a pressure of 0.55 atm at a temperature of -100 C. What will the pressure be when the temperature is increased to 200 C?

 $P_2=P_1T_2/T_1; P_2$

 $P_2=1.5$ atm

9. Explain why real gases deviate from the gas laws.

Real gases deviate because they can be condensed into liquids, have particle size and attract each other, unlike ideal gases.

Worksheet 4.1 – Solution Terminology and Theory

- 1. Illustrate (with a drawing) the difference between:
 a) solute vs. solvent

 b) homogenous mixture vs. heterogenous mixture
 - c) electrolyte vs. non-electrolyte

2. Illustrate two factors that affect the rate of solubility.

- 3. Illustrate how the following solids dissolve in water
 - a) Glucose
 - b) copper (II) sulphate

c)	hydrochloric	acid
----	--------------	------

4. Many reactions only occur when the reactants are dissolved in water. Why?

Worksheet 2.2: Concentration Problems

1. What is the molar concentration of an electroplating solution in which 1.50 mol of copper (II) sulphate are dissolved in 2.00 L of water?

C=n/V; C=1.50mol/2.00L; C=0.750 mol/L

2. What is the molar concentration of a solution in which 0.240 mol of washing soda, sodium carbonate decahydrate, is dissolved in 480 mL of water to make soft water solution?

C=n/V; C=0.240 mol/0.480 L; C=0.500 mol/L

3. What is the molar concentration of 500 mL of a solution that contains 12.7 g of swimming pool chlorinator, $Ca(OCI)_2$?

Ca = 40.08

1) n=m/M; n=12.7/142.98g/mol; n=0.0888...mol

Ox2 = 32.00Clx2 = 70.90

2) C=n/V; C=0.0888...mol / 0.500L; C=0.178 mol/L

142.98

- 4. A given sample of household ammonia contains 156 g of ammonia dissolved in water to form a 2.00L solution. What is the molar concentration of the ammonia solution? N = 14.01
 - 1) n=m/M; n=156g/17.04 g/mol; n=9.154...mol

Hx3=3.03

17.04 g/mol

2) C=n/V; C=9.154...mol /2.00L; C=4.58 mol/L

5.	Find the number of moles of sodium phosphate in 2.00L of a 0.100 mol/L sodium phosphate cleaning solution.
	n=CV; n=0.100mol/L x 2.00 L; n=0.200mol

6.	How many moles of potassium sulphate are there in 500 mL of a 0.242 M solution used to remove rust stains? n=0.242mol/L x 0.500L; n=0.121 mol
7.	What mass of sodium bicarbonate must be added to a 2.50 L bowl to obtain a necessary 0.150 mol/L solution? Na = 22.99 1) n=CV; n=0.150mol/L x 2.50L; n=0.375 mol H = 1.01 C = 12.01 Ox3=48.00 84.01 g/mol
8.	What volume of a 0.075 mol/L solution would contain the necessary 1.10 mol of sodium phosphate used to remove radiator scales? V=n/C; V=1.10mol/0.075 mol/L; V=15 L

9. What mass of sodium silicate is necessary to prepare 10.0 L of a 0.00500 mol/L water softening solution?

How many litres of 0.800 mol/L solution would contain 119.2 g of NaOCl?

1) n=m/M; n=119.2g/74.44g/mol; n=1.60...mol Na=22. 10.

Na=22.99

O=16.00

2) V=n/C; v=1.60...mol/0.800mol/L; v=2.00 L

CI=35.45

74.44g/mol

Worksheet 2.3: Making solutions and dilutions

- 1. A scientist has a container with solid sodium hydroxide and a container of 5.00 mol/L sodium hydroxide.
 - a) What are the two ways that the scientists can use to make a solution with a specific volume and concentration?

Make a solution by mixing a solute of specific mass with a specific volume of solvent (water)

OR make a dilution by adding water to a solution that is already made.

- b) What are two ways that the scientist can dilute the 5.00 mol/L solution?
- Evaporate the solvent and then remove some solute and add the solvent back OR add more solvent to a small portion of the solution.
- 2. Describe the steps you would take to make 100 mL of a 0.200 mol/L sodium chloride solution from salt crystals. Include the equipment and calculations you would make. Remember this is not a reaction.
 - 1) Calculate moles n=CV; n=0.200 mol/L x 0.100 L; n=0.0200 mol Na=22.99
 - 2) Calculate mass m=nM; m=0.0200mol x 58.44g/mol; m=1.17g Cl=35.45
 - 3) Weight with a scale; Mix in beaker with 50 mL of water. 58.44 g/mol
 - 4) Place solution in a 100 mL volumetric flask and fill to the meniscus/calibration line
 - 5) Cap and mix
- 3. Describe the steps you would take to make 250 mL of a 0.453 mol/L solution of copper (II) sulphate from solid copper (II) sulphate pentahydrate. Include equipment and calculations.
 - 1) Calculate the moles n= CV; n=0.453 mol/L x 0.250 L; n=0.113...mol Cu=63.55
 - 2) Calculate the mass m=nM; m=0.113...mol x 249.71g/mol; m=28.3g
 - 3) Wieght it; mix in beaker with about 125 mL
 - 4) Place in a 250 mL volumetric flask and fill to the meniscus/calibration line
 - 5) Cap and mix

Equipment: Calculator, weight scale, 250 mL volumetric flask, 125 mL beaker, eye dropper, cap

- 4. Describe the steps you would take to make 100 mL(V2) of a 0.50 mol/L (C2) sucrose solution from a container of 2.10 mol/L(C1) sucrose solution. Include equipment and calculations.
 - 1) Calculate volume that needs to be removed. $V_1=C_2V_2/C_1$; $V_1=0.50$ mol/Lx0.100L/2.10mol/L

V1=0.0238; V1=24mL

- 2) Remove 24 mL with a graduated pipet
- 3) Place in a 100 mL volumetric flask; fill to calibration line; cap and mix
- 5. Describe the steps you would take to make 500 mL(V2) of a 0.900 mol/L(C2) sulphuric acid from a 1.50 L(V1) container of 6.00 mol/L(C2) sulphuric acid solution. Include equipment and calculations.
 - 1) Calculate volume; V1=C2V2/C1; V1=0.900mol/L x 0.500L/6.00mol/L =0.0750L or 75.0 mL
 - 2) Remove 75 mL with a volumetric pipet.
 - 3) Place in a 500 mL volumetric flask; fill with 425ml of water to calibration line and cap and mix

6.	What is the final concentration of a cleaner if 10 L(V1) of concentrated sodium hydroxide (19.1 mol/L)C1) is diluted to 400 L(V2)? C2 = C1V1/V2; 19.1mol/L x 10 L / 400L = 0.48 mol/L
7.	What is the mass of baking soda (sodium hydrogen carbonate) needed to make 2.5 L of a 1.00mol/L solution? 1) n=CV; 1.00 mol/L x 2.5 L; n=2.5 mol 2) m=nM; 2.5mol x 84.01 g/mol; m=2.1 x 10 ² g or 0.21 kg
8.	If 2.0 L of water is added to 1.0 L of a 0.250 mol/L solution of potassium hydroxide what is the final concentration. (Be Careful) C2=C1V1/V2; C2=0.250mol/L x 1.0L /3.0 L; C2 = 0.083 mol/L
9.	CHALLENGE: If 1.50 L of a 12.4 mol/L solution of hydrochloric acid was mixed with 300 mL of a 6.10 mol/L solution of hydrochloric acid, then what would be the final concentration. Cnew=ntotal/Vtotal; Cnew = (1.50Lx12.4mol/L) + (6.10 mol/L x 0.300L)/ (1.50L + 0.300L) Cnew=(18.6 mol + 1.83 mol)/1.8 L; Cnew = 11.4 mol/L

10. CHALLENGE: How much water is added to 50.0 mL(V1) of a 0.500 mol/L(C1) solution to make a 0.100 mol/L(C2) solution?

V2=C1V1/C2; V2=0.500mol/L x 0.050L/0.100mol/L; V2 = 250 mL

Vwater = V2-V1; Vwater = 250 ml - 50 mL; Vwater = 200 mL

Worksheet 2.4: Dissociation and ionization reactions

Name: _____

1. What type of compounds dissociate? What type of compounds ionize?

Ionic Acids & molecular gases

2. Write dissociation or ionization reactions for the following chemicals after they are mixed with water. Show the physical states of all species involved. Use modified ionization reactions when necessary.

a) Solid hydrochloric acid

$$HCI_{(s)} \xrightarrow{H2O(l)} H+_{(aq)} + CI-_{(aq)}$$

$$HCI_{(s)} + H_2O_{(l} \rightarrow H_3O+_{(aq)} + CI-_{(aq)}$$

- b) Solid strontium hydroxide $Sr(OH)_{2(s)} \rightarrow Sr^{2+}_{(aq)} + 2OH^{-}_{(aq)}$
- c) Solid copper (II) sulphate pentahydrate $CuSO_4 5H_2O_{(s)} \rightarrow Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)} + 5H_2O_{(l)}$
- d) Solid sodium bicarbonate (hydrogen carbonate $NaHCO_{3(s)} \rightarrow Na^{+}_{(aq)} + HCO_{3^{-}_{(aq)}}$
- e) ammonia gas (acid and bases) $NH_{3(g)} + H_2O_{(l)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}$
- 3. For each of the following write dissociation or ionization equations and find the concentration of each ion.
 - a) 0.90 mol/L solution of sodium phosphate

$$Na_3PO_{4(s)} \rightarrow 3Na+_{(aq)} + PO_4^{3-(aq)}$$

$$0.90 \text{mol/L/1mol} = x/1 \text{mol}$$

$$x=2.7$$
mol/L $x=0.90$ mol/L

b) 0.143 mol/L solution of nitric acid $HNO_{3(aq)} + H_2O_1 \rightarrow H_3O_{(aq)} + NO_{3(aq)}$

c) 0.0135 mol/L solution of calcium hydroxide

$$Ca(OH)_{2(s)} \rightarrow Ca2+_{(aq)} + 2OH-_{(aq)}$$

0.0135mol/L/1mol=x/1mol =x/2mol

x=0.0135 mol/L x = 0.0270 mol/L

- d) 0.150 mol of hydrogen fluoride gas bubbled into 1.00 L of water $HF_{(g)} + H_2O_{(g)} \rightarrow H_3O^+_{(aq)} + F_{-(aq)}$
 - 0.150mol/L 0.150mol/L

- 4. What is the concentration of chloride ions in a solution prepared by dissolving 800 g of zinc chloride in 4.50 L of water?
 - 1) n=m/M; n=800/136.28g/mol; n=5.87...mol
 - 2) $ZnCl_{2(s)} \rightarrow Zn \ 2+_{(aq)} + 2Cl-_{(aq)}$ 5.87 mol 11.74...mol

C=n/V; C=2.61mol/L

What is the mass of calcium chloride required to prepare 2.000 L of 0.120 mol/L chloride ions?
 1) n=CV; -.120mol/L x 2.00L = 0.240mol

$$2)CaCl_{2(s)} \rightarrow Ca2+_{(aq)} + 2Cl-_{(aq)}$$

3) X/1mol = 0.240mol/2mol

X=0.120mol

4)m=nM; m=0.120mol x 110.98g/mol; 13.3 g

6. What is the final concentration if 2.0 L of <u>water</u> is added to 4.50 L of a 0.89 mol/L solution of sodium chloride?

C2=C1V1/V2; C2=0.89mol/L x 4.50L/6.50L; C2=0.62mol/L

Worksheet 4.5: Net Ionic Equations

For the following reactions, write the nonionic equation, the total ionic equation and the net ionic equation.

1. Aqueous solutions of sodium sulphate and barium bromide are mixed.

NON IONIC: Na₂SO_{4(aq)} + Ba(Br)_{2(aq)} \rightarrow BaSO_{4(s)} + 2NaBr_(aq)

TOTAL IONIC: $2Na^{4}_{(aq)} + SO_{4}^{2-}_{(aq)} + Ba^{2+}_{(aq)} \rightarrow BaSO_{4(s)} + 2Na^{4}_{(aq)} + 2Br_{(aq)}$

NET IONIC: $SO_4^{2-}_{(aq)} + Ba^{2+}_{(aq)} \rightarrow BaSO_{4(s)}$

A lead (II) nitrate solution reacts with sodium sulphide solution
 NON IONIC: Pb(NO3)2 (ag) + Na2S(ag) → 2 NaNO3(ag) + PbS(s)

Total IONIC: Pb $^{2+}_{(aq)}$ + $^{2NO3^{-}_{(aq)}}$ + $^{2Na^{+}_{(aq)}}$ + $^{2^{2-}_{(aq)}}$ + $^{2Na^{+}_{(aq)}}$ + $^{2NO3^{-}_{(aq)}}$ + PbS_(s)

NET IONIC:

3. Sulphuric acid is neutralized by a potassium hydroxide solution NON IONIC: $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2HOH_{(l)}$

TOTAL IONIC: $2H^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + 2K^{+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow 2K^{+}_{(aq)} + SO_{4}^{2-}_{(aq)} + 2HOH_{(l)}$

NET IONIC: $2H^{+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow 2HOH_{(l)}$

 $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow HOH_{(l)}$

Hydrochloric acid is added to a solution of barium hydroxide 4.

Magnesium metal is added to an aqueous solution of hydrogen bromide 5.

NON IONIC: $Mg_{(s)}$ + $2HBr_{(aq)}$ \rightarrow $H_{2(g)}$ + $MgBr_{2(aq)}$

TOTAL IONIC: $Mg_{(s)} + 2H^{+}_{(aq)} + 2Br^{-}_{(aq)} \rightarrow H_{2(g)} + Mg^{2+}_{(aq)} + 2Br^{-}_{(ag)}$

NET IONIC: $Mg_{(s)} + 2H^{+}_{(aq)} \rightarrow H_{2(g)} + Mg^{2+}_{(aq)}$

Zinc reacts with copper (II) sulphate solution 6.

7. Zinc reacts with acetic acid (vinegar)

NON IONIC: $Zn_{(s)} + 2CH_3COO_{\underline{H}(aq)} \rightarrow H_{2(g)} + Zn(CH_3COO)_{2(aq)}$

TOTAL IONIC: $Zn_{(s)} + 2CH_3COO_{(aq)}^{-} + 2H_{(aq)}^{+} \rightarrow H_{2(g)} + Zn_{(aq)}^{2+} + 2CH_3COO_{(aq)}^{-}$

NET IONIC: : $Zn_{(s)} + 2H^{+}_{(aq)} \rightarrow H_{2(g)} + Zn^{2+}_{(aq)}$

8. Bromine is added to a magnesium iodide solution

 $Br_{2(l)} + Mgl_{2(aq)} \rightarrow l_{2(s)} + MgBr_{2(aq)}$

Worksheet 2.6: Solution Stoichiometry

1.	A 200 mL solution of pota is the concentration of the) mol/L i	ron (III) sulphate solutio	n. What
2.	If 230 mL of a 1.00 mol			chlora	ite is reacted v	vith suffi	cient lithium hydroxide	solution,
	AI(CIO ₃) _{3 (aq)}	+	3LiOH _(aq)	\rightarrow	3LiCIO _{3(aq)}	+	AI(OH) _{3(s)}	
	0.230L = V							
	1.00 mol/L = C							
	n=CV; n=1.00mol/Lx	k0.230L						
	0.230mol/1mol						x/1mol	
							x=0.230mol	
						m=nN	1; m= <u>0.230</u> mol x 78.01	g/mol
							m=17.9g	

3. Predict the mass of magnesium metal that will be required to react with 44.0 ml of 0.200 mol/L hydrochloric acid.

4. What volume of 1.00 mol/L HNO $_{3(aq)}$ is required to react completely with 1.20g of LiOH $_{(aq)}$?

1) $HNO_{3(aq)}$ + $LiOH_{(aq)}$ \rightarrow $LiNO_{3(aq)}$ + $HOH_{(l)}$

2) V=? n=1.20g/23.95g/mol

V n=0.050104mol

3) X/1mol = 0.050104...mol/1mol

X=0.050104...mol

4) V=n/C; V=0.050104...mol/1.00mol/L

V=0.0501L or 50.1 mL

							tely react	ed with	50.0 m	nl of 0.2	50 mol/l	_ lead	(II) nitrate
										250 mol	/L of so	dium	hydroxide
sol	ution producing Co(NO ₃) _{2(aq)}	4.77 g	of preci			% yield →			_	Co(OH	l) _{2(s)}		
	n=CV			n=CV						n=m/N	I		
	n=0.150mol/L	x0.500l	_n=0.25	i0mol/L	x0.500	L		n=4.77g	g/92.95	ig/mol			
	n=0.075mol			n=0.12	25mol					n=0.05	513m	ol .	
	0.075mol/1mo	ol	=	x/2 mc	ol								
				x=0.15	0mol								
				0.125	< 0.150	LIMITII	NG						
				0.125n	nol/2m	ol		:	=	x/1mo	l		
										x=0.06	25 (5.8	09g)	
	% yield = A/T	x 100;	% yield	d = 0.05	513m	ol/0.0.0	625 mol	x 100;	% yie	ld = 82.	1%		\supset
		edict the	final m	ass of	a 500 g	bar of	lead that	t is allow	ved to	react co	omplete	y with	2.00 L of
	Pb _(s) +	2HCI _{(ac}	q)	→	$H_{2(g)}$	+	PbCl _{2(s)})					
	500g	n=CV											
		n=2.00	mol/L ɔ	c 2.00L									
		n=4.00	mol										
	x/1mol =	4.00m	ol/2mol										
	x=2.00mol												
	500 soli	500 ml of 0.150 m solution producing Co(NO ₃) _{2(aq)} n=CV n=0.150mol/L n=0.075mol 0.075mol/1mo	500 ml of 0.150 mol/L cosolution producing 4.77 g Co(NO ₃) _{2(aq)} n=CV n=0.150mol/Lx0.500l n=0.075mol 0.075mol/1mol % yield = A/T x 100; CHALLENGE: Predict the 2.00 mol/L HCl. Pb _(s) + 2HCl _(a) 500g n=CV n=2.00 n=4.00 x/1mol = 4.00mol	solution. Predict the concentration 500 ml of 0.150 mol/L cobalt (II) solution producing 4.77 g of precipe Co(NO ₃) _{2(aq)} + n=CV n=0.150mol/Lx0.500Ln=0.25 n=0.075mol 0.075mol/1mol = % yield = A/T x 100; % yield 2.00 mol/L HCl. Pb(s) + 2HCl(aq) 500g n=CV n=2.00mol/L x n=4.00mol x/1mol = 4.00mol/2mol	500 ml of 0.150 mol/L cobalt (II) nitrate solution producing 4.77 g of precipitate. F Co(NO ₃) _{2(aq)} + 2NaOl n=CV n=CV n=0.150mol/Lx0.500Ln=0.250mol/L n=0.075mol n=0.12 mc x=0.15 0.125 mc	solution. Predict the concentration of the Na $_2$ S(aq) solution. Predict the concentration of the Na $_2$ S(aq) solution producing 4.77 g of precipitate. Find the Co(NO $_3$)2(aq) + 2NaOH(aq) n=CV n=CV n=0.150mol/Lx0.500Ln=0.250mol/Lx0.5000 n=0.075mol n=0.125mol 0.075mol/1mol = x/2 mol x=0.150mol 0.125 < 0.150 0.125mol/2m % yield = A/T x 100; % yield = 0.0513m CHALLENGE: Predict the final mass of a 500 concentration of the Na $_2$ S(aq) n=CV n=2.00mol/L x 2.00L n=4.00mol x/1mol = 4.00mol/2mol	500 ml of 0.150 mol/L cobalt (II) nitrate solution is rea solution producing 4.77 g of precipitate. Find the % yield Co(NO ₃) _{2(aq)} + 2NaOH _(aq) → n=CV n=0.150mol/Lx0.500Ln=0.250mol/Lx0.500L n=0.075mol n=0.125mol 0.075mol/1mol = x/2 mol x=0.150mol 0.125 < 0.150 LIMITII 0.125mol/2mol 0.125mol/2mol/2mol 0.125mol/2mol 0.125mol/2mol 0.125mol/2mol 0.125mol/2mol 0.1	500 ml of 0.150 mol/L cobalt (II) nitrate solution is reacted with solution producing 4.77 g of precipitate. Find the % yield for this reacted (Co(NO ₃) _{2(aq)} + 2NaOH _(aq) → 2NaNO n=CV n=CV n=0.150mol/Lx0.500Ln=0.250mol/Lx0.500L n=0.075mol n=0.125mol 0.075mol/1mol = x/2 mol x=0.150mol 0.125 < 0.150 LIMITING 0.125mol/2mol % yield = A/T x 100; % yield = 0.0513mol/0.0.0625 mol 0.125 mol/Lx0.500g n=CV n=2.00mol/L the final mass of a 500 g bar of lead that 2.00 mol/L HCl. Pb _(s) + 2HCl _(aq) → H _{2(g)} + PbCl _{2(s)} 500g n=CV n=2.00mol/L x 2.00L n=4.00mol x/1mol = 4.00mol/2mol	500 ml of 0.150 mol/L cobalt (II) nitrate solution is reacted with 500 m solution producing 4.77 g of precipitate. Find the % yield for this reaction. Co(NO ₃) _{2(aq)} + 2NaOH _(aq) → 2NaNO _{3(aq)} = 2	500 ml of 0.150 mol/L cobalt (II) nitrate solution is reacted with 500 ml of 0.3 solution producing 4.77 g of precipitate. Find the % yield for this reaction. Co(NO ₃) _{2(aq)} + 2NaOH _(aq) → 2NaNO _{3(aq)} + n=CV n=CV n=0.150mol/Lx0.500Ln=0.250mol/Lx0.500L n=4.77g/92.95 n=0.075mol n=0.125mol n=0.125mol n=0.150mol n=0.125mol n=0.150mol n=0.125mol n=0.150mol n=0.125mol n=0.150mol n=0.125mol n=0.125mol n=0.150mol n=0.125mol n=0.125mol n=0.150mol n=0.125mol n=0.125mol n=0.150mol n=0.125mol n=0.	500 ml of 0.150 mol/L cobalt (II) nitrate solution is reacted with 500 ml of 0.250 mol solution producing 4.77 g of precipitate. Find the % yield for this reaction. Co(NO ₃) _{2(aq)} + 2NaOH _(aq) → 2NaNO _{3(aq)} + Co(OH n=CV n=CV n=m/N n=0.150mol/Lx0.500Ln=0.250mol/Lx0.500L n=4.77g/92.95g/mol n=0.075mol n=0.125mol n=0.125mol n=0.05 0.075mol/1mol = x/2 mol x=0.150mol 0.125 < 0.150 LIMITING 0.125 < 0.150 LIMITING 0.125 mol x=0.065 % yield = A/T x 100; % yield = 0.0513mol/0.0.0625 mol x 100; % yield = 82. CHALLENGE: Predict the final mass of a 500 g bar of lead that is allowed to react co 2.00 mol/L HCl. Pb _(s) + 2HCl _(aq) → H _{2(g)} + PbCl _{2(s)} 500g n=CV n=2.00mol/L x 2.00L n=4.00mol/xmol	solution. Predict the concentration of the Na $_2$ S $_{(\omega_0)}$? 500 ml of 0.150 mol/L cobalt (II) nitrate solution is reacted with 500 ml of 0.250 mol/L of so solution producing 4.77 g of precipitate. Find the % yield for this reaction. Co(NO ₃) $_{2(\alpha_0)}$ + 2NaOH $_{(\alpha_0)}$ \rightarrow 2NaNO $_{3(\alpha_0)}$ + Co(OH) $_{2(\alpha)}$ n=CV n=m/M n=0.150mol/Lx0.500Ln=0.250mol/Lx0.500L n=4.77g/92.95g/mol n=0.075mol n=0.125mol n=0.125mol 0.075mol/1mol = x/2 mol x=0.150mol 0.125 < 0.150 LIMITING 0.125mol/2mol = x/1mol x=0.0625 (5.86) % yield = A/T x 100; % yield = 0.0513mol/0.0.0625 mol x 100; % yield = 82.1% CHALLENGE: Predict the final mass of a 500 g bar of lead that is allowed to react completel 2.00 mol/L HCI. PP $_{(\alpha)}$ + 2HCI $_{(\alpha_0)}$ \rightarrow H $_{2(\alpha)}$ + PbCI $_{2(\alpha)}$ 500g n=CV n=2.00mol/L x 2.00L n=4.00mol x/1mol = 4.00mol/2mol	500 ml of 0.150 mol/L cobalt (II) nitrate solution is reacted with 500 ml of 0.250 mol/L of sodium solution producing 4.77 g of precipitate. Find the % yield for this reaction. Co(NO ₃) _{2(aq)} + 2NaOH _(aq) → 2NaNO _{3(aq)} + Co(OH) _{2(a)} n=CV n=CV n=m/M n=0.150mol/Lx0.500Ln=0.250mol/Lx0.500L n=4.77g/92.95g/mol n=0.075mol n=0.125mol n=0.0513mol 0.075mol/1mol = x/2 mol x=0.150mol 0.125 < 0.150 LIMITING 0.125 mol/2mol = x/1mol x=0.0625 (5.809g) % yield = A/T x 100; % yield = 0.0513mol/0.0.0625 mol x 100; % yield = 82.1% CHALLENGE: Predict the final mass of a 500 g bar of lead that is allowed to react completely with 2.00 mol/L HC!. Pb _(a) + 2HCl _(aq) → H _{2(g)} + PbCl _{2(a)} 500g n=CV n=2.00mol/L x 2.00L n=4.00mol

m=nM; m=2.00mol x 207.19g/mol; m=414.38 g mfinal = 500 – 414.38 = 85.6 g

8. A 75.0 mL sample of 0.25 mol/L silver chlorate solution reacts with 19.0 mL of 0.50 mol/L copper (II) sulphate solution. What is the concentration of the solution produced? (NOTE: Find out what the **total** volume of the solution produced.)

1) $2AgCIO_{3(aq)}$

CuSO_{4(aq)}

 \rightarrow Cu(ClO₃)_{2(aq)} +Ag₂SO_{4(s)}

2) n=CV

n=CV

C=?

n=0.25mol/Lx0.075L

n=0.50mol/Lx0.019L

n=0.01875 mol

n=0.0095 mol

0.01875/2mol

= x/1mol

x=0.009375...mol

0.0095>0.009375...mol EXCESS

0.01875/2mol

= x/1mol

x=0.009375...mol

C=n/V;

C=0.009375mol/0.094L

C=0.0997; C=0.10 mol/L

Worksheet 2.7: Review of Solutions

- 1. Answer the following questions
 - a) How do solutions differ from heterogeneous mixtures?

Solutions are uniform and appear as one substance - heterogenous do not.

b) How do the number of molecules of $C_{12}H_{22}O_{11}$ in 250 mL of a 1.5 mol/L solution of $C_{12}H_{22}O_{11}$ compare to the number of molecules of $C_6H_{12}O_6$ in 250 mL of a 1.5 mol/L $C_6H_{12}O_6$?

The number of molecules is the same (n=CV); the mass is different

- c) What is the term used to describe two liquids which will **NOT** mix with each other? **immiscible**
- d) What are two factors that affect the amount of solute that dissolves and two factors that affect the rate of dissolving?
 Amount: temperature, pressure
 Rate: temperature, surface area, agitation
- 2. Write the equation for each of the following dissolving in water. Use modified Arhenius theory.
 - a) Hydrogen chloride gas

$$HCI_{(g)} + H_2O_{(g)} \rightarrow H_3O^+_{(aq)} + CI^-_{(aq)}IONIZE$$

b) Solid aluminum nitrate

$$AI(NO_3)_{3(s)} \rightarrow AI^{3+}_{(aq)} + 3NO_3^{-}_{(aq)} DISSOCIATE$$

c) Solid sucrose

$$C_{12}H_{22}O_{11(s)} \rightarrow C_{12}H_{22}O_{11(aq)}$$
 DISSOLVE

d) Aqueous nitric acid

$$\mathsf{HNO}_{3(aq)} + \mathsf{H}_2\mathsf{O}_{(g)} \rightarrow \mathsf{H}_3\mathsf{O}^+_{(aq)} + \mathsf{NO}_3^-_{(aq)} IONIZE$$

- Determine the concentration of each of the following solutes in the solution described.
 - a) 0.725 mol of cobalt (II) nitrate in 1.35 L of solution.

b) 15.0 g of barium sulphate in 125 mL of solution.

Ba=137.33

c) 1.85 x 10²² molecules of ammonia gas in 400 mL of solution.

4. Write the dissociation equation and calculate the concentration of each of the ions produced in 1.25 mol/L solution of barium chloride.

BaCl_{2(s)}
$$\rightarrow$$
 Ba²⁺_(aq) + 2Cl⁻_(aq)
1.25mol/L/1mol= $x/1mol$ = $x/2mol$
 $x=1.25 mol/L$ $x=2.50 mol/L$

5. Write the dissociation equation and determine the concentration of the solution if 1.26 mol/L of [Na⁺] is found in a sodium phosphate solution.

X/1mol = 1.26 mol/L/3mol

6. CHALLENGE: What is the [Cl⁻] in a solution made by mixing 200 mL of 0.300 mol/L sodium chloride solution with 350 mL of 0.250 mol/L calcium chloride solution?

 $NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$

 $CaCl_{2(s)} \rightarrow Ca^{2+}_{(aq)} + 2Cl_{(aq)}^{-}$

C=ntotal/Vtotal

n=CV; n=0.300mol/Lx0.200L n=0.0600mol/1mol=x/1mol x=0.0600mol n=CV; n=0.250mol/Lx0.350L n=0.0875mol/1mol = x/2mol x=0.175 mol

C=0.235mol/0.550L C=0.427 mol/1 Write net ionic equations for the following reactions. (3 marks)

a) lead nitrate solution is mixed with sodium hydroxide

$$\begin{array}{lll} {\sf Pb}({\sf NO_3})_{2(aq)} \; + \; 2{\sf NaOH}_{(aq)} \; \to \; 2{\sf NaNO}_{3(aq)} \; \; + \; {\sf Pb}({\sf OH})_{2(s)} \\ {\sf Pb}^{2^+}{}_{(aq)} \; + \; 2{\sf NO}_{3^-(aq)} \; + \; 2{\sf Na}^+{}_{(aq)} \; + \; 2{\sf OH}^-{}_{(aq)} \; \to \; 2{\sf Na}^+{}_{(aq)} \; \; 2{\sf NO}_{3^-(aq)} \; \; + \; {\sf Pb}({\sf OH})_{2(s)} \\ {\sf Pb}^{2^+}{}_{(aq)} \; + \; 2{\sf OH}^-{}_{(aq)} \; \to \; {\sf Pb}({\sf OH})_{2(s)} \end{array}$$

b) barium nitrate reacts with potassium sulphide

$$Ba(NO_3)_{2(aq)} + K_2S_{(aq)} \rightarrow 2KNO_{3(aq)} + BaS_{(aq)}$$

$$Ba^{2+}_{(aq)} + 2NO_{3-(aq)} + 2K^{+}_{(aq)} + S^{2-}_{(aq)} \rightarrow 2K^{+}_{(aq)} + 2NO_{3-(aq)} + Ba^{2+}_{(aq)} + S^{2-}_{(aq)}$$

NO NET IONIC EQUATION

c) nitric acid reacts with barium hydroxide

$$2HNO_{3(aq)} + Ba(OH)_{2(aq)} \xrightarrow{\checkmark} Ba(NO_3)_{2(aq)} + 2HOH_{(l)}$$

 $2H^{+}_{(aq)} + 2NO_{3(aq)} + Ba^{2+}_{(aq)} + 2OH^{-}_{(aq)} \xrightarrow{\checkmark} Ba^{2+}_{(aq)} + 2NO_{3(aq)} + 2HOH_{(l)}$
 $H_{(aq)} + OH_{(aq)} \xrightarrow{\checkmark} HOH_{(l)}$ (Don't forget to reduce)

7. Draw a diagram describing how methanol is dissolved in water. (1 mark)

- 8. Predict whether the following solutes are electrolytes or nonelectrolytes:
 - a) nitrogen monoxide nonelectrolyte (molecular)
 - b) hydrofluoric acid electrolyte (acid)
 - c) magnesium hydroxide nonelectrolyte (ionic BUT not aqueous)
 - d) potassium hydrogen carbonate electrolyte (ionic & aqueous)
- 9. A scientists wants to make 100 mL of a 0.150 mol/L sodium hydroxide solution. He has 100 g of solid sodium hydroxide and he has 1.00 L of a 2.25 mol/L sodium hydroxide solution. Describe step by step the two ways that he could make his 0.150 mol/L solution. Include the sample calculations and equipment.

Method I - from solid

Method II - dilution

- 1) Find moles; n=CV; 0.150x0.100=0.0150
- 1) Find volume:

 $V_1 = C_2 V_2 / C_1 = 0.150 \times 0.100 / 2.25 = 6.67 m I$

- 2) Find mass: m=nM; 0.0150x40.00=0.600g 2) Remove 6.67mL with a graduated pipet
- 3) Weigh on a scale

3) Place in a 100 mL volumetric flask and fill to

line

- 4) Mix 0.600g in 50 ml of water
- 4) Cap and mix
- 5) Place in 100 mL volumetric flask
- and fill to calibaration line. Cap and mix
- 10.A 20.0 g sample of lead (II) nitrate is mixed in 1.00 L of water. The lead (II) nitrate solution then reacts with a 1.00 L of a 0.100 mol/L solution of rubidium iodide. If 20.0 g of precipitate forms, what is the percent yield?

Worksheet 2.8: Introduction to Acids & Bases

- 1. Safety is very important when working with acids. Describe what the student should do in the following situations.
 - a) A student drops a 100 mL beaker with 50 mL of hydrochloric acid and spills the acid onto the floor.

Report the accident to a teacher. Place baking soda until it stops bubbling. (If you have no baking soda, dilute the acid with water.)

- A student drips a couple of drops of sodium hydroxide solution onto his hand.
 Report the incident to a teacher. Wash the sodium hydroxide off with cold water.
- c) A beaker with Ba(OH)₂ tips over onto the lab bench.

 Report the incident to a teacher. Place vinegar (acetic/ethanoic acid) onto the base. (If you have no vinegar, dilute the base with water.)
- A student would like to dilute an acid and would like to know if he should add the acid to the water or the water to the acid
 Always add acid to water (A to W).
- 2. WHMIS symbols help communicate dangers.
 - a) WHMIS stands for Workplace Hazardous Materials Information System
 - b) The symbol that would be associated with a beaker of base that corrodes metal is

Corrosive material

c) Acids and bases can cause immediate and serious damage to a person's skin. The WHMIS symbol related to this is

Material causing immediate and serious toxic effect

d) Some acids react with oxygen. The WHMIS symbol found on a bottle of this acid would be

Oxidizing Material

- 3. A person would like to make 100 mL 1.00 mol/L solution of NaOH. Describe the steps the student would use. Include the calculations.
 - 1) Calculate the moles: n=CV; n=1.00mol/L x 0.100L; n=0.100mol
 - 2) Calculate mass: m=nM; m=0.100mol x 40.00g/mol; m=4.00g
 - 3) Weigh with scale; mix in beaker with 50 mL of water.
 - 4) Place in 100 mL volumetric flask, fill to calibration line, cap & mix.
- 4. A person would like to dilute a 12.1 mol/L solution of HCl and make a 250 mL 3.00 mol/L solution. Describe the steps the student would use. Include the calculations.
 - 1) Find the volume; v1=C2V2/C1; V1=3.00mol/Lx 0.250L/12.1mol/L: V=62.4mL
 - 2) Remove it with graduated pipet.
 - 3) Place in 250 mL volumetric flask; fil to calibration line; cap & mix
- 5. Indicators change color to indicate whether you have an acid or base. Litmus paper and bromothymol blue are two common indicators. Complete the following table for these indicators.

<u>PH</u>	Litmus Paper color	Bromothymol Blue color
3	Red	yellow
7	No change	Green
10	Blue	Blue

6. What is one property that is similar between acids and bases?

Both electrolytes, both dissolve in water (aqueous)

- 7. What is one property that is different between acids and bases? **PH, taste, touch, reactions**
- 8. Complete the following acid or base reactions.
 - a) sulphuric acid is neutralized by potassium hydroxide. Identify the "salt" in the reaction. $H_2SO_{4(aq)} + 2KOH_{(aq)} \rightarrow K_2SO_{4(aq)} + 2HOH_{(l)}$

salt

b) hydrochloric acid reacts with magnesium $2\text{HCI}_{(aq)} + \text{Mg}_{(s)} \rightarrow \text{MgCI}_{2(aq)} + \text{H}_{2(g)}$

salt

c) self ionization of water $H_2O_{(l)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + OH^-_{(aq)} OR H_2O_{(g)} \rightarrow H^+_{(aq)} + OH^-_{(aq)}$

No salt

Worksheet 2.9: Acid & Base Calculations

1. A 1.00 L solution of 1.50 mol/L perchloric acid is dilluted by adding 500 mL <u>of water</u>. What is the hydronium concentration of the dilluted solution? **V2= V1 + Vwater=1.00L + 0.500L**

 $HCIO_{4(aq)}$ +

$$H_2O_{(g)} \rightarrow$$

$$H_3O^+_{(aq)}$$

C2=C1V1/V2

C2=1.50mol/Lx1.00L/1.50L

C2=1.00mol/L 1.00mol/L/1mol

X/1mol X=1.00mol/L

2. A 250mL solution of 3.56 mol/L barium hydroxide is sitting on the counter in the lab. Help a chemistry 20 student determine the hydronium concentration of the solution.

 $Ba(OH)_{2(s)}$

$$\rightarrow$$

n=CV; n=3.56 x 0.250 = 0.89 mol

X 2mol/1mol

=1.78mol

C = n/V; C = 1.78 mol/0.250 L = 7.12 mol/L

H3O+ = Kw/[OH-]; H3O+ = 1E-14/7.12

= 1.40E-15 mol/L

3. A 1.00 mel/L solution of nitric acid ionizes. What is the hydroxide ion concentration?

HNO_{3(aq)}

$$H_2O_{(g)} \rightarrow$$

$$H_3O^+_{(aq)}$$

$$NO_3^-$$
 (aq)

1.00 mol/L

X1/1mol; X=1.00 mol/L

 $[OH-] = kw/[H_3O^+_{(aq)}]$

= $1.00 \times 10^{-14} (\text{mol/L})^2 / 1.00 \text{mol/L}$; [OH-] = $1.00 \times 10^{-14} \text{mol/L}$

4. A student takes 11.6 grams of strontium hydroxide and adds it to 3.00 litres of water. What is the hydronium concentration?

5. A solution contains 1.67 x 10 ⁻¹⁴ mol/L of hydronium ions. Determine the mass of barium hydroxide that was added to 1.00 L of water to make this solution.

Ba(OH)_{2(s)}

$$\rightarrow$$

$$[OH-] = kw/[H_3O^{+}_{(aa)}]$$

= $1.00 \times 10^{-14} (\text{mol/L})^2 / 1.67 \times 10^{-14} \text{mol/L}$

X1mol/2mol

0.5988...mol/L

X=0.2994...mol/L

n=CV; n=0.2994 x 1L=0.2994...mol

m=nM; m= 0.2994...mol x 171.35 g/mol

m=51.3 g

6. What is the concentration of hydroxide ions found in a 1.00 L solution of 2.00 mol/L potassium hydroxide?

7. What is the hydroxide concentration of a 1.00 L solution of 2.50 mol/L hydrobromic acid?

8. What is the hydronium concentration when 1.00 mol/L of barium hydroxide dissociates

9. 6.02 x 10 ²² particles of sulphuric acid ionize into hydrogen sulphate ions in 1.00 L of water. What is the hydroxide concentration of the solution?

 $H_2^{\dagger}SO_{4(aq)}$ + $H_2O_{(g)}$ \rightarrow $H_3O_{(aq)}^{\dagger}$ + $HSO_{4(aq)}^{\dagger}$ n=p/P

n=6.02 x 1022/6.02 x 1023

n=0.1...mol

C=n/V = 0.1...mol/1.00L

0.100mol/L x 1mol/1mol; X=0.100 mol/L $[OH_{-}] = kw/[H_{-}O^{+}]$

[OH-] = kw/[$H_3O^+_{(aq)}$] = 1.00 x 10^{-14} (mol/L)²/0.100mol/L;

 $[OH-] = 1.00 \times 10^{-13} mol/L$

10. A solution contains 3.45×10^{-12} mol/L of hydroxide ions. What is the concentration of the hydroxhloric acid solution that contain these hydroxide ions?

Worksheet 2.10: Acid & Base Review

1. The concentration of hydroiodic acid is 1.73×10^{-3} mol/L. What is the pH and the pOH?

$$HI_{(aq)}$$
 + $H_2O_{(g)}$ \rightarrow $H_3O^+_{(aq)}$ + $I^-_{(aq)}$

 $1.73 \times 10-3 \text{ mol/L/1mol}$ = X/1mol

X=1.73 x 10-3 mol/L

 $PH = -log (1.73 \times 10-3 \text{ mol/L})$

PH = 2.76195.... (2.762)

POH = 14-pH = 11.238

2. What is the hydronium concentration and hydroxide concentration of a 2.47 x 10 $^{-2}$ mol/L solution of thallium hydroxide?

3. Complete the following table (Significant digits are important):

рН	[H ⁺] or [H₃O+]	[OH ⁻]	рОН	A/B/N
14 -4.56 OR -log(3.6E-10)	1E-14/2.8E-5 =3.6E-10mol/L OR	=10 ^{-4.56} = 2.8E- 5mol/L OR	4.56	В
= 9.44	10 -9.44	1E-14/3.6E-5		
2) 14-4.910 =9.090	8.13 x 10 ⁻ ¹⁰ mol/L	1.23 X 10 ⁻⁵	-log (1.23E-5) =4.910	В
3) 7.449	3.56 x 10 ⁻⁸	2.81 x 10 ⁻⁷ mol/L	6.551	В
4) 12.8	2 x 10 ⁻¹³ mol/L	6. x 10 ⁻² mol/L	1.2	В
5) 3.52	3.0 x 10 ⁻⁴	3.3 x 10 ⁻¹¹	10.48	Α
6) 13.759	1.74 x 10 ⁻¹⁴	5.74 X 10 ⁻¹	0.241	В

рН	[H ⁺] or [H₃O+]	[OH ⁻]	рОН	A/B/N
7) 6.55	2.8 x 10 ⁻⁷	3.5 x 10 ⁻⁸	7.45	Α
8) 2.399	3.99 X 10 ⁻³	2.51 x 10 ⁻¹²	11.601	Α
9) 12.77	1.7 x 10 ⁻¹³	5.9 x 10 ⁻²	1.23	В
10) 5.95	1.1 x 10 ⁻⁶	8.9 X 10 ⁻⁹	8.05	A

4. What color would the indicator be given the following data:

	ORANGE IV	METHLY RED	PHENOL RED	METHYL ORANGE	INDIGO CARMINE
	yellow	Red + Yellow =	yellow	yellow	blue
pOH=9.00		orange			
pH = 5.00					
	Yellow	Yellow	Red	Yellow	Blue
pH=8.3					
	Yellow	Red	Yellow	Red	Blue
[H+]=9.5 x 10 ⁻⁴					
pH = 3.02					
	Yellow	yellow	Red	Yellow	Blue + yellow =
					green
[OH-]=5.6 x 10 ⁻³					
pOH = 2.25; pH = 11.75					
	Yellow	Yellow	Yellow to red =	Yellow	Blue
			orange		
[H ₃ O+] =1.0 x 10 ⁻⁷					
[113O+] = 1.0 X 10					