Name: KEY

Chemistry 20

Worksheets

Worksheet 1.1: Atomic Structure

1. Complete the following table. Using symbols, provide an example of each category using the element provided. For the average atom assume that the mass number is the atomic mass rounded off. The first one is done. (8 marks) ($1 / 2$ mark off for each mistake in each row).

	Average Atom	Monoatomic Polyatomic or diatomic element	Most common simple Ion	Complex or polyatomic lon	Isotope of the average			
chromium	${ }^{52} \mathrm{Cr}$	Cr	Cr^{3+}	lonic compound	Molecular compound	Acid compound		
sulphur	$\mathrm{CrO}_{4}{ }^{2-} \mathrm{S}$	$\mathrm{S}_{8(\mathrm{~s})}$	S^{2-}	$\mathrm{SO}_{4}{ }^{2-}$ or $\mathrm{SO}_{3}{ }^{2-}$	${ }^{33} \mathrm{Sr}$	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	NONE	NONE
nitrogen	${ }^{14} \mathrm{~N}$	$\mathrm{Na}_{2(\mathrm{qq})}$	$\mathrm{SO}_{2(\mathrm{~g})}$	$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$ $\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}$				

2. Complete the following table. Note that the mass number can change for isotopes. If there is not a noble gas with the same \# of electrons, than put NONE. The first one is done.(6 marks) ($1 / 2$ mark off for each mistake in each row)

Atom or Ion name	Atom or ion symbol	Atomic number	Mass number	Protons	Electrons	Neutrons	Noble Gas with same \# of electrons
sodium ion	${ }^{23} \mathrm{Na}^{+}$	11	23	11	10	12	neon
aluminum atom	${ }^{28} \mathrm{AI}$	13	28	13	13	15	neon
chloride ion	Cl^{1-}	17	34	17	18	17	argon

Worksheet 1.2: Compounds

Complete the following table (Assume water is used with ionic compounds): (16 marks)

I = M $\left(\mathrm{NH}_{4}\right)+\mathrm{N}$ $\mathrm{M}=$ non metals $\mathrm{A}=\mathrm{H}$ (acid) pg $8 / 9$ in databook	chemical formula(add states)	chemical name
Ionic	$\mathrm{K}_{2} \mathrm{SO}_{3(\text { aq })}$	Metal name + polyatomic name potassium sulfite
ACID	$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 1 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$

MOLECULAR (NOT AN ACID)	$\mathrm{H}_{2} \mathrm{O}_{2}(1)$	Hydrogen peroxide
MOLECULAR	$\mathrm{SO}_{3}(\mathrm{~g})$ does not equal $\mathrm{SO}_{3}{ }^{2-}{ }_{(\text {(aq })}$	Sulfur trioxide (NOT sulfite)
IONIC (NH4+ is an ion)	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4 \text { (aq) }}$	ammonium phosphate
IONIC	$\begin{aligned} & \mathrm{Cu}^{2+} \mathrm{SO}_{4}{ }^{2-} \\ & \mathrm{CuSO}_{4}{ }^{*} 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \\ & \hline \end{aligned}$	copper (II) sulphate pentahydrate
MOLECULAR (MEMORIZED)	$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$	propane
ACID	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	ethanoic acid
MOLECULAR	$\mathrm{O}_{3} \mathrm{~g}$)	OZONE
MOLECULAR	$\mathrm{HOH}_{(\mathrm{g}, \mathrm{l}, \mathrm{s})}$	water

Worksheet 1.3: Reactions

Complete the following reactions, identify the reaction type and balance the equation.(3 marks each; 15 marks total)

1) mercury (II) oxide is broken down into its elements by heating.

> Hg2+ O2-

$$
2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \quad \text { Decomposition }
$$

2) a nickel strip is placed in a gold (III) sulfate solution
$\mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{Au}_{3} \mathrm{~S}_{8} \rightarrow$

$$
\begin{array}{ll}
\mathrm{Ni}(\mathrm{~s})+ & \mathrm{Au}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})} \rightarrow \mathrm{Au}(\mathrm{~s})+\left(\mathrm{Ni}^{2+/ 3+} \mathrm{SO}^{2-}\right) \mathrm{NiSO}_{4}(\mathrm{aq}) \\
3 \mathrm{Ni}(\mathrm{~s})+ & \mathrm{Au}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})} \rightarrow 2 \mathrm{Au}(\mathrm{~s})+3 \mathrm{NiSO}_{4}(\mathrm{aq}) \text { single replacement }
\end{array}
$$

3) phosphoric acid reacts with iron (III) oxide.

$$
\begin{array}{cl}
2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{Fe} 2 \mathrm{O} 3(\mathrm{~s}) \rightarrow 2 \mathrm{Fe} \mathrm{PO}(\mathrm{~s})+3 \mathrm{H} 2 \mathrm{O} \text { (I) Double Replacement } \\
\mathrm{H}=36 & \mathrm{H}=2 \times 2 \\
\mathrm{O}=3 & 0=43 \\
\mathrm{PO} 4=1 \times 2 & \mathrm{PO} 4=42 \\
\mathrm{Fe}=2 & \mathrm{Fe}=1 \times 2
\end{array}
$$

4) butane is burned in air

$$
\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+6.5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

$$
2 ?=8+5 ; ?=6.5
$$

$2 \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+13 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{CO}_{2(\mathrm{~g})}+10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
5) sulfur combines with oxygen to from sulfur trioxide
$\mathrm{S}_{8(\mathrm{~s})}+12 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{SO}_{3(\mathrm{~g})}$ Formation

Worksheet 1.4: Mole Problems

1. What is the molar mass of hydrogen peroxide?
$\mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{Hx} 2=2.02$
$\mathrm{O} \times 2=32.00$
Total $=34.02 \mathrm{~g} / \mathrm{mol}$
2. What is the molar mass of lead (II) nitrate?

Pb (NO3)2
Pb x1 = 207.2
$\mathrm{N} \times 2=28.02$
$0 \times 6=96.00$
TOTAL $=\mathbf{2 3 1 . 2 2} \mathbf{g} / \mathrm{mol}$
3. How many moles in 30.6 g of copper?

Step 1) $n=? ; m=30.6 \mathrm{~g} ; \mathrm{M}=63.55 \mathrm{~g} / \mathrm{mol}$
Step 2) $n=m / M$
Step 3) $\mathrm{n}=30.6 \mathrm{~g} / 63.55 \mathrm{~g} / \mathrm{mol}$
Step 4) $\mathrm{n}=0.481510 \ldots \mathrm{~mol} ; 0.482 \mathrm{~mol}$ or 482 mmol (3 significant digits; divide by $\mathrm{E}-3$ to get mmol)
4. How many moles in 6.55×10^{19} atoms of zinc?

Step 1) $n=? ; p=6.55 E 19$ atoms; $P=6.02 E 23$ atoms $/ \mathrm{mol}$
Step 2) $n=p / P$
Step 3) $\mathrm{n}=6.55 \mathrm{E} 19$ atoms $/ 6.02 \mathrm{E} 23$ atoms $/ \mathrm{mol}$
Step 4) $\mathrm{n}=0.0001088039 \ldots \mathrm{~mol} ; 0.000109 \mathrm{~mol}$ or $1.09 \times 10^{-4} \mathrm{~mol}$ or 0.109 mmol or 109 umol
5. Determine the number of moles in 33.6 L of methane at STP?

Step 1) $n=? ; v=33.6 \mathrm{~L} ; \mathrm{V}=22.4 \mathrm{~L} / \mathrm{mol}$
Step 2) $n=v / V$
Step 3) $\mathrm{n}=33.6 \mathrm{~g} / 22.4 \mathrm{~L} / \mathrm{mol}$
Step 4) $\mathrm{n}=1.50 \mathrm{~mol}$ (3 significant digits)
6. How many formula units in 3.99 mol of potassium carbonate? $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$

Step 1) $p=? ; n=3.99 \mathrm{~mol} ; P=6.02 \mathrm{E} 23$ formula units $/ \mathrm{mol}$
Step 2) $p=n \times P$
Step 3) $p=3.99 \mathrm{~mol} \times 6.02 \mathrm{E} 23$ formula units $/ \mathrm{mol}$
Step 4) $p=2.40198$ E24 formula units; 2.40E24 formula units or 2.40×10^{24} formula untis
7. What volume of gas would be present in 0.955 mol at STP?; SATP?

Step 1) v=?; $n=0.955 \mathrm{~mol} ; \mathrm{V}=22.4 \mathrm{~L} / \mathrm{mol}$
Step 2) $v=n V$
Step 3) $v=0.955 \mathrm{~mol} \times 22.4 \mathrm{~L} / \mathrm{mol}(\mathrm{STP}) \quad \mathrm{v}=0.955 \mathrm{~mol} \times 24.8 \mathrm{~L} / \mathrm{mol}$
Step 4) $v=21.392 \mathrm{~L} ; 21.4 \mathrm{~L}$ of gas at STP $\quad v=23.684 ; 23.7 \mathrm{~L}$ of gas at SATP
8. What is the mass of 2.3 mol of carbon dioxide at STP?

Step 1) $n=$? $; m=30.6 \mathrm{~g} ; \mathrm{M}=\mathrm{C}=12.01 \times 1=12.01$
$\mathrm{O}=16.00 \times 2=32.00$
TOTAL $=\quad 48.01 \mathrm{~g} / \mathrm{mol}$
Step 2) $m=n M$
Step 3) $\mathrm{m}=2.3 \mathrm{~mol} \times 48.01 \mathrm{~g} / \mathrm{mol}$
Step 4) $\mathrm{m}=110.423 \mathrm{~g} ; 1.1 \times 10^{2} \mathrm{~g}$ or 0.11 kg (divide by E3 to change to kmol)
NOTE: You have to change to scientific notation since you need 2 sig digs and 100 has 3/
9. How many moles in 100 mL of carbon dioxide at SATP?

Step 1) $n=? ; v=100 \mathrm{~mL}$ OR $0.100 \mathrm{~L} ; \mathrm{V}=24.8 \mathrm{~L} / \mathrm{mol}$
Step 2) $n=v / V$
Step 3) $\mathrm{n}=0.100 \mathrm{~L} / 24.8 \mathrm{~L} / \mathrm{mol}$
Step 4) $\mathrm{n}=0.004032258 \ldots \mathrm{~mol} ; 0.00403 \mathrm{~mol}$ or $4.03 \times 10^{-3} \mathrm{~mol}$ or 4.03 mmol
10. What volume of nitrogen monoxide would be present in 2.7 mol if the temperature is 25 C and the pressure is 100 kPa ?
Step 1) v=?; $\mathrm{n}=2.7 \mathrm{~mol} ; \mathrm{V}=24.8 \mathrm{~L} / \mathrm{mol}$ (SATP conditions)
Step 2) $v=n V$
Step 3) $v=2.7 \mathrm{~mol} \times 24.8 \mathrm{~L} / \mathrm{mol}$
Step 4) v = 66.96 L; 67 L (2 significant digits)

Worksheet 1.5: More difficult mole problems

1. How many molecules in 2.00 mol of sulphur dioxide?
$p=n P ; p=2.00 \mathrm{~mol} \times 6.02 \mathrm{E} 23$ molecules $/ \mathrm{mol}$

$p=1.20 \mathrm{E} 24$ molecules of sulphur dioxide

2. How many molecules in 7.5 mol of chlorine?
$p=n P ; p=7.5 \mathrm{~mol} \times 6.02 \mathrm{E} 23$ molecules $/ \mathrm{mol}$
$p=4.5 \mathrm{E} 25$ molecules of chlorine
3. How many atoms of copper are in 0.088 mol of copper (I) oxide?
$p=n P ; p=0.088 \mathrm{~mol} \times 6.02 \mathrm{E} 23 \mathrm{molecules} / \mathrm{mol}$
$\mathrm{p}=5.2976 \mathrm{E} 22$ molecules of $\mathrm{Cu}_{2} \mathrm{O}$
$\mathrm{Cu}_{2} \mathrm{O} ; \mathrm{p}_{\mathrm{cu}}=2 \mathrm{2}=1.059 \mathrm{E} 23 ; 1.1 \mathrm{E} 23$ atoms of copper
4. How many mol of magnesium ions are in 1.00×10^{20} formula units of magnesium nitride?
$\mathrm{n}=\mathrm{p} ; \mathrm{n}=1.00 \mathrm{E} 20$ formula units $\quad ; \mathrm{n}=1.66 \times 10^{-4} \mathrm{~mol}$ or 0.166 mmol
P 6.02E23 formula units $/ \mathrm{mol}$
NOT DONE YET....
$\mathbf{M g}_{3} \mathbf{N}_{\mathbf{2}} ; \mathbf{n}_{\mathbf{M g}}=\mathbf{3 \times 0 . 1 6 6 \mathbf { ~ m m o l } = 0 . 4 9 8 \mathrm { mmol }}$
5. What is the mass of 14.6 L of carbon monoxide at STP?
$\mathrm{C}=12.01 \mathrm{n}=\mathrm{v} / \mathrm{V} ; \mathrm{n}=14.6 \mathrm{~L} / 22.4 \mathrm{~L} / \mathrm{mol} ; \mathrm{n}=0.651785714 \ldots \mathrm{~mol}(d o n ' t$ round)
$0=16.00 \quad m=n M ; m=0.651785714 \ldots \mathrm{~mol} \times 28.01 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=18.256 \ldots \mathrm{~g} ; \mathbf{1 8 . 3 \mathrm { g }}$ $28.01 \mathrm{~g} / \mathrm{mol}$
6. How many atoms of xenon are in 15 L at SATP?
$\mathrm{n}=\mathrm{v} / \mathrm{V}$; $\mathrm{n}=15 \mathrm{~L} / 24.8 \mathrm{~L} / \mathrm{mol} ; \mathrm{n}=0.6048387 \ldots \mathrm{~mol}$
$p=n P ; p=0.6048387 \ldots \mathrm{~mol} \times 6.02 \mathrm{E} 23$ atoms $/ \mathrm{mol} ; \mathrm{p}=3.6411 \ldots \mathrm{E} 23$
$p=3.6 \mathrm{E} 23$ atoms
7. How many moles of carbon and oxygen are in 6.02×10^{23} molecules of carbon dioxide?
$n=p ; n=6.02 \mathrm{E} 23$ formula units $\quad ; n=1.00 \mathrm{~mol}$
P 6.02E23 formula units $/ \mathrm{mol}$ NOT DONE YET....
$\mathrm{CO}_{2} ; \mathrm{n}_{\mathrm{C}}=1 \times 1.00=1.00 \mathrm{~mol}$ of carbon; $\mathrm{n}_{\mathrm{o}}=2 \times 1.00=2.00 \mathrm{~mol}$ of oxygen
8. When studying reactions what unit are most quantities converted into? (HINT: What do the coefficients in front of a balanced equation represent?)
Most quantities are converted into moles. The coefficients represent moles
9. What are the temperature, pressure and molar volume of a gas at STP?

T = OC (273.15K); P=101.325 kPa; V=22.4 L/mol
10. What are the temperature, pressure and molar volume of a gas at SATP?

$$
\mathrm{T}=25 \mathrm{C}(298.15 \mathrm{~K}) ; \mathrm{P}=100 \mathrm{kPa} ; \mathrm{V}=24.8 \mathrm{~L} / \mathrm{mol}
$$

Worksheet 2.1: Mole to Mole Stoichiometry

Directions: Write balanced equations with states. Solve the problem. Assume water is available.

1. Liquid water decomposes into its elements. How many moles of hydrogen gas are produced if 0.500 mol of water is used?
$\mathrm{G} \quad \mathrm{R}$
step 1) $\mathbf{2 H}_{2} \mathrm{O}_{(I)} \quad \rightarrow \quad 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})}$
0.500 mol ?
step 3) 0.500 mol of $\mathrm{H}_{2} \underline{O}_{(g)} \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2(g)}=0.500 \mathrm{~mol}$ of $\mathrm{H}_{2}(\mathrm{~g})$ 2 mol of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
2. Sulphur reacts with barium oxide. How many moles of sulphur are needed if 2.00 mol of barium oxide is used?
$R \quad G$
1) $1 \mathrm{~S}_{8}(\mathrm{~s}) \quad+\quad 8 \mathrm{BaO}(\mathrm{s}) \rightarrow 4 \mathrm{O}_{2}(\mathrm{~g})+8 \mathrm{BaS}(\mathrm{s})$
? $\quad 2.00 \mathrm{~mol}$
2) 2.00 mol of $\mathrm{BaO}_{(\mathrm{s})} \times 1 \mathrm{~mol}$ of $\mathrm{S}_{8(\mathrm{~s})}=0.250 \mathrm{~mol}$ of $\mathrm{S}_{8(\mathrm{~s})}$

8 mol of $\mathrm{BaO}_{(\mathrm{s})}$
3. Methane gas burns. How many moles of oxygen gas are needed to completely burn 3.00 mol of methane?
$G \quad R$

1) $1 \mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$
3.00 mol ?
2) 3.00 mol of $\mathrm{CH}_{4(\mathrm{~g})} \times 2 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})}=6.00 \mathrm{moles}$ of $\mathrm{O}_{2(\mathrm{~g})}$

1 mol of $\mathrm{CH}_{4(\mathrm{~g})}$
4. Sodium and phosphorus react. How many moles of phosphorus are needed if 0.600 mol of sodium metal is used?
$G \quad R$

1) $12 \mathrm{Na}_{(s)}+1 \mathrm{P}_{4(s)} \rightarrow 4 \mathrm{Na}_{3} \mathrm{P}_{(a q)}$
0.600 mol ?
2) $\frac{0.600 \mathrm{~mol} \text { of } \mathrm{Na}_{(s)} \times 1 \text { mole of } \mathrm{P}_{4(\mathrm{~s})}=0.0500 \text { moles of } \mathrm{P}_{4}(\mathrm{~s})}{12 \text { moles of } \mathrm{Na}_{(\mathrm{s})}}$
5. Magnesium phosphate reacts with lithium carbonate. How many moles of lithium carbonate are needed when 1.50 mol of magnesium phosphate is used?
$\mathrm{G} \quad \mathrm{R}$
1) $1 \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}+3 \mathrm{Li}_{2} \mathrm{CO}_{3(a q)} \rightarrow 3 \mathrm{MgCO}_{3(s)}+2 \mathrm{Li}_{3} \mathrm{PO}_{4(a q)}$
1.50 mol
?
2) 1.50 mol of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} \times 3 \mathrm{~mol}$ of $\mathrm{Li}_{2} \mathrm{CO}_{3(a q)}=4.50 \mathrm{~mol}$ of $\mathrm{Li}_{2} \mathrm{CO}_{3(a q)}$ 1 mol of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$
6. Sulphur dioxide decomposes. How many moles of sulphur dioxide are needed to produce 0.30 mol of sulphur?
$\begin{aligned} & \mathrm{R} \\ & \text { 1) } 8 \mathrm{SO}_{2(g)}\end{aligned} \rightarrow \quad \mathrm{G} \mathrm{S}_{8(s)}+8 \mathrm{O}_{2(g)}$
3) 0.30 mol of $\mathrm{S}_{8(\mathrm{~s})} \times 8 \mathrm{~mol}$ of $\mathrm{SO}_{2(g)}=2.4 \mathrm{~mol}$ of Sulphur dioxide 1 mol of $\mathrm{S}_{8(\mathrm{~s})}$
7. Magnesium chloride reacts with sodium. How many moles of sodium are needed to react with 0.0250 mol of magnesium chloride?
G $\quad \mathrm{R}$
1) $1 \mathbf{M g C l}_{2(\mathrm{aq})} \quad+2 \mathrm{Na}_{(\mathrm{s})} \rightarrow \mathbf{M g} \mathbf{g}_{(\mathrm{s})}+2 \mathrm{NaCl}_{(\mathrm{aq})}$
2) $0.0250 \mathrm{~mol} \mathrm{MgCl}_{2(\mathrm{aq)})}$ of $\times 2 \mathrm{~mol}$ of $\mathrm{Na}_{(\mathrm{s})} \quad=0.0500 \mathrm{~mol}$ of $\mathrm{Na}_{(\mathrm{s})}\left(5.00 \times 10^{-2} \mathrm{~mol}\right)$

1 mol of $\mathrm{MgCl}_{\text {2(q) }}$
8. Iron (II) phosphate reacts with tin (IV) nitride. How many moles of tin (IV) nitride are needed to produce 0.500 mol of iron (II) nitride?
$\mathrm{R} \quad \mathrm{G}$

1) $2 \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}+1 \mathrm{Sn}_{3} \mathrm{~N}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{3} \mathrm{~N}_{2(\mathrm{~s})}+\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4(\mathrm{~s})}$
2) $\frac{0.500 \mathrm{~mol} \text { of } \mathrm{Fe}_{3} \mathbf{N}_{2(\mathrm{~s})} \frac{\times 1 \mathrm{~mol} \text { of } \mathrm{Sn}_{3} \mathbf{N}_{2(\mathrm{~s})}}{2 \mathrm{~mol} \text { of } \mathrm{Fe}_{3} \mathbf{N}_{2(\mathrm{~s})}}=0.250 \mathrm{~mol} \text { of tin (IV) phosphate }}{}$
9. Gasoline $\left(\mathrm{C}_{8} \mathrm{H}_{18(I)}\right)$ is burned. How many moles of carbon dioxide are produced when 3.00 mol of gasoline is reacted?

G		R	
2	25	16	18

1) $1 \mathrm{C}_{8} \mathrm{H}_{18(\mathrm{~s})}+25 / 2 \mathrm{O}_{2(g)} \rightarrow 8 \mathrm{CO}_{2(g)}+9 \mathrm{H}_{2} \mathrm{O}_{(g)}$
2) 3.00 mol of $\mathrm{C}_{8} \underline{H}_{18(1)} \times 8(16) \mathrm{mol}$ of $\mathrm{CO}_{2(g)}=24.0 \mathrm{~mol}$ of carbon dioxide.

1 (2)mol of $\mathrm{C}_{8} \mathrm{H}_{18(1)}$
10. Chlorine reacts with potassium bromide. How many moles of chlorine would be needed to completely use up 25 mol of potassium bromide?
R G

1) $1 \mathrm{Cl}_{2(\mathrm{~g})} \quad+2 \mathrm{KBr}_{(\mathrm{aq)}} \rightarrow 2 \mathrm{KBr}_{(\mathrm{aq})}+\mathrm{Br}_{2(\mathrm{l})}$
2) $\frac{25 \mathrm{~mol} \text { of } \mathrm{KBr}_{(\mathrm{aq})} \times 1 \mathrm{~mol} \text { of } \mathrm{Cl}_{2_{(\mathrm{g})}}=13 \mathrm{~mol} \text { of chlorine }}{2 \mathrm{~mol} \text { of } \mathrm{KBr}_{(\mathrm{aq})}}=1$

Worksheet 2.2: Mole to Quantity Stoichiometry

Directions: Solve the following hypothetical stoichiometry problems. Assume water is available.

1. When 6.5 mol of solid potassium chlorate breaks into solid potassium chloride and oxygen gas, what mass of solid potassium chloride is produced?

G $\quad R$

1) $2 \mathrm{KClO}_{3(s)} \rightarrow 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2(g)}$
6.5 mol
?

LINEAR METHOD

STEP BY STEP METHOD
2) no conversion
3) mol ratio: $n_{R}=n_{G} \times R / G$

4) $\mathrm{m}=\mathrm{nM} \quad \mathrm{m}=74.55 \mathrm{~g} / \mathrm{mol} \times 6.5 \mathrm{~mol}=484 \mathrm{~g}=4.8 \times 10^{2} \mathrm{~g}$ of KCI Is
2. When 5.00 mol of methane burns, what volume of carbon dioxide at STP, will be produced? G $\quad \mathbf{R}$

1) $\quad 1 \mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 1 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

LINEAR METHOD:

5.00 mol of CH_{4}	$1 \mathrm{~mol}^{2} \mathrm{CO}_{2}$	$22.4 \mathrm{~L}^{2}$ of $\mathrm{CO}_{2}=112 \mathrm{~L}$ of CO_{2}
	$1 \mathrm{~mol}_{2}$ of CH_{4}	1 mol of CO_{2}

STEP BY STEP METHOD: 2) no conversion
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=5.00 \mathrm{~mol}$ of $\mathrm{CH}_{4} \times 1 \mathrm{~mol}$ of $\mathrm{CO}_{2} / 1 \mathrm{~mol}$ of $\mathrm{CH}_{4}=5.00 \mathrm{~mol}$ of CO_{2}
4) $\mathbf{v}=\mathrm{nV} \quad \mathrm{v}=5.00 \mathrm{~mol}$ of $\mathrm{CO}_{2} \times 22.4 \mathrm{~L} / \mathrm{mol}=112 \mathrm{~L}$ of CO_{2}
3. How many particles of hydrochloric acid is needed to neutralize 2.50 mol of calcium hydroxide?
$\mathbf{R} \quad \mathbf{G}$

1) $2 \mathrm{HCl}_{(a q)}+1 \mathrm{Ca}(\mathrm{OH})_{2(s)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CaCl}_{2(a q)}$
? $\quad 2.5 \mathrm{~mol}$
LINEAR METHOD:
$n=2.5 \mathrm{~mol}$ of $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \times 2 \mathrm{~mol}$ of $\mathrm{HCl}_{(\mathrm{aq})} \times 6.02 \times 1023$ particles of $\mathrm{HCl}_{(\mathrm{aq})}=3.01 \mathrm{E} 24$ particles 1 mol of $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \quad 1 \mathrm{~mol}$ of $\mathrm{HCl}_{(\mathrm{aq})}$
STEP BY STEP:
2) no conversion
3) $n_{R}=n_{G} \times R / G=2.5 \mathrm{~mol}$ of $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \times 2 \mathrm{~mol}$ of $\mathrm{HCl}_{(\text {(aq) }}$ 1 mol of $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}$
$\mathrm{n}=5.0 \mathrm{~mol}$
4) $p=n \times P \quad p=6.02 \times 10^{23} \times 5.0 \mathrm{~mol}=3.01 \mathrm{E} 24$ or 3.01×10^{24} particles of $\mathrm{HCl}_{(\mathrm{aq})}$
4. When 5.25 mol of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10(l)}\right)$ burns, what volume of water vapour will be produced at SATP?
G
R
1) $\quad 1 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{I})+6.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

LINEAR METHOD:

$$
\begin{array}{l|l|l}
5.25 \mathrm{~mol} \text { of } \mathrm{C}_{4} \underline{H}_{10(1)} & \begin{array}{l}
5 \mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
1 \mathrm{~mol} \text { of } \mathrm{C}_{4} \mathrm{H}_{10(1)}
\end{array} & \begin{array}{l}
24.8 \mathrm{~L} \text { of } \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
1 \mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
\end{array}
\end{array}=651 \mathrm{~L} \text { of H2O }
$$

STEP BY STEP METHOD: 2) no conversion
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=5.25 \mathrm{~mol}$ of $\mathrm{C}_{4} \mathrm{H}_{10(l)} \times 5 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} / 1 \mathrm{~mol}$ of $\mathrm{C}_{4} \mathrm{H}_{10(1)}=16.25 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
4) $\mathrm{v}=\mathrm{nV} \quad \mathrm{v}=16.25 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O} \times 24.8 \mathrm{~L} / \mathrm{mol}=651 \mathrm{~L}$ of water
5. When excess silver reacts with 3.45 mol of zinc phosphate, what mass of silver phosphate would be produced?

G $\quad \mathbf{R}$

1) $6 \mathrm{Ag}_{(s)}+1 \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} \rightarrow 2 \mathrm{Ag}_{3}\left(\mathrm{PO}_{4}\right)_{(s)}+3 \mathrm{Zn}_{(s)}$
3.45 mol
?

LINEAR METHOD:
3.45 mol of $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times 2 \mathrm{~mol}$ of $2 \mathrm{Ag}_{3} \mathrm{PO}_{4} \times 418.58 \mathrm{~g}$ of $\mathrm{Ag}_{3} \mathrm{PO}_{4}=2888 \mathrm{~g}=2.89 \mathrm{~kg}$ 1 mol of $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad 1 \mathrm{~mol}$ of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$

STEP BY STEP METHOD: 2) no conversion
3) $n_{R}=n_{G} \times R / G=3.45 \mathrm{~mol}$ of $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \times 2 \mathrm{~mol}$ of $2 \mathrm{Ag}_{3} \mathrm{PO}_{4}=6.90 \mathrm{~mol}$

$$
1 \mathrm{~mol} \text { of } \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

4) $\mathbf{m}=\mathrm{Mn}=(\mathbf{4 1 8 . 5 8} \mathrm{g} / \mathrm{mol})(6.90 \mathrm{~mol})=2888 \mathrm{~g}=2.89 \times 10^{3} \mathrm{~g}$ or 2.89 kg
6. When 3.00 mol of iron (II) hydroxide reacts with cobalt (II) phosphate, what mass of cobalt (II) phosphate is needed? $G \quad R$
1) $3 \mathrm{Fe}(\mathrm{OH})_{2(a q)}+\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)} \rightarrow 3 \mathrm{Co}(\mathrm{OH})_{2(s)}+\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)}$

$$
3.00 \mathrm{~mol} \quad ?
$$

LINEAR METHOD:
3.00 mol of $\mathrm{Fe}(\mathrm{OH})_{2(a q)} \times 3 \mathrm{~mol}$ of $\mathrm{Co}(\mathrm{OH})_{2(\mathrm{~s})} \quad \times 552.55 \mathrm{~g}$ of Co ${ }_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}=278.85=279 \mathrm{~g}$ of $\mathrm{Co}(\mathrm{OH})_{2}$

STEP BY STEP METHOD:
2) no conversion
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=\frac{3.00 \mathrm{~mol} \text { of } \mathrm{Fe}(\mathrm{OH})_{2(a q)} \times 3 \mathrm{~mol} \text { of } \mathrm{Co}(\mathrm{OH})_{2(\mathrm{~s})}}{3 \mathrm{~mol} \text { of } \mathrm{Fe}(\mathrm{OH})_{2(a q)}}=3.00 \mathrm{~mol}$ of $\mathrm{Co}(\mathrm{OH})_{2(\mathrm{~s})}$
4) $\mathrm{m}=\mathrm{Mn}=(\mathbf{9 2 . 9 5} \mathrm{g} / \mathrm{mol})(3.00 \mathrm{~mol})=278.85=279 \mathrm{~g}$ of $\mathrm{Co}(\mathrm{OH})_{2}$
7. In a neutralization reaction, 4.56 mol of sodium hydroxide neutralizes the sulphuric acid. What mass of water is produced? G R
1)
$2 \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{Na}_{2} \mathrm{SO}_{4(a q)}$
4.56 mol
?
LINEAR METHOD:
4.56 mol of $\mathrm{NaOH}_{(\mathrm{aq})} \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \underline{\mathrm{O}}_{(\mathrm{g})} \times 18.02 \mathrm{~g}$ of $\mathrm{H}_{2} \underline{\mathrm{O}}_{(\mathrm{g})}=8.22 \times 10^{1} \mathrm{~g}$ of water 2 mol of $\mathrm{NaOH}_{(a q)} \quad 1 \mathbf{~ m o l}$ of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

STEP BY STEP METHOD:

2) no conversion

3) $\mathrm{m}=\mathrm{Mn}=(18.02 \mathrm{~g} / \mathrm{mol})(4.56 \mathrm{~mol})=8.22 \times 10^{1} \mathrm{~g}$ of water
8. Hydrogen and 2.5 mol of nitrogen react to form ammonia. How many moles of ammonia will be produced at STP? SATP?

$$
\text { 1) } 3 \mathrm{H}_{2(g)}+1 \mathrm{~N}_{2(g)} \rightarrow 2 \mathrm{NH}_{3(g)}
$$

LINEAR METHODE
STP
SATP
2.5 mol of $\mathrm{N}_{2(g)} \times 2 \mathrm{~mol}^{2} \mathrm{NH}_{3(g)} \times 22.4 \mathrm{~L}(24.8 \mathrm{~L})$ of $\mathrm{NH}_{3(g)}=(112) 1.1 \mathrm{E} 2 \mathrm{~L}$ of $\mathrm{N}_{2(g) ;}$ (124)1.2E2 L of $\mathrm{N}_{2(g)}$ 1 mol of $\mathrm{N}_{2(g)} \quad 1 \mathrm{~mol}$ of $\mathrm{NH}_{3(g)}$
STEP BY STEP METHOD:
2) no conversion
3) $n_{R}=n_{G} \times R / G=2.5 \mathrm{~mol}$ of $\mathrm{N}_{2} \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}=5.00 \mathrm{~mol}$ of N_{2} 1 mol of NaOH
4) $\mathrm{v}=\mathrm{nV}=(5.00 \mathrm{~mol})(22.4 \mathrm{~L} / \mathrm{mol})=1.1 \mathrm{E} 2 \mathrm{~L}$ of $\mathrm{N}_{2} \mathrm{STP} ; \mathrm{v}=\mathrm{nV}=(5.00 \mathrm{~mol})(24.8 \mathrm{~L} / \mathrm{mol})=1.2 \mathrm{E} 2 \mathrm{~L}$ of N_{2} SATP

Worksheet 2.3: Quantity to Mole Stoichiometry

Directions: Solve the following hypothetical stoichiometry problems. Assume water is available.

1. How many moles of iron (III) oxide is produced when 5.6 g of iron burns with oxygen gas? G R
1) $2 \mathrm{Fe}_{(s)}+3 / 2 \mathrm{O}_{2(g)} \rightarrow 1 \mathrm{Fe}_{2} \mathrm{O}_{3(s)}$
5.6 g
?
LINEAR METHOD:
5.6 g of $\mathrm{Fe}_{(s)} \frac{\times 1 \mathrm{~mol} \text { of } \mathrm{Fe}_{(s)}}{55.85 \mathrm{~g} \text { of } \mathrm{Fe}_{(s)} \quad \times 1 \mathrm{~mol} \text { of } \mathrm{Fe}_{2} \underline{\mathrm{O}}_{3}(\mathrm{~s})}=0.050 \mathrm{~mol}$ of $\mathrm{Fe}_{(s)} \underline{\mathrm{O}}_{3(\mathrm{~s})}$

STEP BY STEP METHOD:
2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=5.6 \mathrm{~g} / 55.85 \mathrm{~g} / \mathrm{mol}=0.10 \mathrm{~mol}$
3) $n_{R}=n_{G} \times R / G=0.10 \mathrm{~mol}$ of $\mathrm{Fe}_{(s)} \times 1 \mathrm{~mol}$ of $\mathrm{Fe}_{2} \underline{\mathrm{O}}_{3(s)} \mathrm{n}=0.050 \mathrm{~mol}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ 2 mol of $\mathrm{Fe}_{(s)}$
2. When 4.00×10^{23} particles of methanol is burned, how many moles of water vapour are produced?

G
R

1) $1 \mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{l})}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 1 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

LINEAR METHOD:
4.00×10^{23} part of $\mathrm{CH}_{3} \mathrm{OH}_{(l)} \times 1 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{OH}_{(l)} \quad \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \underline{\mathrm{O}}_{(\mathrm{g})}=1.3289 \ldots \mathrm{~mol}=1.33 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(l)}$ 6.02 E 23 part of $\mathrm{CH}_{3} \mathrm{OH}_{(I)} \quad 1 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{OH}_{(I)}$

STEP BY STEP:
2) $n=p / P=4.00 \times 10^{23}$ part of $\mathrm{CH}_{3} \mathrm{OH}_{(1)} / 6.02 \mathrm{E} 23$ part of $\mathrm{CH}_{3} \mathrm{OH}_{(1)}$ per mol $=0.66445 \ldots \mathrm{~mol}^{2} \mathrm{CH}_{3} \mathrm{OH}_{(1)}$
3) $n_{r}=n_{g} \times R / G=0.66445 \ldots \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{OH}_{(1)} \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \underline{\mathrm{O}}_{(\mathrm{g})}=1.3289 \ldots \mathrm{~mol}=1.33 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(1)}$

1 mol of $\mathrm{CH}_{3} \mathrm{OH}_{(1)}$

3. If 122.6 g of solid potassium chlorate is heated, the crystals melt and decompose into solid potassium chloride and oxygen gas. How many moles of potassium chloride are formed?

$$
\text { G } R \quad K=39.10 \times 1=39.10
$$

1) $2 \mathrm{KClO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}$
$\mathrm{Cl}=35.45 \times 1=35.45$
122.6 g
?
$\mathrm{O}=16.00 \times 3=48.00$
LINEAR METHOD:
TOTAL $\quad 125.55 \mathrm{~g} / \mathrm{mol}$
122.6 g of $\mathrm{KClO}_{3(s)} \times 1 \mathrm{~mol}$ of $\mathrm{KClO}_{3(s)} \times 2 \mathrm{~mol}$ of $\mathrm{KCl}_{\left(s_{-}\right.}=1.000 \mathrm{~mol}$ of $\mathrm{KCl}_{(s)}$
122.55 g of $\mathrm{KClO}_{3(s)} \quad 2 \mathrm{~mol}$ of $\mathrm{KClO}_{3(s)}$

STEP BY STEP METHOD
2) $n=m / M=122.6 \mathrm{~g} / 122.55 \mathrm{~g} / \mathrm{mol}=1.000 \mathrm{~mol}$ of $\mathrm{KClO}_{3(\mathrm{~s})}$
3) $n_{R}=n_{G} \times R / G=1.000 \mathrm{~mol}$ of $\mathrm{KClO}_{3(s)} \times 2 \mathrm{~mol}$ of $\mathrm{KCl}_{(s)} \quad=1.000 \mathrm{~mol}$ of $\mathrm{KCl}_{(s)}$ $2 \mathbf{~ m o l}$ of $\mathrm{KClO}_{3(\mathrm{~s})}$
4. Black iron (III) oxide solid can be converted into water and iron metal when the iron (III) oxide is reacted with hydrogen gas. If 125 g of iron (III) oxide is reacted, how many moles of water are formed? $\mathrm{G} \quad \mathrm{R}$

1) $1 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \mathrm{Fe}=55.85 \times 2=111.70$ 125 g ? $0=16.00 \times 3=48.00$
LINEAR METHOD:
TOTAL
$159.70 \mathrm{~g} / \mathrm{mol}$
125 g of $\mathrm{Fe}_{2} \underline{\mathrm{O}}_{3(\mathrm{~s})} \times 1 \mathrm{~mol}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \times 3 \mathrm{~mol}$ of $\mathrm{H}_{2} \underline{O}_{(\mathrm{g})}=2.34815 \ldots \mathrm{~mol}=2.35 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ 159.70 g of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} 1 \mathrm{~mol}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$

STEP BY STEP METHOD:
2) $n=m / M=125 \mathrm{~g} / 159.70 \mathrm{~g} / \mathrm{mol}=0.7827175 \ldots \mathrm{~mol}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=\mathbf{0} .7827175 \ldots \mathrm{~mol}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \times 1$ mole of $\mathrm{H}_{2} \underline{\mathrm{O}}_{(\mathrm{g})}=2.34815 \ldots \mathrm{~mol}=2.35 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ 2 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3(s)}$
5. How many moles of zinc can react with hydrochloric acid to form 44.8 L of hydrogen gas at STP? $\mathrm{R} \quad \mathrm{G}$

1) $1 \mathrm{Zn}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow 1 \mathrm{H}_{2(g)}+\mathrm{ZnCl}_{2(a q)}$?
44.8 L

LINEAR METHOD:
44.8 L of $\mathrm{H}_{2} \times 1 \mathrm{~mol}$ of $\mathrm{H}_{2} \times 1 \mathrm{~mol}$ of $\mathrm{Zn}=2.00 \mathrm{~mol}$ of Zn
22.4 L of $\mathrm{H}_{2} \quad 1 \mathrm{~mol}$ of H_{2}

STEP BY STEP METHOD:

2) $\mathrm{n}=\mathrm{v} / \mathrm{V}=44.8 \mathrm{~L} / 22.4 \mathrm{~L} / \mathrm{mol}=2.00 \mathrm{~mol}$ of H 2
3) $n_{R}=n_{G} \times R / G=2.00 \mathrm{~mol}$ of $H_{2} \times 1 \mathrm{~mol}$ of $\mathrm{Zn}=2.00 \mathrm{~mol}$ of Zn

1 mol of H_{2}
6. Solutions of copper (II) sulphate and potassium phosphate are mixed. If 8.5 g of copper (II) phosphate form, how many moles of copper (II) sulphate react?
$\mathrm{Cu}=63.55 \times 3=190.65$
R
G
$P=30.97 \times 2=61.94$

1) $3 \mathrm{CuSO}_{4(\mathrm{aq})}+2 \mathrm{~K}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightarrow 3 \mathrm{~K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+1 \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} \quad \mathrm{O}=16.00 \times 8=128.00$ $? \mathrm{~mol} \quad 8.5 \mathrm{~g} \quad$ TOTAL $=\quad 380.59 \mathrm{~g} / \mathrm{mol}$
2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=8.5 \mathrm{~g}$ of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} / 380.59 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}=0.02233 \ldots \mathrm{~mol}$ of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=\mathbf{0 . 5 0 0 \mathrm { mol } \text { of } \mathrm { Fe } _ { 3 } \mathbf { N } _ { 2 (\mathrm { s }) } \times 1 \mathrm { mol } \text { of } \mathrm { Sn } _ { 3 } \underline { N } _ { 2 (\mathrm { s }) } = 0 . 2 5 0 \mathrm { mol } \text { of tin (IV) phosphate } , ~}$ 2 mol of $\mathrm{Fe}_{3} \mathrm{~N}_{2(\mathrm{~s})}$
LINEAR: 8.5 g of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} \times 1 \mathrm{~mol}^{2} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} \times 1 \mathrm{~mol}$ of $\mathrm{Sn}_{3} \mathrm{~N}_{2(\mathrm{~s})}=0.250 \mathrm{~mol}$ of tin (IV) phosphate $380.59 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})} 2 \mathrm{~mol}$ of $\mathrm{Fe}_{3} \mathrm{~N}_{2(\mathrm{~s})}$
7. In the manufacturing of nitric acid, nitrogen dioxide gas reacts with water to from nitric acid and nitrogen monoxide gas. How many moles of nitrogen dioxide gas reacts if 120.6 L of nitrogen monoxide gas is formed at SATP?
R
G
1) $3 \mathrm{NO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{HNO}_{3(a q)}+1 \mathrm{NO}_{(g)}$
? 120.6 L
LINEAR METHOD:
120.6 L of $\mathrm{NO}_{2(\mathrm{~g})} \times 1 \mathrm{~mol}$ of $\mathrm{NO}_{2(\mathrm{~g})} \times 3 \mathrm{~mol}$ of $\mathrm{NO}_{(g)}=14.59 \mathrm{moles}$ of $\mathrm{NO}_{(\mathrm{g})}$

$$
24.8 \mathrm{~L} \text { of } \mathrm{NO}_{2(\mathrm{~g})} \quad 1 \mathrm{~mol} \text { of } \mathrm{NO}_{2(\mathrm{~g})}
$$

STEP BY STEP METHOD:
2) $\mathrm{n}=\mathrm{v} / \mathrm{V}=120.6 \mathrm{~L} / 24.8 \mathrm{~mol} / \mathrm{L}=4.863 \mathrm{~mol}$ of $\mathrm{NO}_{2(\mathrm{~g})}$
3) $n_{R}=n_{G} \times R / G=4.863 \mathrm{~mol}$ of $\mathrm{NO}_{2(g)} \times 3 \mathrm{~mol}$ of $\mathrm{NO}_{(g)-}=14.59 \mathrm{moles}$ of $\mathrm{NO}_{(\mathrm{g})}$

1 mol of $\mathrm{NO}_{2(\mathrm{~g})}$
8. The thermite reaction is used in welding iron and steel. Aluminium and iron (III) oxide are ignited at high temperatures to produce aluminium oxide and iron. If 15.0 g of aluminium is used in this reaction, how many moles of aluminium oxide will be produced?

G
R
Step 1) $2 \mathrm{Al}_{(\mathrm{s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 1 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Fe}_{(\mathrm{s})}$
$15.0 \mathrm{~g} \quad ? \mathrm{~mol}$
Step 2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=15.0 \mathrm{~g}$ of $\mathrm{Al}(\mathrm{s}) / 26.98 \mathrm{~g} / \mathrm{mol}=0.55596 \ldots \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{s})$
Step 3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=\mathbf{0 . 5 5 5 9 6} \ldots \mathrm{mol}$ of $\mathrm{Al}(\mathrm{s}) \times 1 \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})} / 2 \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{s})=0.27798 \ldots$
$=0.278 \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
LINEAR: 15.0 g of $\mathrm{Al}(\mathrm{s}) \times 1 \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{s}) \times 1 \mathrm{~mol}$ of $\mathrm{Al}_{2} \underline{\mathrm{O}}_{3(\mathrm{~s})}=0.27798 \ldots \mathrm{~mol}=0.278 \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$ 26.98 g of $\mathrm{Al}(\mathrm{s}) \quad 2 \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{s})$

Worksheet 2.4: Quantity to Quantity Stoichiometry
Directions: Solve the following hypothetical stoichiometry problems. Assume water is available.

1. How many particles of aluminium oxide must be decomposed to produce 80.0 g of oxygen gas at STP?

R

G

1) $2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 4 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}$

LINEAR METHOD:

80.0 g of $\mathrm{O}_{2(\mathrm{~g})} \times 1 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})} \times 2 \mathrm{~mol}$ of $\mathrm{Al}_{2} \underline{\mathrm{O}}_{3(\mathrm{~s})} \times 6.02 \mathrm{E} 23$ particles of $\mathrm{Al}_{2} \underline{O}_{3(\mathrm{~s})}=1.00 \mathrm{E} 24$ part of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$ 32.00 g of $\mathrm{O}_{2(\mathrm{~g})} \quad 3 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})} \quad 1 \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$

STEP BY STEP:
2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=80.0 \mathrm{~g} / 32.00 \mathrm{~g} / \mathrm{mol}=2.5 \mathrm{~mol}$ of O_{2}
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=2.5 \mathrm{~mol}$ of $\mathrm{O}_{2} \times 2 \mathrm{~mol}$ of $\mathrm{Al}_{2} \underline{\mathrm{O}}_{3}=1.66666 \ldots \mathrm{~mol}$ of $\mathrm{Al}_{2} \underline{\mathrm{O}}_{3(\mathrm{~s})}$ 3 mol of O_{2}
4) $p=n P=1.6666 \ldots \mathrm{~mol} \times 6.02 \mathrm{E} 23$ particles $/ \mathrm{mol}=1.00 \mathrm{E} 24$ or 1.00×10^{24} particles of $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
2. Natural gas is mainly made up of methane. What mass of methane must be burned to produce 56.0 L of carbon dioxide at STP?
$\mathbf{R} \quad \mathbf{G}$

1) $1 \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

LINEAR: $\quad 56.0 \mathrm{~L}^{2} \mathrm{CO}_{2} \times 1 \mathrm{~mol}^{2} \mathrm{CO}_{2} \times 1 \mathrm{~mol}^{2} \mathrm{CH}_{4} \times 16.05 \mathrm{~g}$ of $\mathrm{CH}_{4}=40.1 \mathrm{~g} \mathrm{of} \mathrm{CH}_{4(\mathrm{~g})}$ $22.4 \mathrm{~L}^{\text {of } \mathrm{CO}_{2} \quad 1 \mathrm{~mol} \text { of } \mathrm{CO}_{2} \quad 1 \mathrm{~mol} \text { of } \mathrm{CH}_{4}, ~(1)}$
STEP BY STEP:
2) $\mathrm{n}=\mathrm{v} / \mathrm{V}=56.0 \mathrm{~L}$ of $\mathrm{CO}_{2} / 22.4 \mathrm{~L}^{2}$ of $\mathrm{CO}_{2}=2.5 \mathrm{~mol}$ of CO_{2}
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=2.5 \mathrm{~mol}$ of $\mathrm{CO}_{2} \times 1 \mathrm{~mol}$ of $\mathrm{CH}_{4} / 1 \mathrm{~mol}$ of $\mathrm{CO}_{2}=2.5 \mathrm{~mol}$ of $\mathbf{C O 2}$
4) $\mathrm{m}=\mathrm{nM}=2.5 \mathrm{~mol}$ of $\mathrm{CO}_{2} \times 16.05 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{CO}_{2}=40.1 \mathrm{~g}$ of $\mathrm{CH}_{4(\mathrm{~g})}$
3. Aluminium metal is refined from bauxite ore. In the refining process, aluminium oxide decomposes to aluminium and oxygen gas. What mass of aluminium can be produced from $\mathbf{2 . 0 4} \mathbf{~ k g}$ of aluminium oxide? G R

1) $2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$

LINEAR: 2040 g of $\mathrm{Al}_{2} \underline{O}_{3} \times 1 \mathrm{~mol}$ of $\mathrm{Al}_{2} \underline{\mathrm{O}}_{3} \quad \times 4 \mathrm{~mol}$ of $\mathrm{Al} \quad \times 26.98 \mathrm{~g}$ of AI $=1079.6 \mathrm{~g}=1.08 \mathrm{~kg}$ of AI 101.96 g of $\mathrm{Al}_{2} \mathrm{O}_{3} \quad 2 \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3} \quad 1 \mathrm{~mol}$ of Al

STEP BY STEP:

2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=2040 \mathrm{~g}$ of $\mathrm{Al}_{2} \mathrm{O}_{3} / 101.96 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}=20.0078 \ldots \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=20.0078 \ldots \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3} \times 4 \mathrm{~mol}$ of $\mathrm{Al} / 2 \mathrm{~mol}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}=40.0156 \ldots \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{s})$
4) $\mathrm{m}=\mathrm{nM}=40.0156 \ldots \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{s}) \times 26.98 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{Al}=1079.6 \mathrm{~g}=1.08 \mathrm{~kg}$ of Al
4. Sodium hydrogen carbonate can be used to neutralize acids. If sodium hydrogen carbonate reacts with hydrochloric acid, what volume of carbon dioxide gas at STP can be produced by 16.8 g of sodium hydrogen carbonate? NOTE: Sodium chloride and water vapour is also produced.

G \mathbf{R}

1) $1 \mathrm{NaHCO}_{3}(\mathrm{aq})+1 \mathrm{HCl}(\mathrm{aq}) \rightarrow 1 \mathrm{CO}_{2}(\mathrm{~g})+1 \mathrm{NaCl}(\mathrm{aq})+1 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

LINEAR: 16.8 g of $\mathrm{NaHCO}_{3} \times 1 \mathrm{~mol}$ of $\mathrm{NaHCO}_{3} \times 1 \mathrm{~mol}^{2} \mathrm{CO}_{2} \quad \times 22.4 \mathrm{~L}^{2} \mathrm{CO}_{2}=4.48 \mathrm{~L}^{2}$ of $\mathrm{CO}_{2(\mathrm{~g})}$ 84.01 of $\mathrm{NaHCO}_{3} \quad 1 \mathrm{~mol}$ of $\mathrm{NaHCO}_{3} \quad 1 \mathrm{~mol}$ of CO_{2}

STEP BY STEP:

2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=16.8 \mathrm{~g}$ of $\mathrm{NaHCO}_{3} / 84.01 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{NaHCO}_{3}=0.19997 \ldots \mathrm{~mol}$ of NaHCO_{3}
3) $n_{R}=n_{G} \times R / G=0.19997 \ldots \mathrm{~mol}$ of $\mathrm{NaHCO}_{3} \times 1 \mathrm{~mol}$ of $\mathrm{CO}_{2} / 1 \mathrm{~mol}$ of $\mathrm{NaHCO}_{3}=0.19997 \ldots \mathrm{~mol}$ of NaHCO_{3}
4) $v=n V=0.19997 \ldots \mathrm{~mol}$ of $\mathrm{NaHCO}_{3} \times 22.4 \mathrm{~L}^{\mathrm{of} \mathrm{CO}} \mathbf{C O}_{2}=4.48 \mathrm{~L}$ of $\mathrm{CO}_{2(\mathrm{~g})}$
5. Photography film is coated with silver chloride, which is produced when silver nitrate reacts with sodium chloride. What mass of silver chloride can be made from 11.7 g of sodium chloride?

G
R

1) $1 \mathrm{NaCl}(\mathrm{aq})+1 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 1 \mathrm{AgCl}(\mathrm{aq})+1 \mathrm{NaNO}_{3}(\mathrm{aq})$

LINEAR: 11.7 g of $\mathrm{NaCl} \times 1 \mathrm{~mol}$ of $\mathrm{NaCl} \times 1 \mathrm{~mol}$ of $\mathrm{AgCl} \times 143.32 \mathrm{~g}$ of $\mathrm{AgCl}=28.7 \mathrm{~g}$ of AgCl
58.44 g of NaCl 1 mol of NaCl 1 mol of AgCl

STEP BY STEP:

2) $n=m / M=11.7 \mathrm{~g} / 58.44 \mathrm{~g} / \mathrm{mol}=0.200205 \ldots \mathrm{~mol}$ of NaCl
3) $\mathrm{n}_{\mathrm{R}}=\mathrm{n}_{\mathrm{G}} \times \mathrm{R} / \mathrm{G}=\mathbf{0 . 2 0 0 2 0 5 \ldots \mathrm { mol } \text { of } \mathrm { NaCl } \times 1 \mathrm { mol } \text { of } \mathrm { AgCl } = \mathbf { 0 . 2 0 0 2 0 5 } \ldots \mathrm { mol } \text { of } \mathrm { AgCl }}$

1 mol of NaCl
4) $\mathrm{m}=\mathrm{nM}=0.200205 \ldots \mathrm{~mol}$ of $\mathrm{AgCl} \times 143.32 \mathrm{~g} / \mathrm{mol}=28.693 \ldots \mathrm{~g}=28.7 \mathrm{~g}$ of AgCl
6. Ammonia reacts with hydrochloric acid to produce ammonium chloride. What volume of ammonia at SATP is needed to produce 36.1 g of ammonium chloride?

R
G

1) $1 \mathrm{NH}_{3}(\mathrm{~g})+1 \mathrm{HCl}(\mathrm{aq}) \rightarrow 1 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$

LINEAR: 36.1 g of $\mathrm{NH}_{4} \mathrm{Cl} \times 1 \mathrm{~mol}$ of $\mathrm{NH}_{4} \mathrm{Cl} \times 1 \mathrm{~mol}$ of $\mathrm{NH}_{3} \quad \times 24.8 \mathrm{~L}$ of $\mathrm{NH}_{3}=16.7 \mathrm{~L}^{2}$ of NH_{3}
53.50 g of $\mathrm{NH}_{4} \mathrm{Cl} \quad 1 \mathrm{~mol}$ of $\mathrm{NH}_{4} \mathrm{Cl} \quad 1 \mathrm{~mol}$ of NH_{3}

STEP BY STEP:

2) $n=m / M=36.1 \mathrm{~g} / 53.50 \mathrm{~g} / \mathrm{mol}=0.674766 \ldots \mathrm{~mol}$ of NH 4 Cl
3) $n_{R}=n_{G} \times R / G=0.674766 \ldots \mathrm{~mol}$ of $\mathrm{NH} 4 \mathrm{Cl} \times 1 \mathrm{~mol}$ of $\mathrm{NH} 3=\mathbf{0 . 6 7 4 7 6 6} \ldots \mathrm{mol}$ of NH 3 1 mol of NH 4 Cl
4) $v=n \mathrm{~V}=0.674766 \ldots \mathrm{~mol}$ of $\mathrm{NH} 3 \times 24.8 \mathrm{~L} / \mathrm{mol}=16.734 \ldots \mathrm{~L}=16.7 \mathrm{~L}^{\text {of } \mathrm{NH}_{3}}$
7. If sulphuric acid reacts with 29.4 g of potassium hydroxide, what mass of potassium sulphate is produced?

$$
\mathbf{G} \quad \mathbf{R}
$$

1) $2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow 1 \mathrm{~K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{HOH}(\mathrm{l})$

LINEAR: 29.4 g of $\mathrm{KOH} \times 1 \mathrm{~mol}$ of $\mathrm{KOH} \times 1 \mathrm{~mol}$ of $\mathrm{K}_{2} \mathrm{SO}_{4} \quad \times 174.27 \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{SO}_{4}=45.7 \mathrm{~g}$ of K SO_{4}
56.11 g of KOH $\quad 2 \mathrm{~mol}$ of $\mathrm{KOH} \quad 1 \mathrm{~mol}$ of $\mathrm{K}_{2} \mathrm{SO}_{4}$

STEP BY STEP:
2) $\mathrm{n}=\mathrm{m} / \mathrm{M}=29.4 \mathrm{~g} / 56.11 \mathrm{~g} / \mathrm{mol}=$
3) $n_{R}=n_{G} \times R / G=$
4) $m=n M$
8. If sodium iodide reacts with lead (II) nitrate, what mass of lead (II) nitrate will be required to produce 150 g of precipitate?

R

G

1) $2 \mathrm{NaI}(\mathrm{aq})+1 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 1 \mathrm{Pbl}_{2}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

LINEAR: 150 g of $\mathrm{PbI}_{2} \times 1 \mathrm{~mol}$ of $\mathrm{PbI}_{2} \times 1 \mathrm{~mol}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \times 331.22 \mathrm{~g}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=108 \mathrm{~g}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
461 g of $\mathrm{PbI}_{2} \quad 1 \mathrm{~mol}$ of $\mathrm{Pbl}_{2} \quad 1 \mathrm{~mol}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
STEP BY STEP:
2) $n=m / M=$
3) $n_{R}=n_{G} \times R / G=$
4) $m=n M$

Worksheet 2.5: Limiting \& Excess Reagents

Directions: For each of the following, write a balanced equation and determine the limiting reagent \& the excess reagent (if they are present).

1. $\quad 5.0 \mathrm{~mol}$ of gasoline $\left(\mathrm{C}_{8} \mathrm{H}_{18(1)}\right)$ burns 47.0 mol of oxygen at STP. How many moles of carbon dioxide are present at STP? G G R
(2) (25)
(16)

Step 1) $1 \mathrm{C}_{8} \mathrm{H}_{18(\mathrm{l})}+12.5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{CO}_{2(\mathrm{~g})}+9 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Step 3) 5.0 mol of $\mathrm{C}_{8} \mathrm{H}_{18} \times 8 \mathrm{~mol}$ of $\mathrm{CO}_{2}=40 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}$ 1 mol of $\mathrm{C}_{8} \mathrm{H}_{18(1)}$
$47.0 \mathrm{~mol} \times 8 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}=30.08 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}($ LIMITING $)=30.1 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}$ 12.5 mol of $\mathrm{O}_{2(\mathrm{~g})}$

Step 4) not necessary.
2. $\quad 18.0 \mathrm{~g}$ of water breaks up into 6.0 g of oxygen. How many grams of hydrogen are formed?
Step 1) $2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}$
Step 2) $n=m / M=18.0 \mathrm{~g} / 18.02 \mathrm{~g} / \mathrm{mol}$ of water $=1.0 \ldots \mathrm{~mol}$ of water
THIS IS NOT A LIMITING QUESTION BECAUSE THERE IS ONLY ONE REACTANT. $\mathrm{n}=\mathrm{m} / \mathrm{M}=6.0 \mathrm{~g} / 36.0 \mathrm{~g} / \mathrm{mol}=0.166 \ldots \mathrm{~mol}$ of oxygen
THIS QUESTION CAN NOT BE SOLVED BECAUSE YOU DON'T KNOW WHICH ONE IS GIVEN. THIS COULD BE A PERCENT YIELD QUESTION (NEXT LESSON.)
3. $\quad 22.4 \mathrm{~mL}$ of methane reacts with 22.4 mL of oxygen at SATP. How many moles of water are made? G G R
Step 1) $1 \mathrm{CH}_{4(\mathrm{~g})} \quad+\quad 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \quad \mathrm{CO}_{2(\mathrm{~g})}+\quad 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Step 2) $n=v / V \quad n=v / V$
$=0.0224 / 24.8 \quad=0.0224 / 24.8$
$=9.03 \ldots \mathrm{E} 4 \mathrm{~mol}=9.03 \ldots \mathrm{E}-4 \mathrm{~mol}$
Step 3) $\frac{9.03 \ldots \mathrm{E}-4 \times 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}}{1 \mathrm{~mol} \mathrm{CH}_{4(\mathrm{~g})}} \quad \begin{aligned} & 9.03 \ldots \mathrm{E}-4 \times 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\ & 2 \mathrm{~mol} \mathrm{O}_{2(\mathrm{~g})}\end{aligned}$
$=1.806 . . \mathrm{E}-3 \mathrm{~mol}($ EXCESS $)=9.03 \mathrm{E}-4 \mathrm{~mol}$ (LIMIT)
Step 4) If we changed it to volume
$9.03 \ldots \mathrm{E}-4 \mathrm{~mol} \times 24.8 \mathrm{~L} / \mathrm{mol}=0.0224 \mathrm{~L}$ of water or 22.4 mL of water
4. 26 g of magnesium react with 1.00 mol of hydrochloric acid.
a) What volume of Hydrogen gas is made at STP?

		G	G	R
Step 1)		$1 \mathrm{Mg}_{(s)}$	$2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow$	$1 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{MgCl}_{2(\mathrm{aq})}$
Step 2)	$\mathrm{n}=\mathrm{m} / \mathrm{M}$	$\begin{aligned} & =26 / 24.31 \mathrm{~g} / \mathrm{mol} \\ & =1.069 \ldots \mathrm{~mol} \end{aligned}$	1.00 mol	
Step 3)		1.069...mol $\times 1 \mathrm{~mol} \mathrm{H}_{2(\mathrm{~g})}$	1.00 mol x 1	- $\mathrm{H}_{2 \text { (go }}$
		-1.060 ${ }_{\text {dol Mg }}^{(\mathrm{s})}$		mol HCl ${ }_{\text {(aq) }}$
		=1.0695 $\ldots \mathrm{mol}$ (EXCESS)	$=0.500 \mathrm{~mol}$	HCI is LIMITing)
Step 4)	$v=n V$	0.500 mol	$\mathrm{H}_{2(\mathrm{~g})} \times 22.4 \mathrm{~L} /$	ol $=11.2 \mathrm{~L}$ of $\mathrm{H}_{2(\mathrm{~g})}$

b) How much excess reagent is left over?

Step 3) $\quad 1.00 \mathrm{~mol}$ of $\mathrm{HCl}_{(\text {(aq) }} \times 1 \mathrm{~mol} \mathrm{Mg} g_{(s)}=0.500 \mathrm{~mol}$ of $\mathrm{Mg}_{(\mathrm{s})}$ is used $2 \mathrm{~mol} \mathrm{HCl}(\mathrm{aq})$

Step 4) Excess $=$ Original-used $=1.0695 \ldots \mathrm{~mol}-0.500 \mathrm{~mol}=0.570 \mathrm{~mol}$ of $\mathrm{Mg}_{(\mathrm{s})}$ left $\mathbf{m}=\mathbf{n M}=0.5695 \ldots \mathrm{~mol}$ of $\mathbf{M g} \times 24.31 \mathrm{~g} / \mathrm{mol}=13.8 \mathrm{~g}$ of $\mathrm{Mg}_{(\mathrm{s})}$ left over
5. 3.02×10^{23} formula units of sodium react with 12 L of chlorine gas at STP. How much excess reagent is left over if the limiting is all used up?

6. Describe a limiting reagent and an excess reagent.

- A limiting reagent is a reactant that controls how much product you have (it is the first reagent to be used up.
- An excess reagent is a reactant that is left over (it is not all used up)

Worksheet 2.6: Percent yield and Percent error
Directions: For each of the following write a balanced equation and determine the theoretical yield, actual yield, percent yield \& the percent error.

1. $\quad 8.0 \mathrm{~mol}$ of sulphur dioxide decomposes and actually produces 7.0 mol of oxygen gas.
$\begin{gathered}\mathrm{G} \\ \text { Step 1) } \\ 8 \mathrm{SO}_{2(\mathrm{~g})} \rightarrow \mathrm{S}_{8(\mathrm{~s})}\end{gathered}+\mathrm{R}^{8} \mathrm{O}_{2(\mathrm{~g})}$

$$
8.0 \mathrm{~mol} \quad 7.0 \mathrm{~mol}=\mathrm{AY} ; \mathrm{TY}=\text { ? }
$$

Step 3) 8.0 mol x 8 mol of $\mathrm{O}_{2(\mathrm{~g})} \quad=8.0 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})}$ is the TY 8 mol of $\mathrm{SO}_{2(\mathrm{~g})}$
Step 5) \% yield $=$ AY/TY $\times 100 \quad 7.0 \mathrm{~mol} / 8.0 \mathrm{~mol} \times 100=88 \%$
$\%$ error $=\backslash \underline{T Y}-A Y \backslash=12.5 \% \quad(100-87.5=13 \%)$
TY
2. 26.0 g of aluminum reacts with a solution of calcium nitrate and produces 3.00 moles of calcium. G
Step 1) $2 \mathrm{Al}_{(\mathrm{s})} \quad+\quad 3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow \quad 3 \mathrm{Ca}(\mathrm{s})+\quad 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3(\mathrm{aq})}$
Step 2) $26.0 / 26.98 \mathrm{~g} / \mathrm{mol}$ $3.00 \mathrm{~mol}=\mathrm{AY}$ $=0.964 \ldots \mathrm{~mol}$
Step 3) $0.964 \ldots \mathrm{~mol} \times 3 \mathrm{~mol}$ of $\mathrm{Ca}_{(\mathrm{s})}=1.45 \ldots \mathrm{~mol}$ of $\mathrm{Ca}_{(\mathrm{s})}=\mathrm{TY}$ 2 mol of $\mathrm{Al}_{(\mathrm{s})}$
Step 5) \% yield = AY/TY $\times 100 \quad 3.00 \mathrm{~mol} / 1.45 \ldots \mathrm{~mol} \times 100=207 \%$ because of of the solution (not evaporated)

$$
\% \text { error }=(A Y-T Y) / T Y \times 100=107 \%
$$

3. 6.50 mol of potassium chlorate solid is heated and breaks down into potassium chloride solid and 223 L of oxygen gas at SATP.

	G			$\mathrm{R}(\mathrm{TY})=$?
Step 1) Step 2)	$2 \mathrm{KClO}_{3(\mathrm{~s})} \rightarrow$	$2 \mathrm{KCl}_{(\mathrm{s})}$	+	$3 \mathrm{O}_{2(\mathrm{~g})}$
	6.50 mol			223L $=$ AY
				$V=223 \mathrm{~L} / 24$.

Step 3) $\quad 6.50 \mathrm{~mol} \mathrm{x} 3 \mathrm{~mol}$ of $\mathrm{O} 2 / 2 \mathrm{~mol}$ of $\mathrm{KCIO}=9.75 \ldots \mathrm{~mol}$ of $\mathrm{O} 2=\mathrm{TY}$
Step 4) $v=n V=9.75 \times 24.8=241.8 \mathrm{~L}=\mathrm{TY}$ (Not necessary if you changed AY to moles)
Step 5) \% yield AY/TY x $100=223 \mathrm{~L} / 241.8 \mathrm{~L} \times 100 \%=92.2 \%$ (\%yield $=8.99 \ldots / 9.75 \times 100 \%$) $\%$ error $=(T Y-A Y) / T Y \times 100 \%=(241.8-223) / 241.8=7.79 \%$
4. $\quad 33.6 \mathrm{~L}$ of methane burns and produces 2.00 mol of carbon dioxide gas at STP.

Step 2) $n=v / V=33.6 / 22.4=1.5 \mathrm{~mol} \quad 2.00 \mathrm{~mol}=\mathrm{AY}$
Step 3) mole ratio $\frac{1.5 \mathrm{~mol} \mathrm{x} 1 \mathrm{~mol} \text { of } \mathrm{CO}_{2(\mathrm{~g})}=1.5 \mathrm{~mol}=\text { TY }}{1 \mathrm{~mol} \text { of } \mathrm{CH}_{4(\mathrm{~g})}}$
Step 5) \% yield $=$ AY/TY $\times 100=2.00 / 1.5 \times 100=133 \%$
$\%$ error = 33.3\% (answer becomes positive)
5. Sulphuric acid reacts with 29.4 g of potassium hydroxide and produces 40.5 g of potassium sulphate

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{KOH}_{(\mathrm{aq})} \rightarrow 2 \mathrm{HOH}_{(\mathrm{l})}+1 \mathrm{~K}_{2} \mathrm{SO}_{4(\mathrm{aq})} \\
& \mathrm{n}=\mathrm{m} / \mathrm{M} \quad=29.4 / 56.11 \mathrm{~g} / \mathrm{mol} \quad 40.5 \mathrm{~g} / 174.27=\mathrm{AY} \\
& =0.5239 \ldots \mathrm{~mol} \text { of } \mathrm{KOH} \quad=0.23239 \ldots \mathrm{~mol}=\mathrm{AY} \\
& 0.5239 \ldots \times 1 \mathrm{~mol} \text { of } \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}=0.26195 \ldots \mathrm{~mol} \text { TY } \\
& 2 \mathrm{~mol} \text { of } \mathrm{KOH}_{(a q)}
\end{aligned}
$$

Step 4) Don't have to do this step because both AY and TY are in moles.
Step 5) \%yield = AY/TY = 0.23239.../0.26195...x $100=88.7 \%$
$\%$ error $=(A Y-T Y) / T Y \times 100=11.3 \%$
6. Describe percent yield and percent error.

Percent yield: a ratio between AY and TY as a percent; how much you produce compared to what you should produce.

Percent error: an indication of error (human, instrumental \& experimental).

Worksheet 2.7: Limiting Reagents and Percent Yield

1. Methane gas burns at STP.
a. If 0.500 mol of methane is burned in 2.50 mol of oxygen, what is the limiting reagent? G1
Step 1) $1 \mathrm{CH}_{4(\mathrm{~g})}+$
Step 2) 0.500 mol G2
$2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
50 mol
Step 3) $\quad 0.500 \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} 2.50 \times 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
1 mol of $\mathrm{CH}_{4(\mathrm{~g})} \quad 2 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})}$
$=1.00 \mathrm{~mol} \leftarrow$ TY 2.50 mol
of water of water
CH_{4} is limiting $\quad \mathrm{O}_{2}$ is excess
b. What is the theoretical yield, in moles, of water?
1.00 mol of water is the theoretical yield (use the limiting side
2. Sodium and chlorine are mixed together.
a. What is the limiting reagent if there is 10.0 g of sodium and 20.0 g of chlorine?

LINE METHOD:
$10.0 \mathrm{~g} \times 1 \mathrm{~mol}$ of $\mathrm{Na}_{(\mathrm{s})} \times 2 \mathrm{~mol}$ of $\mathrm{NaCl}_{(\mathrm{aq})} \times 58.44 \mathrm{~g}$ of $\mathrm{NaCl}_{(\mathrm{aq})}=25.419 \ldots \mathrm{~g}$ of NaCl LIMIT $22.99 \mathrm{~g} \quad 2 \mathrm{~mol}$ of $\mathrm{Na}_{(\mathrm{s})} \quad 1 \mathrm{~mol}$ of $\mathrm{NaCl}_{(\mathrm{aq})}$
$20.0 \mathrm{~g} \times 1 \mathrm{~mol}$ of $\mathrm{Cl}_{2} \times 2 \mathrm{~mol}$ of $\mathrm{NaCl}_{(\mathrm{aq})} \times 58.44 \mathrm{~g}$ of $\mathrm{NaCl}_{(\mathrm{aq})}=32.970 \ldots \mathrm{~g}$ of NaCI EXCESS $70.90 \mathrm{~g} \quad 1 \mathrm{~mol}$ of $\mathrm{Cl}_{2(\mathrm{~s})} \quad 1 \mathrm{~mol}$ of $\mathrm{NaCl}_{(\mathrm{aq})}$
b. How many grams of the product are produced?

3. In the synthesis of sulphuric acid, one step involves the mixing of sulphur dioxide with oxygen to produce sulphur trioxide. If 175 L of sulphur dioxide was mixed with 85 L of oxygen at SATP, how many litres of sulphur trioxide is produced?

STEP 4) $\mathbf{v = n V}=\mathbf{6 . 8 5 4 8} \ldots \mathrm{mol}$ of $\mathrm{SO}_{3(\mathrm{~g})} \times 24.8=170 \mathrm{~L}$ of $\mathrm{SO}_{3(\mathrm{~g})}$
LINEAR METHOD
For $\mathrm{SO}_{2(\mathrm{~g})}: 175 \mathrm{~L} \times 1 \mathrm{~mol}$ of $\mathrm{SO}_{2(\mathrm{~g})} \times 2 \mathrm{~mol}$ of $\mathrm{SO}_{3(\mathrm{~g})} \times 24.8 \mathrm{~L}$ of $\mathrm{SO}_{3(\mathrm{~g})}=174.99 \ldots \mathrm{~L}$ of $\mathrm{SO}_{3(\mathrm{~g})}$ 24.8 L of $\mathrm{SO}_{2(\mathrm{~g})} \quad 2 \mathrm{~mol}$ of $\mathrm{SO}_{2(\mathrm{~g})} \quad 1 \mathbf{~ m o l}$ of $\mathrm{SO}_{3(\mathrm{~g})}$

For $\mathrm{O}_{2(\mathrm{~g})}: \frac{85 \mathrm{~L} \times 1 \mathrm{~mol} \text { of } \mathrm{O}_{2(\mathrm{~g})} \times 2 \mathrm{~mol} \text { of } \mathrm{SO}_{3(\mathrm{~g})} \times 24.8 \mathrm{~L} \text { of } \mathrm{SO}_{3(\mathrm{~g})}}{24.8 \mathrm{~L} \text { of } \mathrm{O}_{2(\mathrm{~g})}} 1 \mathbf{1 ~ m o l ~ o f ~} \mathrm{O}_{2(\mathrm{~g})} 170 \mathrm{Lol}$ of $\mathrm{SO}_{3(\mathrm{~g})} \quad 1 \mathrm{SO}_{3(\mathrm{~g})}$
4. Adipic acid $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}\right)$, a raw material for nylon, is made by the oxidation (reacting with oxygen) of cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12(\mathrm{~s})}\right)$. Water is a by-product.
a. How many moles of oxygen gas would be needed to make 40.0 mol of adipic acid?

	\mathbf{R}		\mathbf{G}
STEP 1) $\mathrm{C}_{6} \mathrm{H}_{12(\mathrm{~s})}$	+	$2.5 \mathrm{O}_{2(\mathrm{~g})}$	$\rightarrow \quad 1 \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
STEP 2) Already in moles	$?$		$\mathbf{4 0 . 0} \mathbf{m o l}=\mathbf{n}_{\mathbf{g}}$

STEP 3) $n_{\mathrm{g}} \times 2.5 \mathrm{~mol} \mathrm{O}_{2(\mathrm{~g})}=100 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12(\mathrm{~s})}$
STEP 4) Not needed
LINEAR METHOD
For $\mathrm{SO}_{2(\mathrm{~g})}: 40.0 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})} \times 2.5 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g}))}=100 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})}$ 1 mol of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}$
b. If 2.00 mol of oxygen is reacted with 164 g of cyclohexane, what is the theoretical yeild of adipic acid in grams? $\quad \mathrm{G} 1=\mathrm{L}$
STEP 1) (G2) $\mathrm{C}_{6} \mathrm{H}_{12(\mathrm{~s})}+\quad 2.5 \mathrm{O}_{2(\mathrm{~g})} \quad \rightarrow \quad 1 \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
STEP 2) $n=m / M=164 \mathrm{~g} / 84.18 \mathrm{~g} / \mathrm{mol}$ 2 mol
?
$\mathrm{n}=1.9482 \ldots \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{12(\mathrm{~s})}$
STEP 3) $n_{g} \times 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}$
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12(\mathrm{~s})}$
$\mathrm{n}_{\mathrm{g}} \times 1 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}$
2.5 mo of $\mathrm{O}_{2(\mathrm{~g})}$
$=1.9482 \ldots \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})} \quad=0.8 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}$ (LIMITING)
STEP 4) 0.8 mol of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})} \times 146.16 \mathrm{~g} / \mathrm{mol}=116.928 \mathrm{~g}=1 \times 10^{2} \mathrm{~g}$ of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}=\mathrm{TY}(1 \mathrm{sig} \mathrm{dig})$ LINEAR METHOD
For $\mathrm{O}_{2(\mathrm{~g})}: \underline{2 \mathrm{~mol} \text { of } \mathrm{O}_{2(\mathrm{~g})} \times 1 \mathrm{~mol} \quad \mathbf{x 1 4 6 . 1 6 g} \text { of } \mathrm{C}_{6} \underline{H}_{10} \underline{O}_{4(\mathrm{~s})}=1 \times 10^{2} \mathrm{~g} \text { of } \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})} \quad(1 \mathrm{sig} \mathrm{dig})}$ $2.5 \mathrm{~mol} \mathrm{O}_{2(\mathrm{~g})} \quad 1 \mathrm{~mol}$ of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}$
 84.18 g 1 mol 1 mol of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})}$
c. If 285 g of acid was produced in b) what is the percent yield?
(Use rounded answer from b)
$\%$ yield $=$ AY/TY $\times 100 \%=285 \mathrm{~g} / 1 \times 10^{2} \mathrm{~g}$ of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4(\mathrm{~s})} \times 100 \%=285 \%$ yield $=3 \times 10^{2} \%$
5. A chemist, new to the behaviour of chlorine toward hydrocarbon compounds, tried to make dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2(\mathrm{~g})}\right)$, by mixing 5500 mL of chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{g})}\right)$ and 5500 mL of chlorine at STP. Hydrogen chloride gas was a by product. After the reaction was complete, some chloromethane remained unchanged and 12.8 g of dichloromethane was obtained.
a. Which reactant is excess?
$\mathrm{G} 1=\mathrm{E}$
$1 \mathrm{CH}_{3} \mathrm{Cl}_{(\mathrm{g})}$
5500 mL
$=5.5 \mathrm{~L} / 22.4 \mathrm{~L} / \mathrm{mol}$
$=0.2455 \ldots \mathrm{~mol}$
$\mathrm{x} 1 \mathrm{~mol} / 1 \mathrm{~mol}=0.2455 \ldots \mathrm{~mol}$
Chloromethane is excess
b. How much dichlormethane can theoretically be produced?

STEP 4)
G2 = L
STEP 1)
$1.5 \mathrm{Cl}_{2(\mathrm{~g})} \quad \rightarrow \quad \mathrm{CH}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \quad+\quad \mathrm{HCl}_{(\mathrm{g})}$

5500 mL 12.8 g

STEP 2) $n=\mathrm{v} / \mathrm{V}$
STEP 3)
$5.5 \mathrm{~L} / 22.4 \mathrm{~L} / \mathrm{mol}$
$=0.2455 \ldots \mathrm{~mol}$
$\times 1 \mathrm{~mol} / 1.5 \mathrm{~mol}=0.1636 \ldots \mathrm{~mol}$ How much dichlormethane can theoretically be produced?
c. What is the percent yield?

$$
\% \text { yield }=\text { AY } / T Y \times 100 \%=12.8 \mathrm{~g} / 13.9 \mathrm{~g} \times 100 \%=92.086 \ldots \%=92.1 \%
$$

d. What is the percent error?

$$
\% e r r o r=(T Y-A Y) / T Y \times 100 \%=(13.9-12.8) / 13.9 \times 100 \%=7.91 \%
$$

Worksheet 3.8: Stoichiometry Review

1. A 34.5 g sample of sodium hydroxide solution is reacted with excess phosphoric acid. What is the mass of sodium phosphate that will form?

Step 1) $\quad 3 \mathrm{NaOH}_{(\mathrm{aq})}+\quad 1 \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq)}} \rightarrow 3 \mathrm{HOH}+\quad 1 \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}$
Step 2) $\mathrm{n}=\mathrm{m} / \mathrm{M} \mathrm{n}=34.5 \mathrm{~g} / 40.00 \mathrm{~g} / \mathrm{mol}=0.8625 \mathrm{~mol}$
Step 3) R/G $\quad 0.8625 \mathrm{~mol}$ of $\mathrm{NaOH}_{(a q)} \times 1 \mathrm{~mol}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq)}}=0.2875 \mathrm{~mol}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq)}}$ 3 mol of $\mathrm{NaOH}_{(\text {aq })}$
Step 4) $\mathrm{m}=\mathrm{nM}$; $\mathrm{m}=0.2875 \mathrm{~mol}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})} \times 163.94 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}=47.1 \mathrm{~g}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}$
LINE METHOD:
34.5 g of $\mathrm{NaOH}_{(\mathrm{aq})} \times 1 \mathrm{~mol}^{\text {of }} \mathrm{NaOH}_{(\mathrm{aq})} \times 1 \mathrm{~mol}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})} \times 163.94 \mathrm{~g}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(a \mathrm{aq})}=47.1 \mathrm{~g}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}$ 40.00 g of $\mathrm{NaOH}_{(\mathrm{aq})} 3 \mathrm{~mol}$ of $\mathrm{NaOH}_{(\text {(aq) }} \quad 1 \mathrm{~mol}$ of $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq)}}$
2. A 75.0 g sample of lithium carbonate reacts with 120 g of aluminum nitrate. What mass of precipitate will form?

75.0-62.4 = 12.6 g of EXCESS LEFT OVER

3. A 45.0 g sample of ethanol burns in the presence of 105 L of oxygen gas. (assume STP). What is the percent yield if 50.0 g of carbon dioxide is formed?
$\mathrm{G} 1=\mathrm{L} \quad \mathrm{G} 2=\mathrm{E} \quad \mathrm{R}=\mathrm{TY}$

Step 1) $\quad 1 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})} \quad+\quad 3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \quad 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Step 2) $n=m / M ; n=45.0 \mathrm{~g} / 46.08 \mathrm{~g} / \mathrm{mol} \quad n=v / V ; n=105 \mathrm{~L} / 22.4 \mathrm{~L} / \mathrm{mol} \quad A Y=50.0 \mathrm{G}$

$$
\mathrm{n}=0.9765625 \mathrm{~mol} \quad \mathrm{n}=4.6875 \mathrm{~mol}
$$

Step 3) R/G $\quad x 2 \mathrm{~mol}^{2} \mathrm{CO}_{2(\mathrm{~g})}=1.953 \ldots \mathrm{~mol} \quad \times 2 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}=3.125 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}$ 1 mol of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)} \quad 3 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})}$
Step 4) $\mathrm{m}=\mathrm{nM} ; \mathrm{m}=1.953 \ldots \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})} \times 44.01 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}=85.957 \ldots \mathrm{~g}=86.0 \mathrm{~g}$ of CO LINE METHOD:
For $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}: 45.0 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)} \times 1 \mathrm{~mol}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)} \times 2 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})} \times 44.01 \mathrm{~g}$ of $\mathrm{CO}_{2(\mathrm{~g})}=86.0 \mathrm{~g}$ of CO 46.08 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)} \quad 1 \mathrm{~mol}$ of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(I)} \mathbf{1 ~ m o l}$ of $\mathrm{CO}_{2(\mathrm{~g})}$

For $\mathrm{O}_{2(\mathrm{~g})}: 105 \mathrm{~L}^{\text {of }} \mathrm{O}_{2(\mathrm{~g})} \times 1 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})} \times 2 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})} \times 44.01 \mathrm{~g}$ of $\mathrm{CO}_{2(\mathrm{~g})}=137.53 \ldots \mathrm{~g}$ of $\mathrm{CO}_{2(\mathrm{~g})}$ 22.4 L of $\mathrm{O}_{2(\mathrm{~g})} \quad 3 \mathrm{~mol}$ of $\mathrm{O}_{2(\mathrm{~g})} \quad 1 \mathrm{~mol}$ of $\mathrm{CO}_{2(\mathrm{~g})}$
4. When 5.6×10^{24} particles of magnesium sulfide reacts with potassium hydroxide, then 500 g of precipitate forms. What is the percent error?

R = TY
Step 1) $1 \mathrm{MgS}_{(\mathrm{s})} \quad+\quad 2 \mathrm{KOH}_{(\mathrm{aq})} \quad \rightarrow \quad \mathrm{K}_{2} \mathrm{~S}_{(\mathrm{aq})} \quad \underset{500}{ } \quad \mathbf{1} \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}$
Step 2) $n=p / P=5.6 \mathrm{E} 24 / 6.02 \mathrm{E} 23$

$$
\mathrm{n}=9.3023 \ldots \mathrm{~mol}
$$

Step 3) R/G $\quad x 1 \mathrm{~mol}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}=9.3023 \ldots \mathrm{~mol}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}$
1 mol of MgS
Step 4) $m=n M ; m=9.23023 \ldots \mathrm{~mol}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})} \times 58.33 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}=542.604 \ldots \mathrm{~g}=\mathrm{TY}$

LINE METHOD:

5.6 E 24 of $\mathrm{MgS} \times 1 \mathrm{~mol}$ of $\mathrm{MgS} \times 1 \mathrm{~mol}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})} \times 58.33 \mathrm{~g}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}=542.604 \ldots \mathrm{~g}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}$
6.02 E 23 of MgS 1 mol of $\mathrm{MgS} \quad 1 \mathrm{~mol}$ of $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}$

Step 5) \%error $=(\mathrm{TY}-\mathrm{AY}) / \mathrm{TY} \times 100 \%=(542.604 \ldots \mathrm{~g}-500 \mathrm{~g}) / 542.604 \ldots \mathrm{~g} \times 100 \%=7.85 \%$
5. When 36.9 L of chlorine gas (SATP) reacts with 36.8 g of magnesium oxide, 38.9 g of magnesium chloride formed. What mass of magnesium chloride did you expect?

$$
\mathbf{G 1 = E} \quad \mathbf{G} 2=\mathrm{L} \quad \mathbf{R}=\mathrm{TY}
$$

Step 1) $\quad 2 \mathrm{Cl}_{2(\mathrm{~g})}+\quad 2 \mathrm{MgO}_{(\mathrm{s})} \quad \rightarrow \quad \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{MgCl}_{2(\mathrm{~s})}$
Step 2) $n=v / V ; n=36.9 \mathrm{~L} / 24.8 \mathrm{~L} / \mathrm{mol} \quad \mathrm{n}=\mathrm{m} / \mathrm{M} ; \mathrm{n}=36.8 \mathrm{~g} / 40.31 \mathrm{~g} / \mathrm{mol} \quad 38.9 \mathrm{~g}=\mathrm{A} Y$ $\mathrm{n}=1.4879 \ldots \mathrm{~mol}$ of $\mathrm{Cl}_{2(\mathrm{~g})} \quad \mathrm{n}=0.9129 \ldots \mathrm{~mol}$ of MgO
Step 3) R/G $0.9129 \ldots \mathrm{~mol}$ of $\mathrm{MgO} \times 2 \mathrm{~mol}$ of $\mathrm{MgCl}_{2(\mathrm{~s})} / 2 \mathrm{~mol}$ of $\mathrm{MgO}=0.9129 \ldots \mathrm{~mol}$ of $\mathrm{MgCl}_{2(\mathrm{~s})}$
Step 4) $\mathrm{m}=\mathrm{nM} ; \mathrm{m}=0.9129 \ldots \mathrm{~mol}$ of $\mathrm{MgCl}_{2(\mathrm{~s})} \times 95.21 \mathrm{~g} . \mathrm{mol}=86.9195 \ldots \mathrm{~g}=86.9 \mathrm{~g}$ of $\mathrm{MgCl}_{2(\mathrm{~s})}=\mathrm{TY}$

LINE METHOD:

For $\mathrm{Cl}_{2}: 36.9 \mathrm{~L}^{3}$ of $\mathrm{Cl}_{2} \times 1 \mathrm{~mol}$ of $\mathrm{Cl}_{2(\mathrm{~g})} \times 2 \mathrm{~mol}$ of $\mathrm{MgCl}_{2(\mathrm{~s})} \times 95.21 \mathrm{~g}$ of $\mathrm{MgCl}_{2(\mathrm{~s})}=141.66 \mathrm{~g}$ of $\mathrm{MgCl}_{2(\mathrm{~s})}$

$$
24.8 \mathrm{~L} \text { of } \mathrm{Cl}_{2(\mathrm{~g})} .2 \mathrm{~mol} \text { of } \mathrm{Cl}_{2(\mathrm{~g})} \quad 1 \mathrm{~mol} \text { of } \mathrm{MgCl}_{2(\mathrm{~s})}
$$

For MgO: 36.8 g of $\mathrm{MgO} \times 1 \mathrm{~mol}$ of $\mathrm{MgO} \times 2 \mathrm{~mol}$ of $\mathrm{MgCl}_{2(\mathrm{~s})} \times 95.21 \mathrm{~g}$ of $\mathrm{MgCl}_{2(\mathrm{~s})}=86.9 \mathrm{~g}$ of $\mathrm{MgCl}_{2(\mathrm{~s})}$ 40.31 g of MgO 2 mol of $\mathrm{MgO} \quad 1 \mathrm{~mol}$ of $\mathrm{MgCl}_{2(\mathrm{~s})}$
6. When 24.5 g of iron(II) chloride reacts with 35.0 g of zinc, 7.2 g of iron was formed. What is the percent yield and percent error is this experiment?

LINE METHOD:

For $\mathrm{FeCl}_{2}: 24.5 \mathrm{~g}$ of $\mathrm{FeCl}_{2(\mathrm{aq)})} \times 1 \mathrm{~mol}$ of $\mathrm{FeCl}_{2(\mathrm{aq)})} \times 1 \mathrm{~mol}$ of $\mathrm{Fe}_{(\mathrm{s})} \times 55.85 \mathrm{~g}$ of $\mathrm{Fe}_{(\mathrm{s})}=10.79 \ldots \mathrm{~g}$ of $\mathrm{Fe}_{(\mathrm{s})}=\mathrm{TY}$
126.75 g of $\mathrm{FeCl}_{2(\mathrm{aq)}} \quad 1 \mathrm{~mol}$ of $\mathrm{FeCl}_{2(\mathrm{aq)}} \mathbf{1 ~ m o l ~ o f ~} \mathrm{Fe}_{(\mathrm{s})}$
 65.41 g of $\mathrm{Zn}_{(\mathrm{s})} 1 \mathrm{~mol}$ of $\mathrm{Zn}_{(\mathrm{s})} \quad 1 \mathrm{~mol}$ of $\mathrm{Fe}_{(\mathrm{s})}$

Step 5) \%yield=AY/TY $\times 100 \%=7.2 \mathrm{~g} / 10.79 . . \mathrm{g} \times 100 \%=66.69 \ldots \%=66.7 \%$
\%error = 100 - \%yield = 33.3\%

Worksheet 2.11: Introduction to Gases \& Dalton's Gas Law

1. What are three physical properties of all gases?

Gases are do not have a fixed volume or shape (fill container), are compressible and diffuse.
2. What three variables affect gases?

Pressure, temperature and volume
3. What instrument measures pressure?

Barometer (manometer)
4. What is the SI unit for pressure?

KPa (kiloPascals)
5. What unit expresses the average kinetic energy of a gas?

Kelvin or degrees Celcius
6. A 1.00 L bottle of gas contains oxygen at 10.0 kPa , nitrogen at 12.1 kPa and hydrogen at 97.5 kPa
a. What is the total pressure?
$P_{T}=P_{1}+P_{2}+P_{3}$
$P_{\mathrm{T}}=10.0 \mathrm{kPa}+12.1 \mathrm{kPa}+97.5 \mathrm{kPa}$
$\mathrm{P}_{\mathrm{T}}=119.6 \mathrm{kPa}$ (one decimal place for significant digits)
b. What percent of each gas is present? (HINT $\left.\%=P_{\text {gas }} / P_{\text {total }} \times 100\right)$
oxygen = 8.36%; nitrogen $=10.1 \%$; hydrogen $=81.5 \%$ (3 significant digits)
c. What is the volume of each gas?

V of oxygen $=1.00 \mathrm{~L} \times 0.0836=0.0836 \mathrm{~L}=83.6 \mathrm{~mL}$
7. Four gases (A, B, C and D) make up a mixture with a pressure of 150 kPa . What is the partial pressure of gas A, if gas B has a pressure of 58.0 kPa , gas C has a pressure of 23.8 kPa and gas D has a pressure of 15.9 kPa .
$P_{1}=P_{T}-\left(P_{2}+P_{3}+P_{4}\right)$
$\mathrm{P}=150 \mathrm{kPa}-(\mathbf{5 8 . 0 k P a}+\mathbf{2 3 . 8} \mathrm{kPa}+\mathbf{1 5 . 9 k P a})$
$\mathrm{P}=52.3 \mathrm{kPa}$
8. Three gases make up a mixture. At a particular pressure, the partial pressures are measured: Gas $\mathrm{A}=$ 67.00 kPa , Gas $\mathrm{B}, 6.70 \mathrm{kPa}$, and Gas C $=0.67 \mathrm{kPa}$. What is the pressure conditions under which this measurement is taken?
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$
$P=67.00 \mathrm{kPa}+6.70 \mathrm{kPa}+\mathbf{0 . 6 7} \mathbf{k P a}=\mathbf{7 4 . 3 7} \mathbf{k P a}$

Worksheet 2.12: Boyles' Gas Law

1. What is the pressure when: (temperature is constant)
a. $\quad 130 \mathrm{~mL}$ of a gas at $\mathbf{7 4 0} \mathrm{mmHg}$ is changed to 150 mL ?
$P_{2}=P_{1} V_{1} / V_{2} ; P_{2}=740 \mathrm{mmHg} \times 130 \mathrm{~mL} / 150 \mathrm{~mL}$
$P_{2}=641 \mathrm{mmHg}$
b. $\quad 25 \mathrm{~mL}$ of gas at 65 atm is changed to 30.0 mL ?
$P_{2}=P_{1} V_{1} / V_{2} ; P_{2}=65 \mathrm{~atm} \times 25 \mathrm{~mL} / 30.0 \mathrm{~mL}$
$P_{2}=54 \mathrm{~atm}$
c. $\quad 1.0 \mathrm{~L}$ of gas at 70 kPa is changed to 1.2 L ?
$\mathrm{P}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2} ; \mathrm{P}_{2}=70 \mathrm{kPa} \times 1.0 \mathrm{~L} / 1.2 \mathrm{~L}$
$P_{2}=58 \mathrm{kPa}$
2. What is the volume when: (temperature is constant)
a. $\quad 75 \mathrm{~mL}$ of gas at 4.1 atm is changed to 7.0 atm ?
$\mathrm{V}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{P}_{2} ; \quad \mathrm{V}_{2}=4.1 \mathrm{~atm} \times 75 \mathrm{~mL} / 7.0 \mathrm{~atm}$
$V_{2}=44 \mathrm{~mL}$
b. $\quad 60.0 \mathrm{~mL}$ of gas at 760 mmHg is changed to 10 mmHg ?
$V_{2}=P_{1} V_{1} / P_{2} ; V_{2}=760 \mathrm{mmHg} \times 60 \mathrm{~mL} / 10 \mathrm{mmHg}$
$V_{2}=4.6 \mathrm{~L}$ or $4.6 \times 10^{3} \mathrm{~mL}$
c. $\quad 400.0 \mathrm{~mL}$ of gas at 760 kPa is changed to 300 kPa ?
$\mathrm{V}_{\mathbf{2}}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{P}_{\mathbf{2}} ; \mathrm{V}_{\mathbf{2}}=\mathbf{7 6 0 k P a} \times 400 \mathrm{ml} / \mathbf{3 0 0 k P a}$
$V_{2}=1013.33 \mathrm{~mL} ; 1.01 \times 10^{3} \mathrm{~mL}$ or 1.01 L

Worksheet 2.13: Charles' Gas Law

1. What is the volume when: (pressure is constant)
a. $\quad 125 \mathrm{~mL}$ of gas at $25^{\circ} \mathrm{C}$ is cooled to Standard temperature?

$$
\mathrm{T}_{1}=25+273.15=298.15 \mathrm{~K} \quad \mathrm{~T}_{2}=0+273.15=273.15 \mathrm{~K}
$$

$\mathrm{V}_{2}=\mathrm{V}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1} ; \mathrm{V}_{\mathbf{2}}=$
$\mathrm{V}_{2}=0.11 \mathrm{~L}$ or $1.1 \times 102 \mathrm{~mL}$
b. $\quad 300.0 \mathrm{~mL}$ of gas at $0.0^{\circ} \mathrm{C}$ is heated to $30.0^{\circ} \mathrm{C}$?

$$
\mathrm{T}_{1}=0+273.15=273.15 \mathrm{~K} \quad \mathrm{~T}_{2}=30+273.15=303.15 \mathrm{~K}
$$

$\mathrm{V}_{2}=\mathrm{V}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1} ; \mathrm{V}_{2}=$
$\mathrm{V}_{2}=0.333 \mathrm{~L}$ or 333 mL
c. $\quad 220.0 \mathrm{~mL}$ of gas at $10.0^{\circ} \mathrm{C}$ is heated to $100.0^{\circ} \mathrm{C}$?
$\mathrm{T}_{1}=10+273.15=283.15 \mathrm{~K} \quad \mathrm{~T}_{2}=100+273.15=373.15 \mathrm{~K}$
$\mathrm{V}_{2}=\mathrm{V}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1} ; \quad \mathrm{V}_{2}=$
$\mathrm{V}_{2}=\mathbf{0 . 2 9 0 \mathrm { L } \text { or } 2 9 0 \mathrm { mL }}$
2. What is the temperature when: (pressure is constant)
a. $\quad 30.0 \mathrm{~mL}(\mathrm{~V} 1)$ of gas at $14^{\circ} \mathrm{C}(\mathrm{T} 1)$ is compressed to $22 \mathrm{~mL}(\mathrm{~V} 2)$?
$\mathrm{T}_{1}=14+273.15=287.15 \mathrm{~K}$
$\mathrm{T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1} / \mathrm{V}_{1} ; \quad \mathrm{T}_{2}=\mathbf{2 2 m L x 2 8 7 . 1 5 / 3 0 \mathrm { mL }}$
$\mathrm{T}_{2}=210.6 \mathrm{~K} ; \underline{2.1 \times 10^{2} \mathrm{~K} \text { or }-63 \mathrm{C}}$
b. $\quad 16.4 \mathrm{~mL}$ of gas at $28^{\circ} \mathrm{C}$ is expanded to 20.0 mL ?
$\mathrm{T}_{1}=28+273.15=301.15 \mathrm{~K}$
$\mathrm{T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1} / \mathrm{V}_{1} ; \quad \mathrm{T}_{2}=20 \times 301.15 / 16.4$
$\mathrm{T}_{2}=367.25 \mathrm{~K} ; 3.7 \times 10^{2} \mathrm{~K}$ or 94 C
c. $\quad 39 \mathrm{~mL}$ of gas at $0.0^{\circ} \mathrm{C}$ is compressed to 35 mL ?
$\mathrm{T}_{1}=0+273.15=273.15 \mathrm{~K}$
$\mathrm{T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1} / \mathrm{V}_{1} ; \mathrm{T}_{2}=35 \times 273.15 / 39$
$\mathrm{T}_{2}=245.1 \mathrm{~K} ; 2.5 \times 10^{2} \mathrm{~K}$ or -28 C

Worksheet 2.14: Lusac's Gas Law

1. What is the pressure when: (volume is constant)
a. a gas at 130 C and 740 mmHg is changed to 150 C ?

$$
\begin{aligned}
& \mathrm{T}_{1}=273.15+130=403.15 \mathrm{~K} \quad \mathrm{~T}_{2}=273.15+150=423.15 \mathrm{~K} \\
& \mathrm{P}_{1}=\mathrm{P}_{2} \mathrm{~T}_{1} / \mathrm{T}_{2} ; \mathrm{P}_{1}=740 \mathrm{mmHg} \times 403.15 \mathrm{~K} / 423.15 \mathrm{~K} \\
& \mathrm{P}_{1}=777 \mathrm{mmHg}
\end{aligned}
$$

b. a gas at 25 C and 65 atm is changed to 30.0 C ?

$$
\begin{array}{ll}
\mathrm{T}_{1}=273.15+25=293.15 \mathrm{~K} & \mathrm{~T}_{2}=273.15+30.0=303.15 \mathrm{~K} \\
\mathrm{P}_{1}=\mathrm{P}_{2} \mathrm{~T}_{1} / \mathrm{T}_{2} ; \mathrm{P}_{1}= \\
\mathrm{P}_{1}=66 \mathrm{~atm} &
\end{array}
$$

c. a gas at 1.0 K and 70 kPa is changed to 1.2 K ?

$$
\mathrm{P}_{1}=\mathrm{P}_{2} \mathrm{~T}_{1} / \mathrm{T}_{2} ; \mathrm{P}_{1}=
$$

$$
P_{1}=84 \mathrm{kPa}
$$

2. What is the temperature in degrees Celcius when: (volume is constant)
a. a gas at 75.0 C and 4.10 atm is changed to 7.00 atm ?
$\mathrm{T}_{1}=273.15+75.0=348.15 \mathrm{~K}$
$\mathrm{T}_{2}=\mathrm{P}_{2} \mathrm{~T}_{1} / \mathrm{P}_{1} ; \quad \mathrm{T}_{2}=7.00 \times 348.15 / 4.10$
$\mathrm{T}_{2}=594 \mathrm{~K}$ or 321 C
b. a gas at 60.0 C and 760 mmHg is changed to 10.0 mmHg ?
$\mathrm{T}_{1}=273.15+75.0=348.15 \mathrm{~K}$
$\mathrm{T}_{2}=\mathrm{P}_{2} \mathrm{~T}_{1} / \mathrm{P}_{1} ; \mathrm{T}_{2}=$
$\mathrm{T}_{2}=4.38 \mathrm{~K}$ or -269 C
c. a gas at 113 K and 760 kPa is changed to 300 kPa ?
$\mathrm{T}_{2}=\mathrm{P}_{2} \mathrm{~T}_{1} / \mathrm{P}_{1} ; \mathrm{T}_{2}=300 \mathrm{kPa} \times 113 \mathrm{~K} / 760 \mathrm{kPa}$
$\mathrm{T}_{2}=44.6 \mathrm{~K}$ or -229 C

Worksheet 2.15: Combined Gas Law

Solve the following gas problems.

1. If 120 mL of oxygen is collected at $27^{\circ} \mathrm{C}$ and 740 mmHg , what will the volume of the dry gas be at STP? T=0C, $\mathrm{P}=760 \mathrm{mmHg}$
$\mathrm{T}_{1}=273.15+27=300.15 \mathrm{~K}, \mathrm{~V}_{1}=0.120 \mathrm{~L}, \mathrm{P}_{1}=740 \mathrm{mmHg}$
$\mathrm{T}_{2}=273.15+0=273.15 \mathrm{~K}, \mathrm{~V}_{2}=$?, $\mathrm{P}_{2}=760 \mathrm{mmHg}$
$\mathbf{P}_{1} \mathbf{V}_{1} \mathbf{T}_{2}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} \mathbf{T}_{1} ; \mathbf{V}_{\mathbf{2}}=$
$\underline{V}_{2}=0.11 \mathrm{~L}$ or $1.1 \times 10^{2} \mathrm{~mL}$
2. If 500.0 mL of hydrogen is collected at 293.15 K and 95.0 kPa , what will the volume of the gas by at SATP? T=25C, $\mathrm{P}=100 \mathrm{kPa}$
$\mathrm{T}_{1}=293.15 \mathrm{~K}, \mathrm{~V}_{1}=0.500 \mathrm{~L}, \mathrm{P}_{1}=95.0 \mathrm{kPa}$
$\mathrm{T}_{2}=273.15+25=298.15 \mathrm{~K}, \mathrm{~V}_{2}=$?, $\mathrm{P}_{2}=100 \mathrm{kPa}$
$\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} ; \mathrm{V}_{2}=$
$\mathrm{V}_{2}=0.483 \mathrm{~L}$ or 483 mL
3. $\quad 113 \mathrm{~mL}$ of oxygen is collected at $22^{\circ} \mathrm{C}$ and 98.0 kPa and left over night. The next day, the volume was 109 mL and the temperature was $21^{\circ} \mathrm{C}$. What was the pressure?
$\mathrm{T}_{1}=273.15+22=295.15 \mathrm{~K}, \mathrm{~V}_{1}=0.113 \mathrm{~L}, \mathrm{P}_{1}=98.0 \mathrm{kPa}$
$\mathrm{T}_{2}=273.15+21=294.15 \mathrm{~K}, \mathrm{~V}_{2}=0.109 \mathrm{~L}, \mathrm{P}_{2}=$?
$\mathrm{P}_{1} \mathbf{V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} \mathrm{T}_{1} ; \mathrm{P}_{\mathbf{2}}=$
$P_{2}=101.25 \mathrm{kPa}, \mathrm{P}_{2}=1.0 \times 10^{2} \mathrm{kPa}$
4. 36 mL of nitrogen was collected at $25^{\circ} \mathrm{C}$, but the barometer was broken so the pressure could not be read. Three days later, the new barometer arrived. The new volume was 32 mL , the temperature was $21^{\circ} \mathrm{C}$ and the pressure reading was 739 mmHg . What was the original pressure?
$\mathrm{T}_{1}=273.15+25=298.15 \mathrm{~K}, \mathrm{~V}_{1}=0.036 \mathrm{~L}, \mathrm{P}_{1}=$?
$\mathrm{T}_{2}=273.15+21=294.15 \mathrm{~K}, \mathrm{~V}_{2}=0.032 \mathrm{~L}, \mathrm{P}_{2}=739 \mathrm{mmHg}$
$\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{\mathbf{2}} \mathrm{V}_{\mathbf{2}} \mathrm{T}_{1}$
$P_{1}=665.8 \mathrm{mmHg}, P_{1}=6.7 \times 10^{2} \mathrm{mmHg}$
5. If 250 mL of helium was collected at STP, what will the temperature be if the volume is reduced to 200 mL and the pressure increased to 110 kPa ?
$\mathrm{T}_{1}=273.15+0=273.15 \mathrm{~K}, \mathrm{~V}_{1}=0.250 \mathrm{~L}, \mathrm{P}_{1}=101.325 \mathrm{kPa}$
$\mathrm{T}_{2}=$?, $\mathrm{V}_{2}=0.200 \mathrm{~L}, \mathrm{P}_{2}=110 \mathrm{kPa}$
$\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} ; \mathrm{T}_{2}=110 \mathrm{kPa} \times 0.200 \mathrm{~L} \times 273.15 \mathrm{~K} /(101.325 \mathrm{kPa} \times 0.250 \mathrm{~L})$
$\mathrm{T}_{2}=237 \mathrm{~K}$ or -35.9 C
6. A certain 1.0 L sample of gas has a temperature of $23^{\circ} \mathrm{C}$ and a pressure of 0.96 atm . The sample was left overnight and the next day had a pressure of 1.00 atm and a volume of
1.1 L. What is the temperature on the second day?
$\mathrm{T}_{1}=273.15+23=296.15 \mathrm{~K}, \mathrm{~V}_{1}=1.0 \mathrm{~L}, \mathrm{P}_{1}=0.96 \mathrm{~atm}$
$\mathrm{T}_{2}=$? $, \mathrm{V}_{2}=1.1 \mathrm{~L}, \mathrm{P}_{2}=1.00 \mathrm{~atm}$
$\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} ; \mathrm{T}_{2}=1.1 \mathrm{~L} \times 1.00 \mathrm{~atm} \times 296.15 \mathrm{~K} /(0.96 \mathrm{~atm} \times 1.0 \mathrm{~L})$
$\mathrm{T}_{2}=339 \mathrm{~K} ; \mathrm{T}_{2}=3.4 \times 10^{2} \mathrm{~K}$ or 66 C

Worksheet 2.16: Ideal Gas Law

Solve the following gas problems.

1. What pressure (kPa) is exerted by 1.0 mol of an ideal gas contained in a 1.0 L vessel at $0.0^{\circ} \mathrm{C}$?
$P V=n R T ; P=1.0 \mathrm{~mol} \times 8.314 \mathrm{LkPa} / \mathrm{Kmol} \times 273.15 \mathrm{~K} / 1.0 \mathrm{~L}$
$\mathrm{P}=2270.969 \mathrm{kPa}, \mathrm{P}=2.3 \times 10^{\mathbf{3}} \mathrm{kPa}$
2. What volume will 5.0 mol of an ideal gas occupy at $25.0^{\circ} \mathrm{C}$ and 1.5 atm of pressure?
$\mathrm{V}=\mathrm{nRT} / \mathrm{P} ; \mathrm{V}=5.0 \mathrm{~mol} \times 0.0821 \mathrm{Latm} / \mathrm{Kmol} \times 298.15 \mathrm{~K} / 1.5 \mathrm{~atm}$
V=81.59L; $V=82 \mathrm{~L}$
3. Calculate the molar mass of gas if 4.5 L of the gas is at $785 \mathrm{mmHg}, 23.5^{\circ} \mathrm{C}$ and the gas has a mass of 13.5 g .
$\mathrm{n}=\mathrm{PV} / \mathrm{RT} ; \mathrm{n}=785 \mathrm{mmHg} \times 4.5 \mathrm{~L} /(62.4 \mathrm{LmmHg} / \mathrm{Kmol} \times 296.65 \mathrm{~K})$
$\mathrm{n}=0.1915755 \ldots \mathrm{~mol}$
$M=m / n ; M=13.5 \mathrm{~g} / 0.19 \ldots \mathrm{~mol} ; \mathrm{M}=70.74 \mathrm{gmol}$ or $71 \mathrm{~g} / \mathrm{mol}$
4. $\quad 0.453 \mathrm{~mol}$ of a gas confined to a 15.0 L container exerts a pressure of 1.24 atm on the walls of the container. What is the temperature of the gas?
$\mathrm{T}=\mathrm{PV} / \mathrm{nR} ; \mathrm{T}=1.24 \mathrm{~atm} \times 15.0 \mathrm{~L} /(0.453 \mathrm{~mol} \times 0.0821 \mathrm{Latm} / \mathrm{Kmol})$
$\mathrm{T}=500 \mathrm{~K}$ or 227 C
5. 5.4 g of carbon dioxide gas is confined to a 20.0 L container at a temperature of 315.5 K . What pressure (kPa) does the gas exert?
$\mathrm{n}=\mathrm{m} / \mathrm{M} ; \mathrm{n}=5.4 \mathrm{~g} / 44.01 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=0.122699 \ldots \mathrm{~mol}$
$P=n R T / V ; P=0.12 \ldots \mathrm{~mol} \times 8.314 \mathrm{LkPa} / \mathrm{Kmol} \times 315.15 \mathrm{~K} / 20.0 \mathrm{~L}$
$P=16.09 \mathrm{kPa} ; \mathrm{P}=16 \mathrm{kPa}$
6. $\quad 2.125 \mathrm{~g}$ of a gas in a 1.25 L container exerts a pressure of 86.0 kPa at $40.0^{\circ} \mathrm{C}$. What is the molar mass of the gas?
$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$; $\mathrm{n}=86.0 \mathrm{kPa} \times 1.25 \mathrm{~L} /$ ($\mathbf{8 . 3 1 4 \mathrm { LkPa } / \mathrm { Kmol } \times 3 1 3 . 1 5 \mathrm { K } \text {) }) ~}$
$\mathrm{n}=0.041290 \ldots \mathrm{~mol}$
$M=m / n ; M=2.125 \mathrm{~g} / 0.041290 \ldots \mathrm{~mol} ; \mathrm{M}=51.465 \mathrm{~g} / \mathrm{mol}$
$M=51.46 \mathrm{~g} / \mathrm{mol}$ or $51.5 \mathrm{~g} / \mathrm{mol}$
7. To what temperature must 10.0 g of ammonia gas have to be heated in a 15.0 L container in order for it to exert a pressure of 3.50 atm ?
$\mathrm{n}=\mathrm{m} / \mathrm{M} ; \mathrm{n}=10.0 \mathrm{~g} / 17.04 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=0.5868 \ldots \mathrm{~mol}$ $\mathrm{T}=\mathrm{PV} / \mathrm{nR} ; \mathrm{T}=3.50 \mathrm{~atm} \times 15.0 \mathrm{~L} /(0.5868 \ldots \mathrm{~mol} \times 0.0821 \mathrm{Latm} / \mathrm{Kmol})$
$\mathrm{T}=1089.6 \mathrm{~K} ; \mathrm{T}=1.09 \times 10^{3} \mathrm{~K}$
8. $2.0 \times 10^{-5} \mathrm{~g}$ of hydrogen gas at 327 K exerts a pressure of 50.5 kPa on the walls of a small tube. What is the volume of the tube?
$\mathrm{n}=\mathrm{m} / \mathrm{M} ; \mathrm{n}=\mathrm{m} / \mathrm{M} ; \mathrm{n}=2.0 \times 10^{-5} \mathrm{~g} / 2.02 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=9.9 \ldots \times 10^{-6} \mathrm{~mol}$
$V=n R T / P ; V=9.9 \ldots \times 10^{-6} \mathrm{~mol} \times 8.314 \mathrm{LkPa} / \mathrm{Kmol} / 50.5 \mathrm{kPa}$
$V=5.3 \times 10^{-4} \mathrm{~L}$
9. What mass of propane from a tank can be burned using 50 L of oxygen at STP?

Step 1)	$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$	+	$5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow$	$3 \mathrm{CO}_{2(\mathrm{~g})}$	+	$4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Step 2)	?		$n=P V / R T$ or $n=v / V$			
			$\mathrm{n}=50 \mathrm{~L} / 22.4 \mathrm{~L} / \mathrm{mol} ; \mathrm{n}=2.3 \ldots \mathrm{~mol}$			
Step 3)	$\mathrm{X} / 1 \mathrm{~mol}$	$=$	2.3... $\mathrm{mol} / 5 \mathrm{~mol}$			
	$\mathrm{X}=0.44 \ldots \mathrm{~m}$					
Step 4) m=nM; m=0.44...mol $\times 44.11 \mathrm{~g} / \mathrm{mol}$						
	$\mathrm{m}=19.69 \mathrm{~g}$	$\mathrm{m}=2$				

2. Hydrogen gas is burned in pollution-free vehicles to produce water vapor. What volume of hydrogen at $40^{\circ} \mathrm{C}$ and 150 kPa can be burned using 300 L of oxygen gas measured at the same conditions?

Step 1)	$2 \mathrm{H}_{2(g)}+$	$\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(g)}$
Step 2)	$?$	$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$
		$\mathrm{N}=(150 \mathrm{kPa} \times 300 \mathrm{~L}) /(8.314 \mathrm{LkPa} / \mathrm{Kmol} \times 313.15 \mathrm{~K})$
		$\mathrm{N}=17.2 \ldots \mathrm{~mol}$
Step 3)	$\mathrm{X} / 2 \mathrm{~mol}=$	$17.2 \ldots \mathrm{~mol} / 1 \mathrm{~mol}$
	$\mathrm{X}=34.5 \ldots \mathrm{~mol}$	
Step 4)	$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$	

$\mathrm{V}=34.5 \ldots \mathrm{~mol} \times 8.314 \mathrm{LkPa} / \mathrm{Kmol} \times 313.15 \mathrm{~K} / 150 \mathrm{kPa}$
$V=600 \mathrm{~L} ; \mathrm{V}=6.0 \times 10^{2} \mathrm{~L}$
3. A Down's Cell is used in the industrial production of sodium from the decomposition of molten sodium chloride. What is the temperature of 250 L of chlorine gas produced at 100.1 kPa if 100.0 g of sodium is also produced?

4. A typical home is heated with natural gas and consumes 2.00 ML of natural gas during the month of December. What volume of oxygen at STP is required to burn 2.00 ML of methane measured at $0^{\circ} \mathrm{C}$ and 120 kPa ?

Step 1)	$\mathrm{CH}_{4(g)}+$	$\mathbf{2 O}_{2(g)} \rightarrow$	$\mathrm{CO}_{2(g)}+$	$\mathbf{2 H} \mathbf{2}_{2}{ }_{(g)}$
Step 2)	$\mathrm{n}=\mathrm{PV} / \mathrm{RT}$?		
	$\mathrm{N}=120 \mathrm{kPa} \times 2.00 \times 10^{6} /(8.314 \times 273.15 \mathrm{~K})$			
	$\mathrm{N}=105681 \ldots \mathrm{~mol}$			
Step 3)	105681...mol $/ 1 \mathrm{~mol}=x / 2 \mathrm{~mol}$			
		$\mathrm{X}=211362$		
Step 4)	$V=n V$ or V=nRT/P			
	$\mathrm{V}=211362 \ldots \mathrm{~mol} \times 22.4 \mathrm{~L} / \mathrm{mol}$			
	$\mathrm{V}=4.73 \times 10^{6} \mathrm{~L}$ or 4.73 ML			

5. Methane reacts with steam to produce hydrogen gas and carbon dioxide gas. What volume of hydrogen gas, measured at $25^{\circ} \mathrm{C}$ and 120 kPa , can be produced from 1.0 t of steam?

6. Hydrogen gas can be produced from the electrolytic decomposition of water. What volume of hydrogen gas is produced, along with 52 kL of oxygen gas, at $25^{\circ} \mathrm{C}$ and 120 kPa ?

Worksheet 2.18: Review of Gases

1. A volume of 20.0 L of oxygen is warmed from -30.0 C to 85.0 C . What is the new volume, if the pressure is kept constant?
$\mathrm{V}_{2}=\mathrm{V}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1} ; \mathrm{V}_{2}=$
$\mathrm{V}_{2}=29.5 \mathrm{~L}$
2. A mass of air occupies a volume of 5.7 L at a pressure of 0.52 atm . What is the new pressure if the same mass of air at the same temperature is transferred to a 2.0 L container?
$P_{2}=P_{1} V_{1} / V_{2} ; P_{2}=$

$P 2=1.5 \mathrm{~atm}$

3. Determine the total pressure of a gas mixture that contains CO, Ne and He if the partial pressures of the gases are $\mathrm{P}_{\mathrm{CO}}=1.53 \mathrm{~atm}, \mathrm{P}_{\mathrm{Ne}}=0.82 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{He}}=0.34 \mathrm{~atm}$.

$$
P_{t}=P_{1}+P_{2}+P_{3} ; P_{t}=
$$

$\mathrm{P}_{\mathrm{t}}=2.69$ atm (2 decimal places are significant because you are adding.)

4. What is the volume of a sample of oxygen gas that has a mass of 50.0 g and is under a pressure of 1.20 atm at 27.0 C ?
$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$; $\mathrm{V}=$
$V=32.1 \mathrm{~L}$
5. What is the volume at STP of a sample of carbon dioxide gas that has a volume of 75.0 mL at 30.0 C and 680 mmHg ?
$\mathbf{V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} /\left(\mathrm{T}_{2} \mathrm{P}_{1}\right) ; \mathrm{V}_{1}=$
$\mathrm{V}_{1}=\mathbf{0 . 0 6 0 5} \mathrm{L}$ or $\mathbf{6 0 . 5 \mathrm { mL }}$
6. A rigid container holds a gas at a pressure of 0.55 atm at a temperature of -100 C . What will the pressure be when the temperature is increased to 200 C ?
$\mathrm{P}_{2}=\mathrm{P}_{1} \mathrm{~T}_{2} / \mathrm{T}_{1} ; \mathrm{P}_{\mathbf{2}}$
$\mathrm{P}_{2}=1.5 \mathrm{~atm}$
7. Explain why real gases deviate from the gas laws.

Real gases deviate because they can be condensed into liquids, have particle size and attract each other, unlike ideal gases.

Worksheet 4.1 - Solution Terminology and Theory

1. Illustrate (with a drawing) the difference between:
a) solute vs. solvent

b) homogenous mixture vs. heterogenous mixture
c) electrolyte vs. non-electrolyte
2. Illustrate two factors that affect the rate of solubility.
3. Illustrate how the following solids dissolve in water
a) Glucose
b) copper (II) sulphate
c) hydrochloric acid
4. Many reactions only occur when the reactants are dissolved in water. Why?

Worksheet 2.2: Concentration Problems

1. What is the molar concentration of an electroplating solution in which 1.50 mol of copper (II) sulphate are dissolved in 2.00 L of water?
$\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=1.50 \mathrm{~mol} / 2.00 \mathrm{~L} ; \mathrm{C}=0.750 \mathrm{~mol} / \mathrm{L}$
2. What is the molar concentration of a solution in which 0.240 mol of washing soda, sodium carbonate decahydrate, is dissolved in 480 mL of water to make soft water solution? $\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=0.240 \mathrm{~mol} / 0.480 \mathrm{~L} ; \mathrm{C}=0.500 \mathrm{~mol} / \mathrm{L}$
3. What is the molar concentration of 500 mL of a solution that contains 12.7 g of swimming pool chlorinator, $\mathrm{Ca}(\mathrm{OCl})_{2}$?
$\mathrm{Ca}=40.08$
1) $n=m / M$; $n=12.7 / 142.98 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=0.0888 \ldots \mathrm{~mol}$
$0 \times 2=32.00$ Clx2 =70.90
2) $C=n / V ; C=0.0888 \ldots \mathrm{~mol} / 0.500 \mathrm{~L} ; C=0.178 \mathrm{~mol} / \mathrm{L}$
142.98
4. A given sample of household ammonia contains 156 g of ammonia dissolved in water to form a 2.00 L solution. What is the molar concentration of the ammonia solution?
$\mathrm{N}=14.01$
1) $n=m / M ; n=156 \mathrm{~g} / \mathbf{1 7 . 0 4} \mathrm{g} / \mathrm{mol} ; \mathrm{n}=9.154 \ldots \mathrm{~mol}$
$\mathrm{Hx} 3=3.03$
$17.04 \mathrm{~g} / \mathrm{mol}$
2) $\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=9.154 \ldots \mathrm{~mol} / 2.00 \mathrm{~L} ; \mathrm{C}=\mathbf{4} .58 \mathrm{~mol} / \mathrm{L}$
5. Find the number of moles of sodium phosphate in 2.00 L of a $0.100 \mathrm{~mol} / \mathrm{L}$ sodium phosphate cleaning solution.
$n=C V ; n=0.100 \mathrm{~mol} / \mathrm{L} \times 2.00 \mathrm{~L} ; \mathrm{n}=\mathbf{0 . 2 0 0} \mathrm{mol}$
6. How many moles of potassium sulphate are there in 500 mL of a 0.242 M solution used to remove rust stains? $\mathrm{n}=\mathrm{CV} ; \mathrm{n}=0.242 \mathrm{~mol} / \mathrm{L} \times 0.500 \mathrm{~L} ; \mathrm{n}=0.121 \mathrm{~mol}$
7. What mass of sodium bicarbonate must be added to a 2.50 L bowl to obtain a necessary $0.150 \mathrm{~mol} / \mathrm{L}$ solution? $\mathrm{Na}=22.99$
1) $n=C V ; n=0.150 \mathrm{~mol} / \mathrm{L} \times 2.50 \mathrm{~L} ; \mathrm{n}=0.375 \mathrm{~mol}$
2) $m=n M ; m=0.375 . . \mathrm{mol} \times 84.01 \mathrm{~g} / \mathrm{mol}=31.5 \mathrm{~g}$
$H=1.01$
$C=12.01$
$0 \times 3=48.00$
$84.01 \mathrm{~g} / \mathrm{mol}$
8. What volume of a $0.075 \mathrm{~mol} / \mathrm{L}$ solution would contain the necessary 1.10 mol of sodium phosphate used to remove radiator scales?
$\mathrm{V}=\mathrm{n} / \mathrm{C} ; \quad \mathrm{V}=1.10 \mathrm{~mol} / 0.075 \mathrm{~mol} / \mathrm{L} ; \mathrm{V}=15 \mathrm{~L}$
9. What mass of sodium silicate is necessary to prepare 10.0 L of a $0.00500 \mathrm{~mol} / \mathrm{L}$ water softening solution?
10. How many litres of $0.800 \mathrm{~mol} / \mathrm{L}$ solution would contain 119.2 g of NaOCl ?
1) $n=m / M ; n=119.2 \mathrm{~g} / 74.44 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=1.60 \ldots \mathrm{~mol}$
$\mathrm{Na}=22.99$
2) $V=n / C ; v=1.60 \ldots \mathrm{~mol} / 0.800 \mathrm{~mol} / \mathrm{L} ; v=2.00 \mathrm{~L} \quad \begin{array}{ll}\mathrm{O}=16.00 \\ \mathrm{Cl}=35.45\end{array}$
$74.44 \mathrm{~g} / \mathrm{mol}$

Worksheet 2.3: Making solutions and dilutions

1. A scientist has a container with solid sodium hydroxide and a container of $5.00 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide.
a) What are the two ways that the scientists can use to make a solution with a specific volume and concentration?
Make a solution by mixing a solute of specific mass with a specific volume of solvent (water)
OR make a dilution by adding water to a solution that is already made.
b) What are two ways that the scientist can dilute the $5.00 \mathrm{~mol} / \mathrm{L}$ solution?

Evaporate the solvent and then remove some solute and add the solvent back OR add more solvent to a small portion of the solution.
2. Describe the steps you would take to make 100 mL of a $0.200 \mathrm{~mol} / \mathrm{L}$ sodium chloride solution from salt crystals. Include the equipment and calculations you would make. Remember this is not a reaction.

1) Calculate moles - $\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=\mathbf{0 . 2 0 0} \mathrm{mol} / \mathrm{L} \times 0.100 \mathrm{~L} ; \mathrm{n}=0.0200 \mathrm{~mol} \mathrm{Na}=22.99$
2) Calculate mass $-\mathrm{m}=\mathrm{nM}$; $\mathrm{m}=0.0200 \mathrm{~mol} \times 58.44 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=1.17 \mathrm{~g} \quad \mathrm{Cl}=35.45$
3) Weight with a scale; Mix in beaker with 50 mL of water. $\quad 58.44 \mathrm{~g} / \mathrm{mol}$
4) Place solution in a 100 mL volumetric flask and fill to the meniscus/calibration line
5) Cap and mix
3. Describe the steps you would take to make 250 mL of a $0.453 \mathrm{~mol} / \mathrm{L}$ solution of copper (II) sulphate from solid copper (II) sulphate pentahydrate. Include equipment and calculations.
1) Calculate the moles $-\mathrm{n}=\mathrm{CV} ; \mathrm{n}=0.453 \mathrm{~mol} / \mathrm{L} \times 0.250 \mathrm{~L} ; \mathrm{n}=0.113 \ldots \mathrm{~mol} \mathrm{Cu}=63.55$
2) Calculate the mass $-\mathrm{m}=\mathrm{nM}$; $\mathrm{m}=\mathbf{0} .113 \ldots \mathrm{~mol} \times 249.71 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=\mathbf{2 8 . 3 \mathrm { g }}$
3) Wieght it; mix in beaker with about 125 mL
4) Place in a 250 mL volumetric flask and fill to the meniscus/calibration line
5) Cap and mix

Equipment: Calculator, weight scale, 250 mL volumetric flask, 125 mL beaker, eye dropper, cap
4. Describe the steps you would take to make 100 mL (V2) of a $0.50 \mathrm{~mol} / \mathrm{L}$ (C2) sucrose solution from a container of $2.10 \mathrm{~mol} / \mathrm{L}(\mathrm{C} 1)$ sucrose solution. Include equipment and calculations.

1) Calculate volume that needs to be removed. $\mathrm{V}_{1}=\mathrm{C}_{2} \mathrm{~V} 2 / \mathrm{C} 1$;
$\mathrm{V} 1=0.50 \mathrm{~mol} / \mathrm{Lx} 0.100 \mathrm{~L} / 2.10 \mathrm{~mol} / \mathrm{L}$
V1=0.0238; V1=24mL
2) Remove 24 mL with a graduated pipet
3) Place in a 100 mL volumetric flask; fill to calibration line; cap and mix
5. Describe the steps you would take to make 500 mL (V2) of a $0.900 \mathrm{~mol} / \mathrm{L}$ (C2) sulphuric acid from a $1.50 \mathrm{~L}(\mathrm{~V} 1)$ container of $6.00 \mathrm{~mol} / \mathrm{L}(\mathbf{C} 2)$ sulphuric acid solution. Include equipment and calculations.
1) Calculate volume; V1 $=\mathrm{C} 2 \mathrm{~V} 2 / \mathrm{C} 1 ; \mathrm{V} 1=0.900 \mathrm{~mol} / \mathrm{L} \times 0.500 \mathrm{~L} / 6.00 \mathrm{~mol} / \mathrm{L}=0.0750 \mathrm{~L}$ or 75.0 mL
2) Remove 75 mL with a volumetric pipet.
3) Place in a 500 mL volumetric flask; fill with 425 ml of water to calibration line and cap and mix
6. What is the final concentration of a cleaner if $10 \mathrm{~L}(\mathbf{V} 1)$ of concentrated sodium hydroxide (19.1 $\mathrm{mol} / \mathrm{L}) \mathrm{C} 1$) is diluted to $400 \mathrm{~L}(\mathbf{V} 2)$?
C2 $=$ C1V1/V2; $19.1 \mathrm{~mol} / \mathrm{L} \times 10 \mathrm{~L} / 400 \mathrm{~L}=0.48 \mathrm{~mol} / \mathrm{L}$
7. What is the mass of baking soda (sodium hydrogen carbonate) needed to make 2.5 L of a $1.00 \mathrm{~mol} / \mathrm{L}$ solution?
1) $n=C V ; 1.00 \mathrm{~mol} / \mathrm{L} \times 2.5 \mathrm{~L}$; $\mathrm{n}=2.5 \mathrm{~mol}$
2) $\mathrm{m}=\mathrm{nM}$; $2.5 \mathrm{~mol} \times 84.01 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=2.1 \times 10^{2} \mathrm{~g}$ or 0.21 kg
8. If 2.0 L of water is added to 1.0 L of a $0.250 \mathrm{~mol} / \mathrm{L}$ solution of potassium hydroxide what is the final concentration. (Be Careful)
C2=C1V1/V2; C2=0.250mol/L x 1.0L $/ 3.0 \mathrm{~L} ; \mathrm{C} 2=0.083 \mathrm{~mol} / \mathrm{L}$
9. CHALLENGE: If 1.50 L of a $12.4 \mathrm{~mol} / \mathrm{L}$ solution of hydrochloric acid was mixed with 300 mL of a 6.10 $\mathrm{mol} / \mathrm{L}$ solution of hydrochloric acid, then what would be the final concentration.
Cnew=ntotal/Vtotal; Cnew $=(1.50 \mathrm{Lx} 12.4 \mathrm{~mol} / \mathrm{L})+(6.10 \mathrm{~mol} / \mathrm{L} \times 0.300 \mathrm{~L}) /(1.50 \mathrm{~L}+0.300 \mathrm{~L})$ Cnew=(18.6 mol + 1.83 mol$) / 1.8 \mathrm{~L}$; Cnew = $11.4 \mathrm{~mol} / \mathrm{L}$
10. CHALLENGE: How much water is added to $50.0 \mathrm{~mL}(\mathbf{V 1)}$ of a $0.500 \mathrm{~mol} / \mathrm{L}(\mathbf{C} 1)$ solution to make a $0.100 \mathrm{~mol} / \mathrm{L}(\mathrm{C} 2)$ solution?
V2=C1V1/C2; V2=0.500mol/L $\times 0.050 \mathrm{~L} / 0.100 \mathrm{~mol} / \mathrm{L} ; \mathrm{V} 2=250 \mathrm{~mL}$
Vwater $=$ V2-V1; Vwater $\mathbf{=} \mathbf{2 5 0} \mathbf{~ m l} \mathbf{- 5 0} \mathbf{~ m L}$; Vwater $\mathbf{=} \mathbf{2 0 0} \mathbf{~ m L}$

Worksheet 2.4: Dissociation and ionization reactions

Name: \qquad

1. What type of compounds dissociate? What type of compounds ionize? Ionic

Acids \& molecular gases
2. Write dissociation or ionization reactions for the following chemicals after they are mixed with water. Show the physical states of all species involved. Use modified ionization reactions when necessary.
a) Solid hydrochloric acid

$$
\mathrm{HCl}_{(s)}{ }^{\mathrm{H2O}(\mathrm{I}} \rightarrow \mathrm{H}+_{(a q)}+\mathrm{Cl}_{-(a q)}
$$

$$
\mathrm{HCl}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}+\mathrm{Cl}_{-(a q)}
$$

b) Solid strontium hydroxide
$\mathrm{Sr}(\mathrm{OH})_{2(s)} \rightarrow \mathrm{Sr}^{2+}{ }_{(a q)}+\mathbf{2 O H}^{-}{ }_{(a q)}$
c) Solid copper (II) sulphate pentahydrate
$\mathrm{CuSO}_{4} \mathbf{5 H}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
d) Solid sodium bicarbonate (hydrogen carbonate

$$
\mathrm{NaHCO}_{3(\mathrm{~s})} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aq })}+\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})
$$

e) ammonia gas (acid and bases)
$\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}$
3. For each of the following write dissociation or ionization equations and find the concentration of each ion.
a) $\quad 0.90 \mathrm{~mol} / \mathrm{L}$ solution of sodium phosphate

$$
\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{~s})} \rightarrow 3 \mathrm{Na}+_{(a q)}+\mathrm{PO}_{4}{ }^{3-}(a q)
$$

$0.90 \mathrm{~mol} / \mathrm{L} / 1 \mathrm{~mol}=x / 3 \mathrm{~mol}=x / 1 \mathrm{~mol}$
$x=2.7 \mathrm{~mol} / \mathrm{L} \quad x=0.90 \mathrm{~mol} / \mathrm{L}$
b) $\quad 0.143 \mathrm{~mol} / \mathrm{L}$ solution of nitric acid

$$
\mathrm{HNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}+{ }_{(a q)}+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq)}
$$

$0.143 \mathrm{~mol} / \mathrm{L} \quad 0.143 \mathrm{~mol} / \mathrm{L}$
c) $\quad 0.0135 \mathrm{~mol} / \mathrm{L}$ solution of calcium hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \rightarrow \mathrm{Ca} \boldsymbol{+}_{(\text {aq) }}+2 \mathrm{OH}_{-(\text {aq })}$
$0.0135 \mathrm{~mol} / \mathrm{L} / 1 \mathrm{~mol}=x / 1 \mathrm{~mol}=x / 2 \mathrm{~mol}$
d) $\quad 0.150 \mathrm{~mol}$ of hydrogen fluoride gas bubbled into 1.00 L of water $\mathrm{HF}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathrm{F}_{-(\mathrm{aq})}$
0.150 mol
$0.150 \mathrm{~mol} / \mathrm{L} \quad 0.150 \mathrm{~mol} / \mathrm{L}$
4. What is the concentration of chloride ions in a solution prepared by dissolving 800 g of zinc chloride in 4.50 L of water?

1) $n=m / M$; $n=800 / 136.28 \mathrm{~g} / \mathrm{mol} ; n=5.87 \ldots \mathrm{~mol}$
2) $\mathrm{ZnCl}_{2(s)} \rightarrow \mathrm{Zn} \mathrm{2+}{ }_{(a q)}+2 \mathrm{Cl}_{-(\text {aq })}$
$5.87 \mathrm{~mol} \quad 11.74 \ldots \mathrm{~mol}$

$$
\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=2.61 \mathrm{~mol} / \mathrm{L}
$$

5. What is the mass of calcium chloride required to prepare 2.000 L of $0.120 \mathrm{~mol} / \mathrm{L}$ chloride ions?
1) $\mathrm{n}=\mathrm{CV} ; \quad-.120 \mathrm{~mol} / \mathrm{L} \times 2.00 \mathrm{~L}=0.240 \mathrm{~mol}$
2) $\mathrm{CaCl}_{2(s)} \rightarrow \mathrm{Ca}^{2}{ }_{(a q)}+2 \mathrm{Cl}_{-(q q)}$
3) $X / 1 \mathrm{~mol}=0.240 \mathrm{~mol} / 2 \mathrm{~mol}$
$X=0.120 \mathrm{~mol}$
4) $m=n M ; m=0.120 \mathrm{~mol} \times 110.98 \mathrm{~g} / \mathrm{mol} ; 13.3 \mathrm{~g}$
6. What is the final concentration if 2.0 L of water is added to 4.50 L of a $0.89 \mathrm{~mol} / \mathrm{L}$ solution of sodium chloride?
C2=C1V1/V2; C2 $=0.89 \mathrm{~mol} / \mathrm{L} \times 4.50 \mathrm{~L} / 6.50 \mathrm{~L} ; \quad \mathrm{C} 2=0.62 \mathrm{~mol} / \mathrm{L}$

Worksheet 4.5: Net Ionic Equations

For the following reactions, write the nonionic equation, the total ionic equation and the net ionic equation.

1. Aqueous solutions of sodium sulphate and barium bromide are mixed.

NON IONIC: $\mathrm{Na}_{2} \mathrm{SO}_{4(a q)}+\mathrm{Ba}(\mathrm{Br})_{2(a q)} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{NaBr}_{(\mathrm{aq})}$
TOTAL IONIC: $2 \mathrm{Aa}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\text {aq) }}+\mathrm{Ba}^{2+}{ }_{(\text {aq) }} 2 \mathrm{Br}_{(\mathrm{rqq)}}^{-} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{Na}^{+}{ }_{(a q)}+2 \mathrm{Br}_{(a q)}^{-}$
NET IONIC: $\mathrm{SO}_{4}{ }^{2-}{ }_{(\text {aq })}+\mathrm{Ba}^{2+}{ }_{(\text {aq })} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}$
2. A lead (II) nitrate solution reacts with sodium sulphide solution

NON IONIC: Pb(NO3)2 (aq) + Na2S(aq) $\rightarrow 2$ NaNO3(aq) + PbS(s)
Total IONIC: $\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NO3}^{-}{ }_{(\mathrm{aq})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{S}^{2-}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}^{-}{ }_{(\mathrm{aq})}+\mathrm{PbS}_{(\mathrm{s})}$
NET IONIC:
3. Sulphuric acid is neutralized by a potassium hydroxide solution

NON IONIC: $\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{KOH}_{(a q)} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{HOH}_{(I)}$
TOTAL IONIC: $\mathbf{2 H}^{+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}+2 \mathrm{~K}_{\text {(aq) }}^{+}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow 2 \mathrm{~K}_{(a q)}^{+}+\mathrm{SO}_{4}^{2 \cdot}{ }_{(a q)}+2 \mathrm{HOH}_{(I)}$
NET IONIC: $\mathbf{2 H}^{+}{ }_{(a q)}+\mathbf{2 O H}^{-}{ }_{(\text {(q) }} \rightarrow 2 \mathrm{HOH}_{(I)}$
$\mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{HOH}_{(1)}$
4. Hydrochloric acid is added to a solution of barium hydroxide
5. Magnesium metal is added to an aqueous solution of hydrogen bromide NON IONIC: $\mathbf{M g}_{(s)}+2 \mathbf{H B r}_{(a q)} \rightarrow \mathbf{H}_{2(g)}+\mathbf{M g B r}_{2(a q)}$ TOTAL IONIC: $\mathrm{Mg}_{(s)}+2 \mathrm{H}^{+}{ }_{(a q)}+2 \mathrm{Br}^{-}($(q) $) \rightarrow \mathrm{H}_{2(g)}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{Br}_{(a q)}^{-}$ NET IONIC: $\mathbf{M g}_{(s)}+\mathbf{2 H}^{+}{ }_{(a q)} \rightarrow \mathbf{H}_{2(g)}+\mathbf{M g}^{2+}{ }_{(a q)}$
6. Zinc reacts with copper (II) sulphate solution
7. Zinc reacts with acetic acid (vinegar)

NON IONIC: $\mathrm{Zn}_{(s)}+2 \mathrm{CH}_{3} \mathrm{COOH}_{(a q)} \rightarrow \mathrm{H}_{2(g)}+\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2(a q)}$
TOTAL IONIC: $\mathrm{Zn}_{(s)}+2 \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Zn}^{2+}{ }_{(\mathrm{aq)}}+2 \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}$
NET IONIC: : $\mathbf{Z n}_{(s)}+\mathbf{2 H}^{+}{ }_{(a q)} \rightarrow \mathbf{H}_{2(g)}+\mathbf{Z n}^{\mathbf{2 +}}{ }_{(a q)}$
8. Bromine is added to a magnesium iodide solution
$\mathrm{Br}_{2(l)}+\mathbf{M g I}_{2(a q)} \rightarrow \mathbf{I}_{\mathbf{2 (s)}}+\mathbf{M g B r} \mathbf{r}_{2(a q)}$
$\mathrm{Br}_{2(l)}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{IF}_{(a q)}^{-} \rightarrow \mathrm{I}_{2(\mathrm{~s})}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{Br}^{-}{ }_{(a q)}$
$\mathrm{Br}_{2(I)}+\mathbf{2 l}_{(a q)}^{-} \rightarrow \mathrm{I}_{2(s)}+2 \mathrm{Br}_{(a q)}^{-}$

Worksheet 2.6: Solution Stoichiometry

1. A 200 mL solution of potassium phosphate reacts with 100 mL of $0.150 \mathrm{~mol} / \mathrm{L}$ iron (III) sulphate solution. What is the concentration of the potassium phosphate solution?
2. If 230 mL of a $1.00 \mathrm{~mol} / \mathrm{L}$ solution of aluminium chlorate is reacted with sufficient lithium hydroxide solution, what mass of precipitate is formed?

3. Predict the mass of magnesium metal that will be required to react with 44.0 ml of $0.200 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid.
4. What volume of $1.00 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3(\mathrm{aq})}$ is required to react completely with $1.20 \mathrm{~g}^{\text {of } \mathrm{LiOH}_{(a q)}}$?
1) $\mathrm{HNO}_{3(a q)}+\mathrm{LiOH}_{(a q)} \quad \rightarrow \quad \mathrm{LiNO}_{3(a q)} \quad+\quad \mathrm{HOH}_{(1)}$
2) $\quad V=? \quad \mathrm{n}=1.20 \mathrm{~g} / 23.95 \mathrm{~g} / \mathrm{mol}$

V $n=0.050104 \mathrm{~mol}$
$3) X / 1 \mathrm{~mol}=0.050104 \ldots \mathrm{~mol} / 1 \mathrm{~mol}$ $X=0.050104 \ldots \mathrm{~mol}$
4) $V=n / C ; V=0.050104 \ldots \mathrm{~mol} / 1.00 \mathrm{~mol} / \mathrm{L}$
$\nabla=0.0501 \mathrm{~L}$ or 50.1 mL
5. A 100 ml sample of sodium sulphide solution is completely reacted with 50.0 ml of $0.250 \mathrm{~mol} / \mathrm{L}$ lead (II) nitrate solution. Predict the concentration of the $\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})}$?
6. 500 ml of $0.150 \mathrm{~mol} / \mathrm{L}$ cobalt (II) nitrate solution is reacted with 500 ml of $0.250 \mathrm{~mol} / \mathrm{L}$ of sodium hydroxide solution producing 4.77 g of precipitate. Find the \% yield for this reaction.

$\%$ yield $=A / T \times 100 ; \%$ yield $=0.0513 \ldots \mathrm{~mol} / \mathbf{0} .0 .0625 \mathrm{~mol} \times 100 ; \%$ yield $=82.1 \%$
7. CHALLENGE: Predict the final mass of a 500 g bar of lead that is allowed to react completely with 2.00 L of $2.00 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$.

8. A 75.0 mL sample of $0.25 \mathrm{~mol} / \mathrm{L}$ silver chlorate solution reacts with 19.0 mL of $0.50 \mathrm{~mol} / \mathrm{L}$ copper (II) sulphate solution. What is the concentration of the solution produced? (NOTE: Find out what the total volume of the solution produced.)

1) $2 \mathrm{AgClO}_{3(a q)} \quad+\mathrm{CuSO}_{4(a q)} \quad \rightarrow \mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2(a q)}+\mathrm{Ag}_{2} \mathrm{SO}_{4(s)}$
2) $n=C V$
$\mathrm{n}=0.25 \mathrm{~mol} / \mathrm{Lx} 0.075 \mathrm{~L}$
$\mathrm{n}=0.50 \mathrm{~mol} / \mathrm{Lx} 0.019 \mathrm{~L}$
$\mathrm{n}=0.01875 \mathrm{~mol}$
$\mathrm{n}=0.0095 \mathrm{~mol}$
$0.01875 / 2 \mathrm{~mol}=\quad \mathrm{x} / 1 \mathrm{~mol}$
$\mathrm{x}=0.009375 \ldots \mathrm{~mol}$

$0.0095>0.009375 \ldots \mathrm{~mol}$ EXCESS

$0.01875 / 2 \mathrm{~mol}$ $\mathrm{x}=0.009375 \ldots \mathrm{~mol}$

$=\quad \mathrm{x} / 1 \mathrm{~mol}$

C=n/V;
$\mathrm{C}=0.009375 \mathrm{~mol} / 0.094 \mathrm{~L}$
$C=?$

Worksheet 2.7: Review of Solutions

1. Answer the following questions
a) How do solutions differ from heterogeneous mixtures?

Solutions are uniform and appear as one substance - heterogenous do not.
b) How do the number of molecules of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ in 250 mL of a $1.5 \mathrm{~mol} / \mathrm{L}$ solution of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ compare to the number of molecules of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in 250 mL of a $1.5 \mathrm{~mol} / \mathrm{L} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

The number of molecules is the same ($n=C V$); the mass is different
c) What is the term used to describe two liquids which will NOT mix with each other?

immiscible

d) What are two factors that affect the amount of solute that dissolves and two factors that affect the rate of dissolving?

Amount: temperature, pressure Rate: temperature, surface area, agitation
2. Write the equation for each of the following dissolving in water. Use modified Arhenius theory.
a) Hydrogen chloride gas

$$
\mathrm{HCl}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-} \text {IONIZE }
$$

b) Solid aluminum nitrate

$$
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3(s)} \rightarrow \mathrm{Al}^{3+}{ }_{(\text {aq })}+3 \mathrm{NO}_{3^{-}(\text {aq })} \text { DISSOCIATE }
$$

c) Solid sucrose

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(s)} \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(a q)} \text { DISSOLVE }
$$

d) Aqueous nitric acid
$\mathrm{HNO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{NO}_{3}{ }^{-}(a q)$ IONIZE
3. Determine the concentration of each of the following solutes in the solution described.
a) 0.725 mol of cobalt (II) nitrate in 1.35 L of solution.
$\mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=0.725 \mathrm{~mol} / 1.35 \mathrm{~L} ;-0.537 \mathrm{~mol} / \mathrm{L}$
b) 15.0 g of barium sulphate in 125 mL of solution. $\mathrm{n}=\mathrm{m} / \mathrm{M} ; \mathrm{n}=15.0 \mathrm{~g} / 233,39 \mathrm{~g} / \mathrm{mol} ; \mathrm{n}=0.0642 \ldots \mathrm{~mol}$
$\mathrm{Ba}=137.33$
$\mathrm{S}=32.06$
Ox4=64.00/233.39g/mol
c) 1.85×10^{22} molecules of ammonia gas in 400 mL of solution.

$$
\begin{aligned}
& n=\mathrm{p} / \mathrm{P} ; \mathrm{n}=1.85 \times 10^{22} / 6.02 \times 10^{23} ; \mathrm{n}=0.0307 \mathrm{~mol} \\
& \mathrm{C}=\mathrm{n} / \mathrm{V} ; \mathrm{C}=0.0307 \ldots \mathrm{~mol} / 0.400 \mathrm{~L} ; C=0.0768 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

4. Write the dissociation equation and calculate the concentration of each of the ions produced in $1.25 \mathrm{~mol} / \mathrm{L}$ solution of barium chloride.

5. Write the dissociation equation and determine the concentration of the solution if $1.26 \mathrm{~mol} / \mathrm{L}$ of $\left[\mathrm{Na}^{+}\right]$is found in a sodium phosphate solution.

6. CHALLENGE: What is the $\left[\mathrm{Cl}^{-}\right]$in a solution made by mixing 200 mL of $0.300 \mathrm{~mol} / \mathrm{L}$ sodium chloride solution with 350 mL of $0.250 \mathrm{~mol} / \mathrm{L}$ calcium chloride solution?

$$
\begin{aligned}
& \mathrm{NaCl}_{(s)} \rightarrow \mathrm{Na}^{+}{ }_{(\text {aq })}+\mathrm{Cl}^{-}{ }_{(a q)} \quad \mathrm{CaCl}_{2(s)} \rightarrow \mathrm{Ca}^{2+}{ }_{(\text {aq })}+2 \mathrm{Cl}^{-}{ }_{(a q)} \quad \text { C=ntotal/Vtotal } \\
& \mathrm{n}=\mathrm{CV} ; \mathrm{n}=0.300 \mathrm{~mol} / \mathrm{L} \times 0.200 \mathrm{~L} \\
& \mathrm{n}=0.0600 \mathrm{~mol} / 1 \mathrm{~mol}=x / 1 \mathrm{~mol} \\
& \mathrm{x}=0.0600 \mathrm{~mol} \\
& \mathrm{n}=\mathrm{CV} ; \mathrm{n}=0.250 \mathrm{~mol} / \mathrm{Lx} 0.350 \mathrm{~L} \\
& \mathrm{n}=0.0875 \mathrm{~mol} / 1 \mathrm{~mol}=\mathrm{x} / 2 \mathrm{~mol} \\
& \mathrm{x}=0.175 \mathrm{~mol} \\
& \mathrm{C}=0.235 \mathrm{~mol} / 0.550 \mathrm{~L} \\
& 8=0.427 \mathrm{~mol}
\end{aligned}
$$

a) lead nitrate solution is mixed with sodium hydroxide

$$
\begin{aligned}
& \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{NaOH}_{(a q)} \rightarrow 2 \mathrm{NaNO}_{3(a q)}+\mathrm{Pb}(\mathrm{OH})_{2(s)} \\
& \mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }^{-}(a q)+2 \mathrm{Na}^{+}{ }_{(a q)}+2 \mathrm{OH}^{-}{ }_{(a q)} \rightarrow 2 \mathrm{Na}^{+}{ }_{(a q)} 2 \mathrm{NO}_{3}{ }^{-}{ }_{(a q)}+\mathrm{Pb}(\mathrm{OH})_{2(\mathrm{~s}} \\
& \mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2(\mathrm{~s})}
\end{aligned}
$$

b) barium nitrate reacts with potassium sulphide

$$
\begin{aligned}
& \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{K}_{2} \mathrm{~S}_{(a q)} \rightarrow 2 \mathrm{KNO}_{3(a q)}+\mathrm{BaS}_{(a q)} \\
& \mathrm{Ba}^{2+}{ }_{(\mathrm{aq)}}+2 \mathrm{NO}_{3}{ }_{(a q)}+2 \mathrm{~K}_{(a q)}^{+}+\mathrm{S}_{(a q)}^{2-} \rightarrow 2 \mathrm{~K}_{(a q)}^{+}+2 \mathrm{NO}_{3_{(a q)}^{-}}+\mathrm{Ba}^{2+}{ }_{(a q)}+\mathrm{S}_{(a q)}^{2-}
\end{aligned}
$$

NO NET IONIC EQUATION

c) nitric acid reacts with barium hydroxide

$$
\begin{aligned}
& 2 \mathrm{HNO}_{3(a q)}+\mathrm{Ba}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{HOH}_{(l)} \\
& 2 \mathrm{H}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{Ba}^{2+}\left(\mathrm{aq)}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{Ba}^{2+}{ }_{(a q)}+2 \mathrm{NO}_{3^{-}(a q)}+2 \mathrm{HOH}_{(l)}\right. \\
& \mathrm{H}_{(a q)}+\mathrm{OH}_{(a q)} \rightarrow \mathrm{HOH}_{(l)}(\text { Don't forget to reduce })
\end{aligned}
$$

7. Draw a diagram describing how methanol is dissolved in water. (1 mark)

8. Predict whether the following solutes are electrolytes or nonelectrolytes:
a) nitrogen monoxide - nonelectrolyte (molecular)
b) hydrofluoric acid - electrolyte (acid)
c) magnesium hydroxide - nonelectrolyte (ionic BUT not aqueous)
d) potassium hydrogen carbonate - electrolyte (ionic \& aqueous)
9. A scientists wants to make 100 mL of a $0.150 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution. He has 100 g of solid sodium hydroxide and he has 1.00 L of a $2.25 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution. Describe step by step the two ways that he could make his $0.150 \mathrm{~mol} / \mathrm{L}$ solution. Include the sample calculations and equipment.

Method I - from solid Method II - dilution

1) Find moles; $n=C V ; 0.150 \times 0.100=0.0150 \quad$ 1) Find volume;
$\mathrm{V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2} / \mathrm{C}_{1}=0.150 \times 0.100 / 2.25=6.67 \mathrm{ml}$
2) Find mass: $m=n M ; 0.0150 \times 40.00=0.600 \mathrm{~g} \quad$ 2) Remove 6.67 mL with a graduated pipet
3) Weigh on a scale
4) Place in a 100 mL volumetric flask and fill to line
5) Mix 0.600 g in 50 ml of water
6) Cap and mix
7) Place in 100 mL volumetric flask and fill to calibaration line. Cap and mix
10. A 20.0 g sample of lead (II) nitrate is mixed in 1.00 L of water. The lead (II) nitrate solution then reacts with a 1.00 L of a $0.100 \mathrm{~mol} / \mathrm{L}$ solution of rubidium iodide. If 20.0 g of precipitate forms, what is the percent yield?

Worksheet 2.8: Introduction to Acids \& Bases

1. Safety is very important when working with acids. Describe what the student should do in the following situations.
a) A student drops a 100 mL beaker with 50 mL of hydrochloric acid and spills the acid onto the floor.
Report the accident to a teacher. Place baking soda until it stops bubbling. (If you have no baking soda, dilute the acid with water.)
b) A student drips a couple of drops of sodium hydroxide solution onto his hand.

Report the incident to a teacher. Wash the sodium hydroxide off with cold water.
c) A beaker with $\mathrm{Ba}(\mathrm{OH})_{2}$ tips over onto the lab bench.

Report the incident to a teacher. Place vinegar (acetic/ethanoic acid) onto the base. (If you have no vinegar, dilute the base with water.)
d) A student would like to dilute an acid and would like to know if he should add the acid to the water or the water to the acid
Always add acid to water (A to W).
2. WHMIS symbols help communicate dangers.
a) WHMIS stands for Workplace Hazardous Materials Information System
b) The symbol that would be associated with a beaker of base that corrodes metal is

Corrosive material

c) Acids and bases can cause immediate and serious damage to a person's skin. The WHMIS symbol related to this is

Material causing immediate and serious toxic effect

d) Some acids react with oxygen. The WHMIS symbol found on a bottle of this acid would be

Oxidizing Material
3. A person would like to make $100 \mathrm{~mL} 1.00 \mathrm{~mol} / \mathrm{L}$ solution of NaOH . Describe the steps the student would use. Include the calculations.

1) Calculate the moles: $n=C V ; n=1.00 \mathrm{~mol} / \mathrm{L} \times 0.100 \mathrm{~L} ; \mathrm{n}=0.100 \mathrm{~mol}$
2) Calculate mass: $\mathrm{m}=\mathrm{nM}$; $\mathrm{m}=0.100 \mathrm{~mol} \times 40.00 \mathrm{~g} / \mathrm{mol} ; \mathrm{m}=4.00 \mathrm{~g}$
3) Weigh with scale; mix in beaker with 50 mL of water.
4) Place in 100 mL volumetric flask, fill to calibration line, cap \& mix.
4. A person would like to dilute a $12.1 \mathrm{~mol} / \mathrm{L}$ solution of HCl and make a $250 \mathrm{~mL} 3.00 \mathrm{~mol} / \mathrm{L}$ solution.

Describe the steps the student would use. Include the calculations.

1) Find the volume; v1=C2V2/C1; V1=3.00mol/Lx $0.250 \mathrm{~L} / 12.1 \mathrm{~mol} / \mathrm{L}$: $\mathrm{V}=62.4 \mathrm{~mL}$
2) Remove it with graduated pipet.
3) Place in 250 mL volumetric flask; fil to calibration line; cap \& mix
5. Indicators change color to indicate whether you have an acid or base. Litmus paper and bromothymol blue are two common indicators. Complete the following table for these indicators.

$\underline{P H}$	Litmus Paper color	Bromothymol Blue color
3	Red	yellow
7	No change	Green
10	Blue	Blue

6. What is one property that is similar between acids and bases?

Both electrolytes, both dissolve in water (aqueous)
7. What is one property that is different between acids and bases?

PH, taste, touch, reactions
8. Complete the following acid or base reactions.
a) sulphuric acid is neutralized by potassium hydroxide. Identify the "salt" in the reaction.

$$
\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{KOH}_{(a q)} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(a q)}+2 \mathrm{HOH}_{(l)}
$$

salt
b) hydrochloric acid reacts with magnesium

$$
2 \mathrm{HCl}_{(a q)}+\mathrm{Mg}_{(s)} \rightarrow \underset{\text { salt }}{ } \mathrm{MgCl}_{2(a q)}+\mathrm{H}_{2(g)}
$$

c) self ionization of water $\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq) }}+\mathrm{OH}_{(\text {(q) })}^{-}$OR $\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{H}^{+}{ }_{(\text {aq) }}+\mathrm{OH}^{-}{ }_{(\text {aq })}$

No salt

Worksheet 2.9: Acid \& Base Calculations

1. A 1.00 L solution of $1.50 \mathrm{~mol} / \mathrm{L}$ perchloric acid is dilluted by adding 500 mL of water. What is the hydronium concentration of the dilluted solution? V2= V1 + Vwater=1.00L + 0.500L
$\mathrm{HClO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \quad+\quad \mathrm{ClO}_{4}{ }^{-}(a q)$

C2=C1V1/V2

C2 $=1.50 \mathrm{~mol} / \mathrm{Lx} 1.00 \mathrm{~L} / 1.50 \mathrm{~L}$
$\mathrm{C} 2=1.00 \mathrm{~mol} / \mathrm{L} 1.00 \mathrm{~mol} / \mathrm{L} / 1 \mathrm{~mol}=X / 1 \mathrm{~mol}$
$X=1.00 \mathrm{~mol} / \mathrm{L}$
2. A 250 mL solution of $3.56 \mathrm{~mol} / \mathrm{L}$ barium hydroxide is sitting on the counter in the lab. Help a chemistry 20 student determine the hydronium concentration of the solution.
$\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{~s})} \quad \rightarrow \quad \mathrm{Ba} \mathbf{+}_{(\text {aq })} \quad+\quad 2 \mathrm{HH}_{-(q q)}$
$\mathrm{n}=\mathrm{CV}$; $\mathrm{n}=3.56 \times 0.250=0.89 \mathrm{~mol}$
X 2mol/1mol
$=1.78 \mathrm{~mol}$
$C=n / V ; C=1.78 \mathrm{~mol} / 0.250 \mathrm{~L}=7.12 \mathrm{~mol} / \mathrm{L}$
$\mathrm{H} 3 \mathrm{O}+=\mathrm{Kw} /[\mathrm{OH}-] ; \mathrm{H} 3 \mathrm{O}+=1 \mathrm{E}-14 / 7.12$
$=1.40 \mathrm{E}-15 \mathrm{~mol} / \mathrm{L}$
3. A solution of nitric acid ionizes. What is the hydroxide ion concentration?
$\mathrm{HNO}_{3(a q)} \quad+\quad \mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \quad+\quad \mathrm{NO}_{3}{ }^{-}{ }^{(a q)}$
$1.00 \mathrm{~mol} / \mathrm{L} \quad X 1 / 1 \mathrm{~mol} ; X=1.00 \mathrm{~mol} / \mathrm{L}$
[OH-] = kw/[$\left.\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}\right]$
$=1.00 \times 10^{-14}(\mathrm{~mol} / \mathrm{L})^{2} / 1.00 \mathrm{~mol} / \mathrm{L} ;[\mathrm{OH}-]=1.00 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$
4. A student takes 11.6 grams of strontium hydroxide and adds it to 3.00 litres of water. What is the hydronium concentration?
5. A solution contains $1.67 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$ of hydronium ions. Determine the mass of barium hydroxide that was added to 1.00 L of water to make this solution.

$\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{~s})} \rightarrow \mathrm{Ba} 2+_{(a q)}+2 \mathrm{OH}{ }_{(\text {(aq) })} \quad$	$[\mathrm{OH}-]=\mathrm{kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}\right]$	
		$=1.00 \times 10^{-14}(\mathrm{~mol} / \mathrm{L})^{2} / 1.67 \times 10^{-14} \mathrm{~mol} / \mathrm{L}$

```
    X1mol/2mol
    X=0.2994...mol/L
    n=CV; n=0.2994 x 1L=0.2994...mol
    m=nM; m= 0.2994...mol x 171.35 g/mol
    m=51.3\textrm{g}
```

 0.5988...mol/L
 6. What is the concentration of hydroxide ions found in a 1.00 L solution of $2.00 \mathrm{~mol} / \mathrm{L}$ potassium hydroxide?
7. What is the hydroxide concentration of a 1.00 L solution of $2.50 \mathrm{~mol} / \mathrm{L}$ hydrobromic acid?

8. What is the hydronium concentration when $1.00 \mathrm{~mol} / \mathrm{L}$ of barium hydroxide dissociates
9. 6.02×10^{22} particles of sulphuric acid ionize into hydrogen sulphate ions in 1.00 L of water. What is the hydroxide concentration of the solution?
$\mathrm{H}_{2} \mathrm{SO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \quad+\quad \mathrm{HSO}_{4}{ }^{-}{ }^{(a q)}$
$n=p / P$
$\mathrm{n}=6.02 \times 1022 / 6.02 \times 1023$
$\mathrm{n}=0.1 \ldots \mathrm{~mol}$
$\mathrm{C}=\mathrm{n} / \mathrm{V}=0.1 . . \mathrm{mol} / 1.00 \mathrm{~L}$
$0.100 \mathrm{~mol} / \mathrm{L}$
x 1mol/ 1 mol ; $\mathrm{X}=0.100 \mathrm{~mol} / \mathrm{L}$
[OH-] = kw/[$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$]
$=1.00 \times 10^{-14}(\mathrm{~mol} / \mathrm{L})^{2} / 0.100 \mathrm{~mol} / \mathrm{L}$;
$[\mathrm{OH}-]=1.00 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$
10. A solution contains $3.45 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$ of hydroxide ions. What is the concentration of the hydrochloric acid solution that contain these hydroxide ions?

Worksheet 2.10: Acid \& Base Review

1. The concentration of hydroiodic acid is $1.73 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$. What is the pH and the pOH ?

$\mathrm{HI}_{(a q)}+\quad \mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \quad+\quad \mathrm{I}_{(a q)}^{-}$	
$1.73 \times 10-3 \mathrm{~mol} / \mathrm{L} / 1 \mathrm{~mol}$	$=\quad \mathrm{X} / 1 \mathrm{~mol}$
	$\mathrm{X}=1.73 \times 10-3 \mathrm{~mol} / \mathrm{L}$
	$\mathrm{PH}=-\log (1.73 \times 10-3 \mathrm{~mol} / \mathrm{L})$
	$\mathrm{PH}=2.76195 \ldots(2.762)$
	$\mathrm{POH}=14-\mathrm{pH}=11.238$

2. What is the hydronium concentration and hydroxide concentration of a $2.47 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ solution of thallium hydroxide?
3. Complete the following table (Significant digits are important):

pH	[H^{+}] or [$\mathrm{H}_{3} \mathrm{O}+$]	[OH]	pOH	A/B/N
$\begin{aligned} & 14-4.56 \\ & \text { OR } \\ & -\log (3.6 \mathrm{E}-10) \\ & =9.44 \end{aligned}$	$\begin{aligned} & 1 \mathrm{E}-14 / 2.8 \mathrm{E}-5 \\ & =3.6 \mathrm{E}-10 \mathrm{~mol} / \mathrm{L} \\ & \text { OR } \\ & 10^{-9.44} \end{aligned}$	$\begin{aligned} & =10^{-4.56}=2.8 \mathrm{E}- \\ & 5 \mathrm{~mol} / \mathrm{L} \\ & \text { OR } \\ & 1 \mathrm{E}-14 / 3.6 \mathrm{E}-5 \end{aligned}$	4.56	B
$\begin{aligned} & \text { 2) } 14-4.910 \\ & =9.090 \end{aligned}$	$\begin{gathered} 8.13 \times 10^{-} \\ { }^{10} \mathrm{~mol} / \mathrm{L} \end{gathered}$	1.23×10^{-5}	$\begin{gathered} -\log (1.23 \mathrm{E}-5) \\ =4.910 \end{gathered}$	B
3) 7.449	3.56×10^{-8}	$2.81 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$	6.551	B
4) 12.8	$2 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$	6. $\times 10^{-2} \mathrm{~mol} / \mathrm{L}$	1.2	B
5) 3.52	3.0×10^{-4}	3.3×10^{-11}	10.48	A
6) 13.759	1.74×10^{-14}	5.74×10^{-1}	0.241	B

pH	$\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{H}_{3} \mathrm{O}+\right]$	$[\mathrm{OH}]$	pOH	$\mathrm{A} / \mathrm{B} / \mathrm{N}$
7$) 6.55$	2.8×10^{-7}	3.5×10^{-8}	7.45	A
8$) 2.399$	3.99×10^{-3}	2.51×10^{-12}	11.601	A
9) 12.77	1.7×10^{-13}	5.9×10^{-2}	1.23	B
10) 5.95	1.1×10^{-6}	8.9×10^{-9}	8.05	A

4. What color would the indicator be given the following data:

	ORANGE IV	METHLY RED	PHENOL RED	METHYL ORANGE	INDIGO CARMINE
$\begin{aligned} & \mathrm{pOH}=9.00 \\ & \mathrm{pH}=5.00 \end{aligned}$	yellow	Red + Yellow = orange	yellow	yellow	blue
$\mathrm{pH}=8.3$	Yellow	Yellow	Red	Yellow	Blue
$\begin{gathered} {[\mathrm{H}+]=9.5 \times 10^{-4}} \\ \mathrm{pH}=3.02 \end{gathered}$	Yellow	Red	Yellow	Red	Blue
$\begin{gathered} {[\mathrm{OH}-]=5.6 \times 10^{-3}} \\ \mathrm{pOH}=2.25 ; \mathrm{pH}= \\ 11.75 \end{gathered}$	Yellow	yellow	Red	Yellow	Blue + yellow = green
$\left[\mathrm{H}_{3} \mathrm{O}+\right]=1.0 \times 10^{-7}$	Yellow	Yellow	Yellow to red = orange	Yellow	Blue

