Chapter 11. Electrochemical Cells and Devices

Summary

- electrochemical (total) potential of ionic solution species
- electrochemical cells
- the Nernst equation for cell voltages
- thermodynamics of electrochemical cells
- batteries (\$\$\$...)
- industrial electrolytic processes (\$\$\$\$\$...)
- fuel cells important future energy sources?

Sections 11.1 to 11.3 Total Potential of Electrochemical Species

Nonelectrolyte Solution Components (*previously considered*)

For an uncharged solution component, such as water in an aqueous $CaCl_2$ solution, the **chemical potential** is

$$\mu_{\rm H2O} = \mu_{\rm H2O}^* + RT \ln(\gamma_{\rm H2O} x_{\rm H2O})$$

- $\mu_{\rm H2O}^{*}$ = chemical potential of pure water
- x_{H2O} = water mole fraction
- $\gamma_{\rm H2O}$ = Raoult's law water activity coefficient = $p_{\rm H2O}/p_{\rm H2O}*$

Ionic Solution Species

For an **ionic species**, the **total potential** $\tilde{\mu}_i$ is the sum of **chemical potential** μ_i and **electric potential energy** $z_i F \phi$.

$$\widetilde{\mu}_{\text{ion }i} = \mu_i^{\circ} + RT \ln(\gamma_i m_i) + z_i F \phi$$

 m_i = molality of ion *i*

$$\gamma_i$$
 = Henry's law activity coefficient of ion *i*

 μ_i^{o} = chemical potential of an ideal one molal solution of ion *i*

$$z_i$$
 = valence of ion *i*

$$F$$
 = Faraday constant (96,485 coulombs per mole)

- $z_i F$ = electric charge on one mole of ions of valence z_i
- ϕ = electric potential

Example For one mole of Ca^{2+} ions at an electric potential of -1.5 volt, the electric potential energy is

 $z_i F \phi = (+2) (96485 \text{ C mol}^{-1}) (-1.5 \text{ V}) = -289,400 \text{ J mol}^{-1}$

<u>First Law</u> dU = dq + dw

dq = heat added to the system

 $dw = work done on the system = dw_{pV} + dw_e$

Expansion/Compression Work

$$\mathrm{d}w_{pV} = -p_{\mathrm{external}}\mathrm{d}V$$

Electrical Work ("New"!)

Electric charge dQ (in units of Coulomb) is transferred from initial electric potential ϕ_{initial} to final electric potential ϕ_{final} .

electrical work
$$dw_e = (\phi_{\text{final}} - \phi_{\text{initial}}) dQ$$

Change in the Gibbs energy G = U + pV - TS at fixed temperature and pressure $(p = p_{external})$:

$$dG_{T,p} = d(U + pV - TS)$$

= $dU + d(pV) - d(TS)$
= $dq + dw + pdV - TdS$
= $dq - pdV + dw_e + pdV - TdS$
= $dw_e + dq - TdS$ [recall $dq \le TdS$ (2nd Law)]

important conclusion :

$$\mathbf{d}G_{T,p} \leq \mathbf{d}w_{\mathrm{e}}$$

For **<u>reversible</u>** processes at fixed temperature and pressure:

$$\Delta G_{T,p} = w_{e}$$

The change in the Gibbs free energy is the electrical work "free" to be done on the surroundings.

Applications:

- Use a spontaneous chemical reaction ($\Delta G_{T,p} < 0$) to do electrical work on the surroundings (batteries and fuel cells)
- Perform electrical work on a system to drive a nonspontaneous chemical reaction (electrolytic cells)
- Use electrical measurements to determine accurate ΔG values (and ΔH , ΔS values by differentiation)

For **<u>reversible</u>** processes at fixed temperature and pressure:

$$\Delta G_{T,p} = w_{e}$$

Mathematical, thermodynamical, theoretical, abstract, ZZZzzz ...?

Consider just one application: lead-acid car batteries

- $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$
- 500 million sold per year, 30 billion dollar value
- cheap, reliable, recycled, every car and truck has one

 $\Delta G_{T,p}$ and w_e abstract and theoretical ? Apply left- and right-hand fingers to the terminals of a car battery. The *jolt* you get is directly proportional to $\Delta G_{T,p}$ and w_e !

Section 11.4 Electrochemical Cells

a *different way* to do chemistry!

PLAN A Traditional "Shake-and-Bake" Chemistry

- reactants are brought into *direct physical contact*
- the reaction proceeds

PLAN B Electrochemistry

- reactants being oxidized release electrons into an electrode
- the electrons flow through an external circuit (*e.g.*, a wire)
- the electrons enter another electrode to reduce reactants
- oxidization and reduction occur *at different locations*

Example The spontaneous chemical reaction

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

PLAN A <u>Direct</u> Chemical Reaction of Zn(s) and Cu²⁺(aq)

- prepare an aqueous solution of Cu(NO₃)₂
- pour the solution of $Cu(NO_3)_2$ onto a sheet of zinc metal
- aqueous Cu²⁺ ions are in physical contact with zinc metal
- zinc metal is oxidized (loses electrons)
- Cu²⁺ ions are reduced (gains electrons)
- deposition of Cu particles turns the zinc surface dark gray

<u>Direct</u> Chemical Reaction of Zn(s) and Cu²⁺(aq)

$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

dip a piece of zinc metal in an aqueous copper nitrate solution

PLAN B <u>Electrochemical</u> Reaction of Zn(s) and Cu²⁺(aq)

- **C** Zn electrode dipped in $Zn(NO_3)_2$ solution
- Cu electrode dipped in $Cu(NO_3)_2$ solution
- Zn(s) and Cu²⁺(aq) reactants <u>separated</u>
 by inert KNO₃ solution
- <u>electrons</u> flow through the external wire (not through the solution)
- <u>ions</u> flow through the electrolyte solutions

<u>Electrochemical Cell Notation</u> (concise cell description)

 $Zn(s) |Zn(NO_3)_2 (aq, 1.00 M)| |Cu(NO_3)_2 (aq, 1.00 M)| Cu(s)$

Describes the cell:

Conventions **<u>left electrode</u>**: anode (oxidation) <u>**right electrode**</u>: cathode (reduction) <u>**cell potential**</u>: $E_{\text{cell}} = E_{\text{right}} - E_{\text{left}}$ $= E_{Cu} - E_{Zn}$ = 1.103 Volt phase boundary: salt bridge (or porous barrier): (prevents mixing of anode

and cathode electrolytes)

Example	Write the balanced reaction for the cell:	
	$Pt(s) H_2(g,1 \text{ atm}) HCl(aq, 0.10 \text{ M}) =$	AgCl(s) Ag(s)
<u>left electrode</u>	(anode, oxidation)	
$H_2(g)$	hydrogen in oxidation state 0	
H ⁺ (aq)	hydrogen in oxidation state +1	
	$H_2(g) \rightarrow 2H^+(aq) + 2e^-(in Pt)$	L reaction
right electrode	e (cathode, reduction)	
Ag(s)	silver in oxidation state 0	
AgCl(s)	silver in oxidation state +1	
	$AgCl(s) + e^{-}(in Ag) \rightarrow Ag(s) + Cl^{-}(aq)$	R reaction
balance the number of electrons (L reaction plus <i>twice</i> R reaction) to get:		

 $H_2(g) + 2AgCl(s) \rightarrow 2H^+(aq) + 2Cl^-(aq) + 2Ag(s)$

n = 2 moles of electrons flow through the external circuit. Sketch the cell?

Reversible Electrochemical Cell ($\Delta G = w_e$)

Transfer *n* moles of electrons (electric charge -nF Coulombs) from the left electrode to right electrode through voltage difference $E = \phi_R - \phi_L$

electrical work = charge × voltage difference

$$w_{\rm e} = -nFE = \Delta G$$

Faraday constant F = 96,485 coulombs per mole (the charge on one mole of protons) Cell:Pt(s) $|H_2(g,0.2 \text{ atm})|$ HCl(aq, 0.10 m) | AgCl(s) |Ag(s)Calculate ΔG and the cell voltage E at T = 298 K.

<u>overall cell reaction</u> (transfer two moles of electrons, n = 2)

 $H_2(g) + 2AgCl(s) \rightarrow 2H^+(aq) + 2Cl^-(aq) + 2Ag(s)$

Gibbs energy change

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

standard Gibbs energy change (all chemicals in their standard states)

$$\Delta G^{\circ} = 2\Delta G_{\rm fm}^{\circ}({\rm H^+,aq}) + 2\Delta G_{\rm fm}^{\circ}({\rm Cl^-,aq}) + 2\Delta G_{\rm fm}^{\circ}({\rm Ag,s}) - \Delta G_{\rm fm}^{\circ}({\rm H_2,g}) - 2\Delta G_{\rm fm}^{\circ}({\rm AgCl,s}) = -42.8 \text{ kJ mol}^{-1} (from data Tables)$$

(ideal solutions)
$$Q = \frac{(m_{\rm H+})^2 (m_{\rm Cl-})^2}{p_{\rm H2}} = \frac{(0.10^2 \ 0.10^2)}{0.2} = 0.05$$

Gibbs energy change for the cell reaction

 $\Delta G = \Delta G^{\circ} + RT \ln Q$ = -42,800 J mol⁻¹ + (8.314 J K⁻¹ mol⁻¹)(298 K) ln(0.05) = -50,220 J mol⁻¹ (< 0, spontaneous cell reaction)

cell voltage[use $\Delta G = -nFE$ to get $E = -\Delta G / (nF)$] $E = -\Delta G / (nF)$ $= -(-50,220 \text{ J mol}^{-1}) / (2 \times 96485 \text{ Coulomb mol}^{-1})$ = 0.2603 volt(E > 0, spontaneous cell reaction)

standard cell voltage [all chemicals in their standard states] $E^{\circ} = -\Delta G^{\circ}/(nF)$ $= -(-42,800 \text{ J mol}^{-1}) / (2 \times 96485 \text{ Coulomb mol}^{-1})$ = 0.2218 volt

Nernst Equation. Used to Predict Cell Voltages

 $\Delta G = \Delta G^{\circ} + RT \ln Q \quad \text{divide by } -nF$ $\frac{\Delta G}{-nF} = \frac{\Delta G^{\circ}}{-nF} + \frac{RT}{-nF} \ln Q$ $E = E^{\circ} - \frac{RT}{nF} \ln Q \quad \text{Nernst equation}$

E cell voltage (
$$E = -\Delta G / nF$$
)

- E° standard cell voltage, reactants and products in their standard states ($E^{\circ} = -\Delta G^{\circ}/nF$)
- *Q* reaction quotient
- *n* number of moles of electrons transferred

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$
 Nernst equation

cell voltage $E = -\Delta G / nF$

spontaneous cell reaction:

E > 0 $\Delta G < 0$ Q < K (reaction equilibrium constant)

non-spontaneous cell reaction:

 $E < 0 \qquad \Delta G > 0 \qquad Q > K$

at equilibrium: E = 0 $\Delta G = 0$ Q = K $0 = E^{\circ} - (RT/nF)\ln K$ so $\ln K = nFE^{\circ}/RT$ $= -\Delta G^{\circ}/RT$

Write the **Nernst equation** for the reversible cell:

 $Pt(s) \Big| H_2(g, 0.2 \text{ atm}) \Big| HCl(aq, 0.10 \text{ m}) \Big| AgCl(s) \Big| Ag(s)$

with the reaction

 $H_2(g) + 2AgCl(s) \rightarrow 2H^+(aq) + 2Cl^-(aq) + 2Ag(s)$

n = 2 (two moles of electrons transferred), reaction quotient (assuming ideal solutions):

$$Q = \frac{(a_{\rm H+})^2 (a_{\rm Cl-})^2}{p_{\rm H2}} = \frac{(\gamma_{\rm H+} m_{\rm H+})^2 (\gamma_{\rm Cl-} m_{\rm Cl-})^2}{p_{\rm H2}} \approx \frac{(m_{\rm H+})^2 (m_{\rm Cl-})^2}{p_{\rm H2}}$$

Nernst equation $E = E^{\circ} - \frac{RT}{2F} \ln \frac{m_{\rm H+}^2 m_{\rm Cl-}^2}{p_{\rm H2}}$

For this cell, use $m_{\text{H}+} = m_{\text{Cl}-} = 0.10 \text{ mol kg}^{-1}$ and $p_{\text{H}2} = 0.2 \text{ atm.}$

!! Warning !!

A) The Nernst equation is exact only for reversible cells:

- no irreversible mixing (e.g., no salt bridges or porous barriers)
- no side reactions
- electrode kinetics fast enough to transfer electrons

B) For accurate calculations, **ionic activities** a_i should be used instead of ionic molalities to allow for nonideal solution behavior.

For example: $a_{H+} = \gamma_{H+}m_{H+}$ $a_{Cl-} = \gamma_{Cl-}m_{Cl-}$ $a_{HCl} = a_{H+}a_{Cl-} = \gamma_{\pm}^2 m_{HCl}^2$ **Example** Nonideal Nernst equation for the reversible cell:

 $Pt(s)|H_2(g, 0.2 bar)|HCl(aq, m = 0.10 mol kg^{-1})|AgCl(s)|Ag(s)$

with the reaction

 $H_2(g) + 2AgCl(s) \rightarrow 2H^+(aq) + 2Cl^-(aq) + 2Ag(s)$

$$n = 2 \text{ (two moles of electrons transferred) and } m_{H+} = m_{Cl-} = m$$

$$Q = \frac{(a_{H+})^2 (a_{Cl-})^2}{p_{H2}} = \frac{(\gamma_{H+})^2 (\gamma_{Cl-})^2 m^4}{p_{H2}} = \frac{(\gamma_{\pm})^4 m^4}{p_{H2}}$$
Nernst equation $E = E^{\circ} - \frac{RT}{2F} \ln \frac{(\gamma_{\pm})^4 m^4}{p_{H2}}$
Possibilities

For this cell: $m_{\text{H}+} = m_{\text{Cl}-} = m = 0.10 \text{ mol kg}^{-1}$, $\gamma_{\pm} = 0.796 \text{ and } p_{\text{H}2} = 0.2 \text{ bar}$

Electrochemical cell voltages *E* are <u>differences</u> in electric potential between the anode and cathode electrodes

$$E \equiv E_{\text{cathode}} - E_{\text{anode}}$$

= $E_{\text{right}} - E_{\text{left}}$ (conventional cell notation)

The electric potential of an individual electrode cannot be measured

Standard Hydrogen Electrode (SHE)

The standard hydrogen electrode is used to determine the standard potentials of other electrodes. *Example*:

Pt|H₂(g, 1 bar)|H⁺($a_{H^+} = 1$) || Cu²⁺($a_{Cu2+} = 1$)|Cu(s) $E_{cell}^{\circ} = 0.340 \text{ V}$ anode cathode H₂(g) \rightarrow 2H⁺(aq) Cu²⁺(aq) + 2e⁻ \rightarrow Cu(s)

Standard cell potential: the potential difference of a cell formed from two *standard* electrodes.

 $E^{\circ}_{\text{cell}} = 0.340 \text{ V} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}} = E^{\circ}_{\text{Cu2+/Cu}} - 0$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \quad E^{\circ}_{\text{Cu}^{2+/Cu}} = 0.340 \text{ V}$

a standard reduction potential

Standard Reduction Potentials are used to Calculate Standard Cell Voltages (E^o)

Example: Determine *E* ° for the zinc-chlorine battery at 25 °C.

 $Zn(s)|ZnCl_2(aq)|Cl_2(g)|Pt(s)$ $E^{o}_{cell} = ?$ Anode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$ $E^{o}_{anode} = -E^{o}_{Zn2+/Zn}$ Cathode: $Cl_2(g) + 2e^{-} \rightarrow 2Cl^{-}(aq)$ $E^{o}_{cathode} = E^{o}_{Cl2/Cl-}$

Overall: $Zn(s) + Cl_2(g) \rightarrow ZnCl_2(aq)$ $E^{\circ}_{cell} = E^{\circ}_{anode} + E^{\circ}_{cathode}$

The standard potential for the cathode (reduction) is the standard reduction potential $E^{\circ}_{\text{Cl2/Cl-}} = 1.358 \text{ V}$ for chlorine.

The anode (oxidation) standard potential $E^{\circ}_{Zn/Zn2+}$ is obtained by **reversing** the Zn²⁺(aq) standard reduction reaction:

$$E_{\text{Zn/Zn2+}}^{\text{o}}(\text{ox.}) = -E_{\text{Zn2+/Zn}}^{\text{o}}(\text{red.}) = -(-0.763) \text{ V}$$

<u>**Cathode</u>** The standard potential for the cathode (reduction) is the standard reduction potential for Cl_2 .</u>

 $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$ $E^{\circ}_{cathode} = E^{\circ}_{Cl2/Cl^-} = 1.358 \text{ V}$

<u>Anode</u> The standard potential for the anode (oxidation) is obtained by reversing the $Zn^{2+}(aq)$ reduction reaction

 $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $E^{\circ}_{Zn^{2+}/Zn} = -0.763 V$

to give the standard anode potential +0.763 V for the oxidation

 $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-} E_{anode}^{\circ} = -E_{Zn^{2+}/Zn}^{\circ} = -(-0.763 \text{ V})$

Overall Cell Reaction

 $Zn(s) + Cl_2(g) \rightarrow ZnCl_2(aq)$

 $E^{o}_{cell} = E^{o}_{anode} + E^{o}_{cathode}$ = 1.358 V + 0.763 V = **2.121 V**

Standard Reduction Potentials at 25° C

Reduction Half-Reaction	E^{o} / V
Acidic Solutions	
$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$	+2.866
$O_3(g) + 2 H^+(aq) + 2 e^- \longrightarrow O_2(g) + H_2O(l)$	+2.075
$S_2O_8^{2-}(aq) + 2e^- \longrightarrow 2SO_4^{2-}(aq)$	+2.01
$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1)$	+1.763
$MnO_4^{-}(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(1)$	+1.51
$PbO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Pb^{2+}(aq) + 2 H_2O(1)$	+1.455
$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^-(aq)$	+1.358
$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$	+1.33
$MnO_2(s) + 4 H^+(aq) + 2 e^- \longrightarrow Mn^{2+}(aq) + 2 H_2O(1)$	+1.23
$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1.229
$2 \operatorname{IO}_3^{-}(\operatorname{aq}) + 12 \operatorname{H}^+(\operatorname{aq}) + 10 \operatorname{e}^- \longrightarrow \operatorname{I}_2(\operatorname{s}) + 6 \operatorname{H}_2O(1)$	+1.20
$Br_2(1) + 2 e^- \longrightarrow 2 Br^-(aq)$	+1.065
$NO_3^{-}(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0.956
$Ag^+(aq) + e^- \longrightarrow Ag(s)$	+0.800

Standard Reduction Potentials at 25° C

Acidic Solutions

$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.771
$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	+0.695
$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.340
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(1) + SO_2(g)$	+0.17
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.154
$S(s) + 2 H^+(aq) + 2 e^- \longrightarrow H_2S(g)$	+0.14
$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$	0
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.125
	0.120
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}(s)$	-0.120
$Sn^{2+}(aq) + 2e^{-} \longrightarrow Sn(s)$ $Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.137 -0.440
$Sn^{2+}(aq) + 2e^{-} \longrightarrow Sn(s)$ $Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$ $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.137 -0.440 -0.763
$Sn^{2+}(aq) + 2e^{-} \longrightarrow Sn(s)$ $Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$ $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$ $Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-0.137 -0.440 -0.763 -1.676
$Sn^{2+}(aq) + 2e^{-} \longrightarrow Sn(s)$ $Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$ $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$ $Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-0.137 -0.440 -0.763 -1.676 -2.356

 E^{o} / V

Standard Reduction Potentials at 25° C

Reduction Half-Reaction	<i>E</i> ° / V
Acidic Solutions	
$Mg^{2}(aq) + 2e \longrightarrow Mg(s)$	-2.356
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.713
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.84
$K^+(aq) + e^- \longrightarrow K(s)$	-2.924
$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.040
Basic Solutions	
$O_3(g) + H_2O(1) + 2e^- \longrightarrow O_2(g) + 2OH^-(aq)$	+1.246
$OCl^{-}(aq) + H_2O(l) + 2e^{-} \longrightarrow Cl^{-}(aq) + 2OH^{-}(aq)$	+0.890
$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$	
$2 H_2O(1) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.828

Sections 11.6 to 11.8 Thermodynamic Data from Electrochemical Cells

Example Use measured voltages to determine the standard cell potential and activity coefficients for the reversible cell:

 $Pt(s) |H_2(g, p^o = 1 bar) |HCl(aq, 0.10 m)| AgCl(s) |Ag(s)|$

with $a_{\rm H2} = 1$ and the reaction (n = 2 moles of electrons transferred)

 $H_2(g) + 2AgCl(s) \rightarrow 2H^+(aq) + 2Cl^-(aq) + 2Ag(s)$

$$E = E^{\circ} - \frac{RT}{2F} \ln(\gamma_{\pm}^2 m^2)^2 = E^{\circ} - \frac{2RT}{F} \ln(\gamma_{\pm} m)$$

Measure *E*. But there are two unknowns: E^{o} and γ_{\pm} !

<u>No problem!</u> Rearrange the Nernst equation:

$$E + \frac{2RT}{F} \ln m = E^{\circ} - \frac{2RT}{F} \ln \gamma_{\pm}$$

- 1) Measure cell voltage *E* for different HCl molalities *m*.
- 2) Plot $E + (2RT/F) \ln m$ against $m^{1/2}$. (Why square-root m?)
- 3) Calculate the intercept = E°
- 4) Once the standard cell voltage E° is known, the mean ionic activity coefficient γ_{\pm} can be calculated for each HCl solution.

ΔG , ΔS , ΔH , ΔV from Electrochemical Cell Data

- 1) Measure cell voltage *E*. Calculate $\Delta G = -nFE$. Easy!
- 2) Measure cell voltage *E* at different temperatures at fixed pressure. Use $\Delta G = -nFE$ and $(\partial \Delta G/\partial T)_p = -\Delta S$ to calculate

 $\Delta S = nF \left(\frac{\partial E}{\partial T}\right)_p \qquad (\text{ no } dq_{rev} \text{ or calorimetry!})$

3) Once ΔG and ΔS are known, use $\Delta G = \Delta H - T \Delta S$ to calculate

 $\Delta H = \Delta G + T \Delta S \qquad (\text{ no calorimetry ! })$

Or use $\Delta H = \left[\partial (\Delta G/T)/\partial (1/T)\right]_p = -nF \left[\partial (E/T)/\partial (1/T)\right]_p$

4) Measure cell voltage *E* at different pressures at fixed temperature. Use $\Delta G = -nFE$ and $(\partial \Delta G/\partial p)_T = \Delta V$ to calculate

 $\Delta V = -nF \left(\frac{\partial E}{\partial p}\right)_T \qquad (\text{ no density measurements !})$

Section 11.9 Electrochemical Cell Terminology

(summary)

- **Anode** Electrode where <u>oxidation</u> occurs
- **Cathode** Electrode where <u>reduction</u> occurs
- Galvanic Cell Voltage produced by spontaneous chemical reaction
- **Cell Potential** *E* Cathode voltage minus anode voltage
- **Electrolytic Cell** Applied voltage used to drive **non-spontaneous reaction**
- **Concentration Cell** Identical electrodes, but **different ion concentrations**
- **Electrolyte Solution** Conducts electricity by the **movement of ions** (not electrons)
- External Circuit (Metal Wire) Conducts electricity by the movement of electrons

Concentration Cells: <u>Identical electrodes</u> but different ion concentrations. <u>Example:</u> Pt(s) |H₂ (1 atm) |H⁺(aq, a_{H+}(reference)) ||H⁺(aq, a_{H+}?) |H₂(1 atm) |Pt(s)

 $H_2(g, 1 \text{ atm}) \rightarrow 2 H^+(a_{H+(reference)}) + 2 e^-$ Voltmeter e $2 H^+(a_{H^+}?) + 2e^- \rightarrow 2 H_2(g, 1 \text{ atm})$ Anode Cathode Salt bridge $H_2(g, 1 atm)$ $H_2(g, 1 \text{ atm})$ KNO₃(aq) $2 \text{ H}^+(a_{\text{H}+}?) \rightarrow 2 \text{ H}^+(a_{\text{H}+(\text{reference})})$ $\Delta G^{o} = \Delta G_{f}^{o}(\text{products}) - \Delta G_{f}^{o}(\text{reactants})$ $=\Delta G_{\rm f}^{\rm o}({\rm H}^+,{\rm aq}) - \Delta G_{\rm f}^{\rm o}({\rm H}^+,{\rm aq}) = 0$ Pt Left Right $E^{\circ} = -\Delta G^{\circ}/2F = 0$ $a_{\rm H^+} = ?$ *a*_{H+(reference)} $E = E^{\circ} - (RT/2F) \ln(a_{\text{H+right}}^2/a_{\text{H+left}}^2) = (RT/F) \ln(a_{\text{H+}}^2/1)$ $E = -(RT/F) \ln[a_{H+}?/a_{H+(reference)}]$

Glass Electrode: Electrochemical pH Measurement

Use silver/silver chloride electrodes to measure the potential difference across a glass membrane permeable to H^+ ions (<u>H + concentration cell</u>).

 $\begin{array}{c|c} \operatorname{Ag}|\operatorname{Ag}Cl(s)|\operatorname{Cl}^{-}(1.0\mathrm{M}),\operatorname{H}^{+}(\operatorname{ref.} a_{\mathrm{H}^{+}}) \mid \overset{glass}{\operatorname{membrane}} \mid \operatorname{H}^{+}(a_{\mathrm{H}^{+}}) \mid \operatorname{Cl}^{-}(1.0 \mathrm{M})|\operatorname{Ag}Cl(s)|\operatorname{Ag}(s) \\ \end{array}$ $\begin{array}{c} \operatorname{Ag}(s) + \operatorname{Cl}^{-}(1.0 \mathrm{M}) & \longrightarrow & \operatorname{Ag}Cl(s) + e^{-} \\ \operatorname{H}^{+}(\operatorname{reference\ activity}) & \longrightarrow & \operatorname{H}^{+}(\operatorname{unknown\ activity}) \\ \operatorname{Ag}Cl(s) + e^{-} & \longrightarrow & \operatorname{Ag}(s) + \operatorname{Cl}^{-}(1.0 \mathrm{M}) \end{array}$ $\begin{array}{c} \operatorname{Cell\ Reaction:} & \operatorname{H}^{+}(\operatorname{reference\ activity}) & \longrightarrow & \operatorname{H}^{+}(\operatorname{unknown\ activity}) \end{array}$

$$pH \equiv -\log_{10}a_{H^+} = -\log_{10}(\gamma_{H^+}m_{H^+})$$

Important: a_{H+} and γ_{H+} *can't be measured!*

Glass Electrode: Electrochemical pH Measurement

H⁺ (reference activity) \rightarrow H⁺ (unknown activity *X*)

Nernst Equation (use $\log_{10}a = \ln a / 2.303$):

$$E = -(RT/F) \ln (a_{H+X}/a_{H+ref})$$

$$FE/RT = -\ln a_{H+X} + \ln a_{H+ref}$$

$$FE/(RT\ln 10) = -\ln a_{H+}/\ln 10 + \ln a_{H+ref}/\ln 10$$

$FE / (RT \ln 10) = pH_X - pH_{ref}$

In practice, use a buffer solution with a known pH (close to the unknown pH_X) as the reference solution.

"Combination pH" Electrode

Ag/AgCl electrodes (**red**) on opposite sides of a glass electrode (the bulb).

A small porous disc on the side of the outer glass tube acts as a salt bridge.

The porous disc connects the (right) Ag/AgCl electrode with the solution in which the pH electrode is dipped.

glass membrane permeable to H⁺ ions

Ion Selective Electrodes: Electroanalytical Chemistry

Ion^{*Z*+} (reference activity) \rightarrow Ion^{*Z*+} (unknown activity *X*)

Commercially available electrodes are used to measure the activities and concentrations of many important species:

 H^+

 NU_2

Na ⁺		
K^+		
Ca^{2+}		
Cl-		
F ⁻		

etc.

Electrochemical measurements:

- versatile
- relatively cheap
- reliable (no moving parts),
- highly sensitive (ppb or below)
- easily automated
- no labor required

- different ion concentrations on opposite sides of semi-permeable biological membranes generate voltage differences <u>without electrodes</u>
- biological membrane potentials generate nerve impulses
- nerve impulses can be regulated by changing membrane permeability to different ions

Sections 11.11 to 11.13 Electrochemical Devices

Primary Batteries:

Secondary Batteries:

- Not rechargeable
- Cell reaction not reversible.
- Rechargeable
- Cell reaction can be reversed by passing electricity through the cell
- Fresh reactants continuously fed into the anode and cathode cell compartments
- **Electrolytic Cells:**

Fuel Cells:

• Applied cell voltage drives a nonspontaneous reaction

Leclanche Dry Cell

$E \approx 1.5 \text{ V}$

Leclanche Cell Reactions

Oxidation:

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

Reduction: $2 \operatorname{MnO}_2(s) + H_2O(l) + 2e^- \rightarrow \operatorname{Mn}_2O_3(s) + 2OH^-(aq)$

Overall: $Zn(s) + 2 MnO_2(s) + H_2O(l) \rightarrow Zn^{2+}(aq) + Mn_2O_3(s) + 2OH^{-}$

Side reaction: The zinc anode slowly dissolves in the slightly acidic ammonium chloride paste, limiting the shelf-life of the cell.

Alkaline Dry Cells

Replace the NH₄Cl electrolyte in traditional Leclanche dry cells with aqueous KOH or NaOH.

Oxidation: $Zn(s) + 2 OH^{-}(aq) \rightarrow Zn (OH)_2(s) + 2 e^{-}$ Reduction: $2 MnO_2(s) + H_2O(l) + 2 e^{-} \rightarrow Mn_2O_3(s) + 2 OH^{-}(aq)$

Overall: $Zn(s) + 2 MnO_2(s) + H_2O(l) \rightarrow Zn(OH)_2(s) + Mn_2O_3(s)$

Zinc dissolves more slowly in alkaline electrolytes (longer battery shelf-life).

Silver-Zinc "Button" Batteries (1.8 V)

- relatively expensive, *but* ...
- high energy density
- suitable for miniature devices (watches, calculators)
- stable cell voltage
- good for critical applications (heart pacemakers, spacecraft)

Silver-Zinc Battery Reactions (E ^o 1.8 V)		
	$Zn(s) ZnO(s) KOH(aq) Ag_2O(s) Ag(s)$	
Oxidation:	$Zn(s) + 2 OH^{-}(aq) \rightarrow ZnO(s) + H_2O(l) + 2 e^{-}$	
Reduction:	$Ag_2O(s) + H_2O(l) + 2 e^- \rightarrow 2Ag(s) + 2 OH^-(aq)$	
Overall:	$Zn(s) + Ag_2O(s) \rightarrow ZnO(s) + 2Ag(s)$	

Voltages of most batteries decrease slightly as they discharge.

Why is the silver-zinc battery voltage constant?

Why does $E = E^{\circ}$ for this cell?

Lead-Acid (Storage) Battery $(E \approx 2.05 \text{ V})$

- old technology (but reliable)
- cheap
- contains toxic lead and sulfuric acid (can be recycled)
- heavy (low energy density, unsuitable for miniaturization)
- rechargeable (secondary cell)
- can deliver high pulse currents (≈ 400 amps) for engine ignition

(what is an amp (short for ampere)?)

Lead-Acid Battery Reactions

Oxidation:

Pb (s) + HSO₄⁻(aq)
$$\rightarrow$$
 PbSO₄(s) + H⁺(aq) + 2e⁻

Reduction:

 $PbO_{2}(s) + 3H^{+}(aq) + HSO_{4}^{-}(aq) + 2e^{-} \rightarrow PbSO_{4}(s) + 2H_{2}O(l)$

Overall:

 $PbO_{2}(s) + Pb(s) + 2 H^{+}(aq) + 2HSO_{4}^{-}(aq) \rightarrow 2 PbSO_{4}(s) + 2 H_{2}O(l)$

$$E_{\text{cell}}^{\text{o}} = E_{\text{PbO}_2/\text{PbSO}_4}^{\text{o}} - E_{\text{PbSO}_4/\text{Pb}}^{\text{o}} = 1.74 \text{ V} - (-0.28 \text{ V}) = 2.02 \text{ V}$$

What are the *oxidation states* of lead in PbO₂, PbSO₄, and Pb?

If <u>*E* \approx 2.0 V</u>, then why are automobile lead-acid batteries rated at <u>12 V</u>?

Why does the density of the aqueous sulfuric acid electrolyte decrease as the battery discharges? (*A useful battery diagnostic test.*)

Lithium Ion Batteries $(E \approx 3.0 \text{ V})$

Oxidation:

 $LiCoO_2(s) \rightarrow Li_{1-x}CoO_2(s) + x Li^+(solvent) + x e^-$

Reduction:

$$C(s) + x Li^+(solvent) + x e^- \rightarrow Li_x C(s))$$

Overall:

$$LiCoO_2(s) + C(s) \rightarrow Li_{1-x}CoO_2(s) + Li_xC(s)$$

- high energy density and high-tech
- good for computers, cell phones
- rechargable (secondary cell)
- nonaqueous solvent (such propylene carbonate)
- anode is a non-stoichiometric mixed oxide
- cathode is graphite with inserted Li metal

Lithium-Ion Battery

Li metal is suitable for high-energy density batteries because it is light and strongly electropositive

 $Li(s) \rightarrow Li^+(aq) + e^- \qquad E^0 = 3.04 V$

Aqueous electrolytes can't be used: in contact with water, Li (also Na and K) spontaneously reduces water:

$$Li(s) \rightarrow Li^+(aq) + e^-$$
 3.04 V

$$e^- + H_2O(1) \rightarrow \frac{1}{2} H_2(g) + OH^-$$
 -0.83 V

 $Li(s) + H_2O(l) \rightarrow Li^+(aq) + \frac{1}{2}H_2(g) + OH^-(aq) = 2.21 V$

Fuel Cells ("Flow" Batteries)

- Batteries must be replaced (primary cells) or recharged (secondary cells) when the reactants in the anode or cathode compartments are used up
- In a fuel cell, fresh reactants are pumped into the anode and cathode compartments, and reaction products are pumped out
- Fuel cells can be operated <u>continuously</u>
- Chemical energy is converted directly into electrical work
- Fuel-cells can be more efficient than heat engines because their performance is subject to the Carnot limitation :

 $|w|/q_{\rm H} = 1 - (T_{\rm C}/T_{\rm H})$

Corrosion: <u>Unwanted</u> Spontaneous Electrochemical Reactions

- Corrosion (*e.g.*, "rust") damages metals in vehicles, machinery, buildings, bridges, pipelines, and other structures
- Corrosion costs trillions of dollars per year
- Corrosion is electrochemical

Why not use metals that don't corrode (such as stainless steel)?

Protection of Iron Against Corrosion

Why is corrosion <u>electrochemical</u>?

(a) Copper-plated iron

(b) Galvanized iron

- *Good:* Coat iron with copper or another metal less easily oxidized than iron. But watch out! A scratch or pinhole in the coating leads to rapid iron corrosion.
- *Better:* Coat iron with a metal more easily oxidized than iron (such as zinc) that will corrode first, protecting the iron.

"Galvanized" iron and steel:

coated with a protective layer of zinc

But when the zinc is gone, then rust begins!

Sacrificial Magnesium Anodes for the Corrosion Protection of the Steel Hull of a Ship

Sacrificial Mg anodes

Seawater serves as the electrolyte.

Electrolysis: Non-spontaneous Reactions *Can Occur* !

Batteries, fuel cells, corrosion ("passive" electrochemistry) :

- spontaneous chemical reactions
- generate voltages and electrical currents

Electrolysis cells ("active" electrochemistry):

- apply voltages to drive non-spontaneous reactions
- make chemicals never found in nature

Chlor-Alkali Production

- Electrolysis of aqueous NaCl solutions
- Cl₂, NaOH, and H₂ are produced
- Largest electrochemical industry
- 70 % of all chemicals produced use Cl₂ or NaOH in one or more of the synthetic steps

Why are there no <u>natural deposits</u> of Cl_2 , NaOH, and H_2 ?

Natural gas Sulfur Water Petroleum Air Benzene **Propylene** Ethylene • natural gas Sulfuric ncid Cumene Water Air • petroleum Air Cumene hydroperoxide Acetaldehyde • air Electricity Water Salt Air • water Phenol Acetone • salt Sodium hydroxide Chlorine Carbon Hydrogen • sulfur dinxide Sodium phenolate Acetic anhydride Sodium salicylate Salicylic Sodium acid sulfate Acetylsalicylic acid (aspirin)

Flow Sheet for Industrial Aspirin Production from:

Diaphragm Chlor-Alkali Cells ("low-tech", but effective)

Anode ($E^{\circ} = -1.36$ V): 2Cl⁻(aq) \rightarrow Cl₂(g) + 2e⁻

Cathode ($E^{\circ} = -0.83$): 2e⁻ + 2H₂O(l) \rightarrow H₂(g) + 2OH⁻(aq)

Overall ($E^{\circ} = -1.36 - 0.83 = -2.19$ V): 2Cl⁻(aq) +2H₂O(l) \rightarrow Cl₂(g) +H₂(g)+2OH⁻(aq)

Why is *E*^o for the cell reaction <u>negative</u>?

Typical applied cell voltages are ≈ -3.0 V, significantly larger than *E* °. *Why*?

Porous asbestos diaphragms are being replaced with Na⁺-ion- permeable membranes in modern chlor-alkali plants.

Aluminum Production

- aluminum metal cannot be produced by reducing aqueous Al³⁺ ions (*Why*? Water is reduced before Al³⁺.)
- instead, Al₂O₃ (alumina) is electrolyzed in a molten salt electrolyte (cryolite, Na₃AlF₆)
- second-largest electrochemical industry (after chlor-alkali)
- before the development of electrochemical processes, aluminum metal was more valuable than platinum or gold!

Cryolite Electrolysis Cell for Aluminum Production

Carbon Anode (consumable): $O^{2-}(melt) + C(s) \rightarrow CO_2(g) + 2e^-$

Steel Cathode: $3e^- + Al^{3+}(melt) \rightarrow Al(l)$

Overall: $2Al_2O_3(melt) + 3C(s) \rightarrow 4Al(l) + 3CO_2(g)$

Why do the consumable carbon anodes reduce the voltage that must be applied to the electrolysis cell?

The alumina/cryolite molten electrolyte is near the eutectic composition. Why does this reduce operating costs?

Copper Electrorefining

Pure copper cathode : $2e^- + Cu^{2+}(aq) \rightarrow Cu(s, 99.99\% pure)$

Overall: $Cu(s, impure) \rightarrow Cu(s, pure)$

Zn, Pb, Fe, Ag, and other impurities remain in solution or precipitate as sludge.

Cell House for Copper Electrorefining

High-purity copper is mechanically scraped off the cathodes.

Electroplating

Cells similar to those used for copper refining can also be used to coat metal objects with a layer of electrolytically-deposited pure copper.

Nickel, chromium, tin, silver, zinc ("galvanized" steel), and many other metals can be **electroplated**.

Electroplating can provide tough, durable, corrosion-resistant, or decorative surfaces.

A rack of metal parts being lifted from the electrolyte solution after electroplating.

Electrolysis of Water: H₂ and O₂ Production

Anode ($E^{\circ} = -1.23 \text{ V}$): 2H₂O(l) \rightarrow O₂(g) + 4H⁺ + 4e⁻

Cathode ($E^{0} = -0.83$): 4e⁻ + 4H₂O(l) \rightarrow 2H₂(g) + 4OH⁻(aq)

Overall ($E^{\circ} = -1.23 - 0.83 = -2.06$ V): 2H₂O(l) \rightarrow 2H₂(g) + O₂(g)

Not an important industrial process!

>99% of industrial hydrogen is produced by the much cheaper steam-reforming of natural gas: $CH_4(g) + H_2O(g) \rightarrow 3H_2 + CO(g)$.

Oxygen is produced industrially by the fractional distillation of liquid air.

Which is the anode?

Sections 11.14 Electrochemical Microscopes

- scan "ultramicroscopic" electrodes (UME's) over surfaces
- measure electrochemical current at different positions

Sections 11.15 Electrochemical Machining

- shape metal parts electrochemically
- independent of material hardness
- suitable for intricate shapes, curved surfaces, square holes

