Final Exam Key
May 10, 2006

1) For Part I of the exam, fill in the blank on each question with the correct answer, by letter, from the list provided on the last page of the exam. There is one correct answer to every question. There is no partial credit. No answer will be used more than once. There are answers that are not used, however.
2) Part II is multiple choice. Circle the correct answer. There is one correct answer to every problem. There is no partial credit.
3) On the various parts of the short-answer problems, which constitute Part III of the exam, show your work in full. Partial credit will be awarded in Part III.
4) Atomic numbers are: $\mathrm{H}, \mathbf{1 ;} \mathbf{H e}, 2 ; \mathrm{Li}, 3 ; \mathbf{O}, 8$.
5) There is no penalty for guessing in Parts I and II.
6) Please write your name at the bottom of each page. ID numbers are not required
7) Please mark your exam with a pen, not a pencil. Do not use correction fluid to change an answer. Cross your old answer out and circle the correct answer. Exams marked with pencil or correction fluid will not be eligible for regrade under any circumstances.

Part I (50 points)

For the following 10 problems, answer by letter from the list provided at the back of the exam. You may tear the list off the exam if you like.

1. For a molecule that is not subject to an external potential, the total potential energy is equal to the negative of twice the kinetic energy. The proof of this statement is known as \qquad
2. The singlet-triplet splitting in a helium atom with one electon in the 1 s orbital and the other in the 2 s orbital $\quad \mathbf{G}$
3. A quantum mechanical phenomenon that permits particles to penetrate finite potential barriers over which the particles otherwise do not have sufficient energy to pass $\underline{\underline{\mathbf{S}}}$
4. The ionization potential of a molecule is well approximated by the negative of the Hartree-Fock energy of the highest occupied molecular orbital. This is a consequence of \qquad
5. A wave function for which $\left\langle S^{2}\right\rangle=2$ H
6. We may not know more than one cartesian component of the angular momentum because the component operators L_{x}, L_{y}, and L_{z} fail to commute. The proof that one cannot in general measure the expectation values of two non-commuting operators to perfect accuracy is known as \mathbf{Q}

For the remaining 4 problems, identify an eigenfunction of H corresponding to
7. $\mathrm{Li}^{2+} \underline{\mathbf{K}}$
8. A rigid rotator $\quad \underline{\mathbf{E}}$
9. A particle in a box (mass and box length of 1 a.u.)
10. A harmonic oscillator (reduced mass and force constant of 1 a.u.) _ D
\qquad

Part II (50 points)

11. Which of the below statements about computed molecular vibrational frequencies is false?
(a) There are in general $3 N$ of them where N is the number of atoms
(b) They may be used to verify the nature of stationary points (as minima, transition-state structures, etc.)
(c) At the HF level, they are systematically about 10% too large in magnitude compared to measured infrared spectra
(d) They may be used to compute the zero-point vibrational energy as $Z P V E=\sum_{i}^{\substack{\text { normal } \\ \text { modes }}} \frac{1}{2} h v_{i}$ where h is Planck's constant and v is a frequency
12. What does 2-PPE stand for?
(a) 2-photon photoelectron spectroscopy
(c) 2-particle positron emission
(b) 2-point polynomial equation
(d) twice polymerized polyethylene
13. For restricted Hartree-Fock theory, it is always the case that $\left\langle\Psi_{\mathrm{HF}}\right| H\left|\Psi_{a}^{r}\right\rangle=0$ where H is the Hamiltonian and Ψ_{a}^{r} is any wave function generated from the ground-state wave function Ψ_{HF} by exciting one electron from occupied orbital a to virtual orbital r. This result is known as
(a) Koopmans' theorem
(c) Limited configuration interaction
(b) Brillouin's theorem
(d) The Hartree-Fock limit
14. Which one of the below quantum mechanical systems has a ground-state energy of zero?
(a) The one-electron atom
(c) The harmonic oscillator
(b) The particle in a box
(d) \quad The rigid rotator
\qquad
15. Order the following wave functions from smallest to largest degeneracy:

V: Spin-free hydrogenic wave function, $n=2$
W: Rigid rotator, $l=2$
X: Relativistic free electron at rest
Y: Spin-free hydrogenic wave function, $n=6, l=1$
Z: Particle in a box, level $n=4$
(a) Y $<$ Z $<$ W $<$ X $<$ V
(c) X $<$ Y $<$ Z $<$ W $<$ V
(b) W $<$ Y $<$ Z $<$ V $<$ X
(d) Z $<$ X $<$ Y $<$ V $<$ W
16. Which of the following statements about the HF/STO-3G wave function for water at its minimum energy geometry is false?
(a) There are five occupied orbitals
(c) The dipole moment is zero
(b) The two lone pairs have different (d) The Mulliken charge on the oxygen molecular orbital energies atom is negative
17. What is the ground-state ionization potential for a one-electron atom having atomic number Z ?
(a) $(1 / 2) Z^{2}$ a.u.
(c) The energy required to infinitely separate the nucleus and electron
(b) The negative of the energy of the electron in the 1 s orbital
(d) all of the above
18. Which of the below statements about correlated levels of electronic structure theory is false?
(a) Full CI with an infinite basis set is equivalent to an exact solution of the Schrödinger equation
(c) MCSCF theory optimizes the orbitals for wave functions expressed as more than a single Slater determinant
(b) MP2 scales more favorably with
(d) CISD is size extensive respect to basis set size than CISD \qquad
\qquad
19. If Φ is a guess wave function, H is the Hamiltonian, and E_{0} is the ground-state energy, which of the following is always true as a consequence of the variational principle?

(c) $\frac{\int \Phi^{*} H \Phi d \mathbf{r}}{\int \Phi^{*} \Phi d \mathbf{r}} \leq E_{0}$
(b) $\quad\langle\Phi| H|\Phi\rangle=E_{0}$
(d) The expectation value of H over Φ will be less than E_{0}
20. Which of the below functions is an eigenfunctions of the parity operator Π with eigenvalue 1 ?
(a) $\sin x$
(c) $e^{i x}$
(b) x^{3}
(d) $\cos x$
\qquad

Part III (50 points)

The normalized 1s wave function for a one-electon atom in atomic units is

$$
\Psi_{100}(r, \theta, \phi)=\frac{Z^{3 / 2}}{\sqrt{\pi}} e^{-Z r}
$$

where Z is the atomic number.
a) The expectation value of what operator would correspond to the average value, in a.u., that you would obtain after a very, very large number of measurements of the distance of the 1 s electron from the nucleus in the hydrogen atom?

The distance operator, r. Thus, we will evaluate $\langle r>$.
b) Would the value for the same measurement be larger or smaller for He^{+}? Explain your answer.

Smaller, since the larger charge on the He nucleus will hold the electron more closely to it.
c) Now, prove that the average distance of the 1 s electron from the proton in the hydrogen atom is 1.5 a.u. You may find the following integral useful: $\int_{0}^{\infty} r^{n} e^{-2 r} d r=\frac{n!}{2^{n+1}}$. You may also find it useful to recall that the spherical polar volume element is $r^{2} d r \sin \theta d \theta d \phi$.

$$
\begin{aligned}
\langle r\rangle_{1 \mathrm{~s}} & =\left\langle\Psi_{100}\right| r\left|\Psi_{100}\right\rangle \\
& =\frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} e^{-r} r e^{-r} r^{2} \sin \theta d r d \theta d \phi \\
& =\frac{1}{\pi} \int_{0}^{\infty} e^{-r} r e^{-r} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \\
& =4 \int_{0}^{\infty} r^{3} e^{-2 r} d r \\
& =4\left(\frac{3!}{2^{4}}\right) \\
& =\frac{3}{2}
\end{aligned}
$$

\qquad
d) Instead of using the exact Slater 1 s function, consider if we were to use a single normalized Gaussian function of the form $\Phi_{100}(r, \theta, \phi ; \alpha)=\left(\frac{2 \alpha}{\pi}\right)^{3 / 4} e^{-\alpha r^{2}}$. If we want to have $<\Phi_{100}|r| \Phi_{100}>=3 / 2$ (the exact result), prove that α is equal to (32/9 $)$. You may find the following integral useful: $\int_{0}^{\infty} r^{3} e^{-a r^{2}} d x=\frac{1}{a^{2}}$

$$
\begin{aligned}
\frac{3}{2} & =\left\langle\Phi_{100}\right| r\left|\Phi_{100}\right\rangle \\
& =\left(\frac{2 \alpha}{\pi}\right)^{3 / 2} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} e^{-\alpha r^{2}} r e^{-\alpha r^{2}} r^{2} d r \sin \theta d \theta d \phi \\
& =4 \pi\left(\frac{2 \alpha}{\pi}\right)^{3 / 2} \int_{0}^{\infty} r^{3} e^{-2 \alpha r^{2}} d r \\
& =4 \pi\left(\frac{2 \alpha}{\pi}\right)^{3 / 2} \frac{1}{4 \alpha^{2}} \\
& =2\left(\frac{2}{\pi \alpha}\right)^{1 / 2}
\end{aligned}
$$

Solving for α gives

$$
\alpha=\frac{32}{9 \pi}
$$

e) When we use (32/9 $)$ for α in the 1 s gaussian, will $<\Phi_{100}|H| \Phi_{100}>$ be less than, equal to, or greater than $<\Psi_{100}|H| \Psi_{100}>$ where Ψ_{100} is the exact 1 s function defined at the beginning of this problem? Explain your reasoning.

Since Ψ_{100} is an exact, normalized eigenfunction of H, the variational principle guarantees that any other normalized guess wave function that is not equal to the exact wave function must obey the relationship

$$
\left\langle\Phi_{100}\right| H\left|\Phi_{100}\right\rangle>\left\langle\Psi_{100}\right| H\left|\Psi_{100}\right\rangle=E_{0}
$$

Since a Gaussian function is not equal to an exponential function, this must hold true for any choice of α, including that derived above.
\qquad
A: Brillouin's theorem
O: $\Psi(x)=\cos (2 \pi x)$

B: $2 \iint 1 s(1) 1 s(1) \frac{1}{r_{12}} 2 s(2) 2 s(2) d \mathbf{r}(1) d \mathbf{r}(2)$
P: The Born-Oppenheimer approximation

Q: The Heisenberg uncertainty principle
C: Ballistic momentum

D: $\Psi(x)=\left(\frac{1}{4 \pi}\right)^{1 / 4} 2 x e^{-x^{2} / 2}$

E: $\Psi(\theta, \phi)=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{-2 i \phi}$
R: Koopmans' theorem

S: Tunneling

T: $\Psi(x)=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots$

F: $\Psi(x)=\sqrt{2} \sin (4 \pi x)$

G: $\quad 2 \iint 1 s(1) 2 s(1) \frac{1}{r_{12}} 1 s(2) 2 s(2) d \mathbf{r}(1) d \mathbf{r}(2)$
$\mathbf{H}: \Psi(1,2)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}1 s(1) \alpha(1) & 2 s(1) \alpha(1) \\ 1 s(2) \alpha(2) & 2 s(2) \alpha(2)\end{array}\right|$

I: The virial theorem

J: $\Psi(x)=\tan x$
$\mathbf{K}: \Psi(r, \theta, \phi)=\frac{3^{5 / 2}}{8 \sqrt{\pi}} r \sin \theta e^{-i \theta} e^{-3 r / 2}$
L: Schrödinger's cat
$\mathbf{M}: \Psi(1,2)=\frac{1}{\sqrt{2}}\left|\begin{array}{ll}1 s(1) \alpha(1) & 2 s(1) \beta(1) \\ 1 s(2) \alpha(2) & 2 s(2) \beta(2)\end{array}\right|$
N: Wave-particle duality
\qquad

