Chemistry Day 66 Monday, April 20th, 2020

Do-Now: "Thermochemistry CN B"

1. Write down today's FLT: I will be able to calculate enthalpy changes associated with chemical reactions using heats of reaction by completing Ch. I0 CN Part B
2. Distinguish between exothermic and endothermic processes.
3. What is the specific heat of liquid water? List both values.
4. How much heat must be added to 1450 g of liquid water to raise the temperature from
$5.5^{\circ} \mathrm{C}$ to $29.0^{\circ} \mathrm{C}$? Show all work and steps.
Have a calculator and periodic table handy

Planner:

- Email Notes and WS
- Guided lab packet next lesson

Table of Contents \#2:
21. Ch 10 CN Part B
22. Thermochemistry WS B

FLT

- I will be able to calculate enthalpy changes associated with chemical reactions using heats of reaction by completing Ch .10 CN Part B

Standard

HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known

Ch. 10: Measuring and Expressing Enthalpy Changes

Introduction

Intro

- A burning match releases heat to its surroundings in all directions.
- Is this exothermic or endothermic?

Intro

- Can we determine the amount of heat given off?

Calorimetry

Calorimetry

- Calorimetry = process of measuring heat into or out of a system during a rxn/change
- Based on the fact that the heat released = the heat absorbed

Calorimetry

- Calorimeters = used to measure the absorption or release of heat
- Ex/ Foam Cups

Coffee Cup Calorimeter

Calorimetry

- Calorimeters are used to measure the absorption or release of heat
- Ex/ Soda Cans

Enthalpy

Enthalpy

- Enthalpy $(\mathrm{H})=$ equivalent to the total heat content of a system

heat energy in

heat energy out

Enthalpy

- Change in enthalpy $(\Delta H)=$ amount of heat energy absorbed or released in a rxn
- Can be calculated - several different formulas/ methods!
$\Delta H^{\circ}=\sum \Delta H_{f}^{\circ}$ products $-\sum \Delta H_{f}^{\circ}$ reactants

Enthalpy

- Endo = + ΔH
- Exo = - ΔH

Reaction Coordinate

Reaction Coordinate

Enthalpy

- In a calorimetry experiment:
$\Delta H=-q=$ if heat is being released $\Delta H=+q=$ if heat is being absorbed

Note: enthalpy and heat are different measurements. However, under certain conditions they are equivalent.

Ex/1

- 50.0 mL of a water solution at $25.0^{\circ} \mathrm{C}$ is heated in a calorimeter to $32.0^{\circ} \mathrm{C}$. Calculate the heat of this reaction if the density of the water solution is $1.00 \mathrm{~g} / \mathrm{mL}$. If heat is released, what can you say about the change in enthalpy?

Ex/1

- 50.0 mL of a water solution at $25.0^{\circ} \mathrm{C}$ is heated in a calorimeter to $32.0^{\circ} \mathrm{C}$. Calculate the heat of this reaction if the density of the water solution is $1.00 \mathrm{~g} / \mathrm{mL}$. If heat is released, what can you say about the change in enthalpy?

Ex/2

- When 100.0 mL of a water solution is heated from $22.50^{\circ} \mathrm{C}$ to $26.00^{\circ} \mathrm{C}$, heat is released. Calculate the heat associated with this reaction.

Thermochemical Eqs

Thermochemical Eqs

- How can you express the enthalpy change for a reaction in a chemical equation?

Endothermic: $\quad \mathbf{A}+\mathbf{B}+$ heat $\rightarrow \mathbf{C} \quad \Delta \mathbf{H}=+\#$

Exothermic: $\quad \mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}+$ Heat $\quad \Delta \mathrm{H}=-\#$

Thermochemical Eqs

- In thermochemical equations, the enthalpy change can be written as a reactant or a product
- Endo: ΔH is a reactant (absorbed)
- Exo: ΔH is a product (released)

Endothermic: $\quad \mathbf{A}+\mathbf{B}+$ heat $\rightarrow \mathbf{C} \quad \Delta \mathbf{H}=+\#$

Exothermic: $\quad \mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}+$ HEAT $\quad \Delta \mathbf{H}=-\#$

Thermochemical Eqs

- In thermochemical equations, the enthalpy change can be written as a reactant or a product
- Do not put negative signs when heat is IN the equation!

Endothermic: $\quad \mathbf{A}+\mathbf{B}+$ heat $\rightarrow \mathbf{C} \quad \Delta \mathbf{H}=+\#$

Exothermic: $\quad \mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}+$ heAt $\quad \Delta \mathbf{H}=-\#$

Ex/3

- Write as a thermochemical equation:
$\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$ where $\Delta \mathrm{H}=-65.2$ kJ

Ex/ 4

- Write as a thermochemical equation: $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ where $\Delta \mathrm{H}=+129 \mathrm{~kJ}$

Ex/ 5

- When 2 mol of solid magnesium combined with 1 mole of oxygen gas, 2 moles of solid magnesium oxide is formed and 1205 kJ of heat is released. Write the thermochemical equation for this combustion reaction.

Ex/ 6

- When 4 mol of iron metal combines with 3 moles of oxygen gas, 2 moles of solid iron (III) oxide is formed and 1625 kJ of heat is released. Write the thermochemical equation for this combustion reaction.

Using Heat of Rxn

Thermochemical Eqs

- We can use balanced thermochemical equations to calculate enthalpy change
- We can convert between MOLES and KJ using our coefficients

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+1625 \mathrm{~kJ}
$$

Ex/ 7

- Given
$2 \mathrm{NaHCO}_{3}+129 \mathrm{~kJ} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ calculate the amount of heat (in kJ) required to decompose 2.24 mol of NaHCO_{3}.

Ex/ 8

$$
\mathrm{C}+2 \mathrm{~S}+89.3 \mathrm{~kJ} \rightarrow \mathrm{CS}_{2}
$$

Calculate the amount of heat (in kJ) absorbed when 5.66 g of carbon disulfide is formed. (hint: be sure to write out your setup)

- Thermochem WS B -USE TEXTBOOK!
- Wednesday Zoom - use for lab help

