Chemistry Review

Name \qquad Due Date \qquad

A. Classification of Matter

Matter is anything that has mass and takes up space. Matter can be classified according to its properties. See what you can remember from Science 10 or look on pg. 241 in Visions 2.

1. Fill out the chart below that shows some of the classifications of matter.

B. Arrangement of the Periodic Table

Examine the periodic table in the center pages of your Data Booklet. It is important to understand how the table is arranged in order to be able to use it effectively. The horizontal rows are called periods. Elements in the same period have the same number of electron energy levels or orbitals. The vertical rows are called groups or families. Elements in the same group or family have similar chemical properties.

1. Name the elements that are in the same period as silicon (Si). sodium, magnesium, aluminum, phosphorus, sulphur, chlorine, argon
2. Name the elements that are in the same family (group) as bromine (Br).
hydrogen, fluorine, bromine, iodine, astatine
Examine the key box in the lower left of the periodic table. It tells the kind of information that is given about each substance. Note that the top half of each box gives information about elements while the lower half gives information about ions. Ion symbols are always written with a charge in the superscript (exponent) position. Element and ion symbols always begin with a capital (upper case) letter. This capital letter may or may not be followed by one or two small (lower case) letters. You should memorize the names (correctly spelled) and symbols of elements 1-20.
3. Write the symbols of the following elements.
sulphur _S beryllium _Be_ hafnium _Hf_ silver __Ag_
4. Write the element names for the following symbols.

$$
\mathrm{B} \text { _boron } \mathrm{Cl} \text { _chlorine } \quad \mathrm{Au} \text { __gold_} \quad \mathrm{K} \text { __potassium }
$$

5. Write the symbols for the following ions.
barium _ $\mathrm{Ba}^{2+} \quad$ phosphide \mathbf{P}^{3-} sodium $\mathbf{N a}^{+}$_ hydride
6. Write the ion names of the following symbols.
H^{+}_hydrogen ion_ Au^{3+} gold (III) ion_ O^{2-} oxide ion As^{3-} _arsenide ion
7. Look at the "Legend for the elements" (solid, liquid, gas, seldom forms ions).

Which elements in the periodic table seldom form ions?
boron, carbon, silicon, \& noble gases (helium, neon, argon, krypton, xenon, radon) \& some man made elements

Substances on the periodic table each have two numbers. The atomic number tells the number of protons that an element or ion contains. The atomic mass number tells the mass of an atom of an element.
8. Write the atomic numbers of the following elements.
boron _5 Co _27_ lithium _3_C 6 iron _26_ Ca 20
9. How many protons does an atom of each of the following elements contain?
oxygen _8_ $\mathrm{Zn} _30 _$manganese $\mathbf{2 5}^{25} \mathrm{~F}$ _ 9 lead _82
10. Write the atomic mass of each of the following elements. aluminum $26.98 \mathrm{~g} / \mathrm{mol}$ P $30.97 \mathrm{~g} / \mathrm{mol}$ chromium $52.00 \mathrm{~g} / \mathrm{mol}$ S $32.06 \mathrm{~g} / \mathrm{mol}$
11. Identify the elements with the following atomic masses.

$$
1.01 \text { _hydrogen } 22.99 \text { __sodium__ } 4.00 \text { helium }
$$

* Check your answers in the answer key.

C. Atomic Structure and the Periodic Table

An atom is the smallest neutral particle of an element that can exist and still have all the properties of that element. Atoms, in turn, consist of smaller particles: protons, neutrons and electrons. The small, extremely dense center of an atom is called the nucleus and contains protons which have a positive charge and neutrons which have no charge. A large electron "cloud" circles the nucleus and consists of rapidly moving, highly energetic electrons which have a negative charge. Because a atom is neutral, it is made up of equal numbers of electrons and protons

1. The atomic number tells the number of ___ protons__in an atom of an element.
2. The atomic number also tells how many ___electrons___ an atom of an element has.
3. Fill in the following chart.

element name	element symbol	atomic number	number of protons	number of electrons
sulphur	${\mathrm{S} \text { or } \mathbf{S}_{8}}^{\text {phitrogen }}$	N	$\mathbf{1 6}$	$\mathbf{1 6}$
nendium	Sc	$\mathbf{2 1}$	$\mathbf{7}$	$\mathbf{7}$
scandium		21	$\mathbf{2 1}$	

Each proton and each neutron has an atomic mass of 1 a.m.u. (atomic mass unit). Electrons are so incredibly small that their mass contribution to an atom is negligible. For our purposes, the atomic mass of an atom of an element is equal to the sum of the masses of its protons and neutrons. To determine the number of neutrons in an atom, subtract the number of protons from the atomic mass number.

> \# of neutrons = atomic mass number - \# of protons

Note that the atomic mass of most elements is not a whole number. This is because the number of neutrons can vary from one atom of an element to another of the same element. Variations in the number of neutrons in an elements are called isotopes. The atomic mass number is an average of the atomic masses of all the isotopes of an element. When using atomic mass numbers to determine the number of neutrons in an atom of an element, round the atomic mass number to the nearest whole number.
4. How many neutrons does an atom of each of the following elements contain?

26.98-13	$118.69-50$	$126.90-53$	$195.09-78$
$\mathrm{Al} \quad \mathbf{1 4}$	tin _69__	I_74__ platinum _117	

5. Fill in the following chart

element name	element symbol	atomic number	atomic mass (a.m.u.)	number of protons	number of neutrons	number of electrons
gold	Au	$\mathbf{7 9}$	$\mathbf{1 9 6 . 9 7}$ or 197	$\mathbf{7 9}$	$\mathbf{1 1 8}$	79
carbon	C	$\mathbf{6}$	$\mathbf{1 2 . 0 1}$ or 12	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{6}$
potassium	K	19	$\mathbf{3 9 . 1 0}$ or 39	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{1 9}$

Some elements are not found in single atoms. The atoms of these elements travel in groups and the symbols always indicate this condition. You must memorize these polyatomic elements. ("Poly" means many.)
6. Write down the names and symbols of the elements, which are polyatomic and diatomic. sulphur $\left(\mathrm{S}_{8}\right)$, phosphorus $\left(\mathrm{P}_{4}\right)$, hydrogen $\left(\mathrm{H}_{2}\right)$, fluorine $\left(\mathrm{F}_{2}\right)$, chlorine $\left(\mathrm{Cl}_{2}\right)$, bromine $\left(\operatorname{Br}_{2}\right)$, iodine $\left(\mathrm{I}_{2}\right)$, astatine $\left(\mathrm{At}_{2}\right)$ Electrons travel in orbitals or shells around the nucleus of an atom. Each orbital can contain a maximum number of electrons. The first orbital, the K-shell, can hold a maximum of 2 electrons. The first period (horizontal row) on the periodic table contains the elements which only have electrons in the K-shell. Hydrogen has one electron and is at the top of the first group or family. All members of this group, 1 or 1A, have only one electron in their outermost shell. Helium has two electrons and is at the top of the last group or family. All members of this group, VIIIA or 18, have completely filled outer shells. The second orbital, the L-shell can contain a maximum of 8 electrons. All members of the second period have a full K-shell plus one or more electrons in the L-shell. The third orbital, the M-shell, also can contain a maximum of 8 electrons. All elements in the third period have full K- and L- shells plus one or more electrons in the M-shell. There are two main ways to represent these atoms and their orbitals. The Bohr diagram has a central circular nucleus with the correct number of protons $(\mathrm{p}+$) and neutrons (n) placed in the middle for that element. Surrounding the nucleus are circles representing the orbitals with the correct number of electrons (e-) placed in each orbital as dots. The Energy level diagram has a circular nucleus with the correct number of protons ($\mathrm{p}+$) and neutrons (n) placed in the middle for that element. ABOVE the nucleus the number of electrons are written for each orbital starting with the K-shell. Below are an example of each diagram for element sodium.
sodium: Bohr diagram

Energy Level Diagram

$1 \mathrm{e}-$
$8 \mathrm{e}-$
$2 \mathrm{e}-$

7. Draw the Bohr diagram \& energy level diagram for each of the following elements.

Beryllium bohr \& Energy diagram; Silicon Bohr \& energy diagram; oxygen bohr \& energy diagram

Group VIIA contains elements which have one less electron needed to completely fill a energy level. For this reason, note the hydrogen is at the top of group VIIA. Remember hydrogen also is placed at the top of group IA, the group with only one electron in its outer energy level. Hydrogen is the only element that belongs to two groups.
8. List all the elements that have one less electron than needed to have a full energy level.

Hydrogen, fluorine, chlorine, bromine, iodine, astatine
$\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{As}$

Periods greater than number three have complex arrangements of electrons that you don't need to learn about. But, in each of these periods the number used for a full energy level is $\mathbf{8}$ electrons. Look at the staircase line that starts at Boron, B. Elements to the left of the staircase are called metals because they have less than 4 electrons in their outer energy level. Elements to the right of the staircase are called non-metals because they have more than 4 electrons in their outer energy level. There are some elements that have four electrons in their outer energy level and these are classified as either metals or nonmetals depending upon other characteristics. Always check the periodic table when you need to know if an element is a metal or a non-metal.
9. Put a " M " beside the elements which are metals and an " N " beside those which are non-metals.
Li _M_
P_N
Co_M
$\mathrm{Kr} _\mathbf{N}$
$\mathrm{Au} _\mathrm{M}$
$\mathrm{Se} \xrightarrow{\mathbf{N}}$

* Check your answers in the answer key.

D. Ions

Atoms prefer to have full outer energy levels. For this reason, atoms tend to lose or gain electrons to form ions. Remember that atoms are neutral. because they contain equal numbers of electrons (negative) and protons (positive). An ion of an element has a charge, either positive or negative, because the number of electrons has changed. Atoms will either gain or lose the fewest number of electrons needed to have a full outer energy level. Metallic ions form when metals lose electrons. Because the number of protons always stays the same in the nucleus, metallic ions have a net positive charge. Non-metallic ions form when non-metals gain electrons. Because the number of protons always stays the same in the nucleus, non-metallic ions have a net negative charge. Metals in group !A all lose one electron while metals in group IIA all lose two electrons. This same pattern follows for all metals. Non-metals in group VA all gain three electrons; those in VIA gain two electrons; those in VIIA gain three electrons. All ions use the element symbol with the charge (negative/positive) and number in the superscript (exponent) position, e.g. Ca^{2+}. The number always comes before the charge $(+/-)$. Ions have different physical and chemical properties than atoms.

1. Draw the energy level diagram for the following atoms and ions.

1e-		$6 \mathrm{e}-$	$8 \mathrm{e}-$
		$8 \mathrm{e}-$	$8 \mathrm{e}-$
$2 \mathrm{e}-$	$2 \mathrm{e}-$	$2 \mathrm{e}-$	$2 \mathrm{e}-$
$3 \mathrm{p}+$	$3 \mathrm{p}+$	16p+	16p+
4n	4n	$16 n$	16n
Li	Li^{+}	S	S^{2-}
	(lost 1 e)		(gained $2 \mathrm{e}-$)

Some elements do not form ions. Look at boron, carbon, and silicon. Note that these non-metals, although they do not have full energy levels, do not form ions. These elements will, however, take part in chemical reactions and form compounds. Look at group VIIIA or 18. All the elements in this group already have complete outer energy levels. These elements usually do not take part in chemical reactions and do not usually form compounds. Only under extreme laboratory conditions can these inert elements react.
2. List symbols of the inert gases. $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}, \mathbf{R n}$
*Check your answers in the answer key

E. Metallic and Non-metallic Ions Form Ionic Compounds

Ions that have opposite charges are attracted to each other. Metallic ions and non-metallic ions will form ionic bonds to create ionic compounds. The total number of protons and electrons in ionic compounds is equal and thus ionic compounds are neutral. For example, Na^{+}and Cl^{-}will bond together to form NaCl , a neutral ionic compound. NaCl has different chemical and physical properties than either Na^{+}or Cl^{-}. The formula of an ionic compound always have the metallic ion first and the non-metallic ion second. Ionic compounds are named by writing the metallic ion name first, leaving a space, and writing the non-metallic ion name second. Check the periodic table for the names of the ions. For example, the name of NaCl is sodium chloride. Note that all ionic compounds involving only two elements always have the name ending in -ide. Ionic compounds never use numerical prefixes.
2. Fill in the chart below with the chemical formulas and names of the ionic compounds formed.

metallic ions nonmetallic ions	Li^{+}	Na^{+}
H^{-}	$\mathrm{LiH}-$ lithium hydride	$\mathrm{NaH}-$ sodium hydride
F^{-}	$\mathrm{LiF}-$ lithium fluoride	$\mathrm{NaF}-$ sodium fluoride
Cl^{-}	$\mathrm{LiCl}-$ lithium chloride	$\mathrm{NaCl}-$ sodium chloride

Always choose the smallest number of positive and negative ions to make a neutral formula. For example, Mg^{2+} and O^{2-} form MgO , magnesium oxide. If the charge on the two ions is not the same, e.g. Li^{+}and O^{2-}, use least common multiples to determine how many of each ion are needed to make a neutral formula. The LCM of 1 and 2 is 2 . Therefore 2 positive and 2 negative charges are needed: Li^{+} and Li^{+}and O^{2-}. The formula is written $\mathrm{Li}_{2} \mathrm{O}$. The subscript number indicates the number of ions of the previous element.
3. Write the formulas and names of the ionic compounds formed from the following ions.

Na^{+}and P^{3-}	formula	name $\mathrm{Na}_{3} \mathrm{P}$
Mg^{2+} and S^{2-}	$\mathrm{Mg}_{2} \mathrm{~S}_{2} \rightarrow \mathbf{M g S}$	sodium phosphide
Al^{3+} and O^{2-}	$\mathbf{A l}_{2} \mathbf{O}_{3}$	magnesium sulphide

Some metallic elements can rearrange their electrons so that more than one ion can form. Look at elements numbered 22 to $29,41,44,46,50,51,78$ to 84 . Note that each of these has two possible ions. In order to differentiate when naming compounds, a Roman numeral is placed in brackets after the ion name. If the charge is $1+$, the Roman numeral is I; if the charge is $2+$, the Roman numeral is II; if the charge is $3+$, the Roman numeral is III etc. If oxygen combines with iron, there are two possible types of iron oxide: iron (II) oxide and iron (III) oxide.
4. Write the formulas and names formed from the following ions. Be sure to include Roman numerals when more than one ion of an element exists.

	formula	name
Ti^{3+} and S^{2-}	$\mathrm{Ti}_{2} \mathrm{~S}_{3}$	titanium (III) sulphide
Co^{2+} and As^{3-}	$\mathrm{Co}_{3} \mathbf{A s}_{2}$	cobalt (II) arsenide

*Check your answers in the answer key.

F. Polyatomic (Complex) Ions

Some ions form groups called complex ions also known as polyatomic ions on your periodic table. The complex ions form bonds so strong they act as if they were single ions. Like single ions, complex ions have a charge. There is only one positive complex ion: $\mathbf{N H}^{+}$, named ammonium. As it has a positive charge, ammonium will always be the first ion in an ionic compound. All the other complex ions have negative charges. They will always come after the positive ion in an ionic compound. The names are given in your periodic table. Note that most of the negative complex ions contain oxygen as the last element. The names of these always end in either -ate or -ite. There is one negative complex ion without the -ate/-ite name ending. It is $\mathbf{O H}^{-}$and is called hydroxide. Formulas of compounds containing complex ions are written in and named in the same way as other ionic compounds.

1. Write formulas and names for the ionic compounds formed from the following ions.

Metalic ions	K^{+}	H^{+}	Na^{+}
	name and formula	name and formula	name and formula
nonmetallic ions OH^{-}	potassium hydroxide $\mathbf{K O H}$	$\begin{aligned} & \text { water } \\ & \mathrm{HOH} \end{aligned}$	sodium hydroxide NaOH
CO_{3}^{2-}	potassium carbonate $\mathrm{K}_{2} \mathrm{CO}_{3}$	hydrogen carbonate (carbonic acid) $\mathrm{H}_{2} \mathrm{CO}_{3}$	sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$
NO_{2}^{-}	potassium nitrite KNO_{2}	hydrogen nitrite (nitrous acid) HNO_{2}	sodium nitrite NaNO_{2}

When more than one complex ion is required to balance a formula, brackets need to be used with a subscript outside to indicate how many complex ions are needed. For example: Ca^{2+} and $\mathrm{CH}_{3} \mathrm{COO}^{-}$ form calcium acetate with a formula $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$. The subscript 2 indicates two entire acetate ions are needed.
2. Write formulas and names for the ionic compounds formed from the following ions.
formula name
$\mathrm{Ca}(\mathrm{OH})_{2} \quad$ calcium hydroxide
$\mathrm{Al}_{2}\left(\mathrm{CrO}_{4}\right)_{3} \quad$ aluminum chromate

G. Covalent Molecular Compounds

Some non-metals form compounds in which electrons are shared rather than lost or gained as in ionic compounds. These compounds are called covalent molecular compounds and always involve only two non-metallic elements. The first element in the compound retains its atomic name. The second element's name ends in -ide. Prefixes are always used to tell how many atoms of the second element are in the compound. When more than one atom of the first element named is used, prefixes are also used. Prefixes used are listed on p. 12 of your Data Booklet. Examples: CO carbon monoxide CO_{2} carbon dioxide $\mathrm{P}_{2} \mathrm{~S}_{5}$ diphosphorus pentasulphide

1. Name the following compounds.
CS_{2} carbon disulphide $\quad \mathrm{SO}_{2}$ sulphur dioxide
CBr_{4} carbon tetrabromide $\mathrm{P}_{2} \mathrm{O}_{5}$ diphosphorus pentaoxide
2. Write the formulas of the following compounds
carbon tetrachloride $\quad \mathrm{CCl}_{4}$
nitrogen trichloride $\quad \mathrm{NCl}_{3}$
phosphorus pentabromide $\mathbf{P B r}_{5}$
*Check your answers in the answer key
Naming Acids - optional section. (Check with your teacher before doing this section.)
Ionic compounds that contain hydrogen as the non-metallic ion form acids when they are dissolved in water. There is a special naming system for these. The first step is to write the ionic compound name as you have already learned to do it. If there are only two elements in the acid, then the name hydrogen becomes hydro- and the second element's name ends in -ic. Both element names form one word. The word acid is added separately at the end. Eg) HCl has the ionic name of hydrogen chloride. The acid name is hydrochloric acid.
3. For each of the following compounds, give the ionic compound name and the acid name.

	ionic name	acid name
HBr	hydrogen bromide	hydrobromic acid
HI	hydrogen iodide	hydroiodic acid
$\mathrm{H}_{2} \mathrm{~S}$	hydrogen sulfide	hydrosulfuric acid
HF	hydrogen fluoride	hydrofluoric acid

Acids which contain complex ions are a little more difficult to name. All of these acids drop the hydrogen name. If the suffix of the complex ion was -ite, the acid name ends in -ous. The word acid is added separately at the end. For example: $\mathrm{H}_{2} \mathrm{SO}_{3}$ has the ionic name of hydrogen sulphite.
The acid name is sulphurous acid.
2. For each of the following compounds, give the ionic compound name and the acid name.
ionic name acid name

HNO_{2}	hydrogen nitrite	nitrous acid
HClO_{2}	hydrogen chlorite	chlorous acid

If the suffix of the complex ion was -ate, the acid name ends in -ic. The word acid is added separately at the end. Eg): $\mathrm{H}_{2} \mathrm{SO}_{4}$ has the ionic name hydrogen sulphate. The acid name is sulphuric acid.
3. For each of the following compounds, give the ionic compound name and the acid name.

	ionic name	acid name
${_{3}} }$	hydrogen nitrate	nitric acid
HClO_{3}	hydrogen chlorate	chloric acid
$\mathrm{H}_{2} \mathrm{CO}_{3}$	hydrogen carbonate	carbonic acid

*Check your answers in the answer key.

I. Chemical Reactions and Equations

Chemical equations are used to show what happens in a chemical reaction. Most chemical equations have the following format. reactants \rightarrow products
Chemical equations must be balanced in order to show that matter is conserved. This means that there must be exactly the same number of atoms/ions of each type of element on both sides of the equation.
For example: $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
The large coefficient number tells how many atoms or molecules are used/produced. In the equation above, 2 sodium atoms react with one chlorine molecule. (Remember that chlorine is a polyatomic element and occurs in molecules made up of 2 atoms,) Two formula units of sodium chloride are produced.
To check if an equation is balanced, list the elements and the number of ions/atoms.
For example: $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$

Na	2	Na	2
Cl	2	Cl	2

Another example: $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{Na} \rightarrow 2 \mathrm{NaOH}+\mathrm{Mg}$

Mg	1	Mg	1
OH	2	OH	2
Na	2	Na	2

*Note that is the complex ion is unchanged, it can be listed as a single ion

1. Which of the following equations are balanced?

$$
\begin{array}{ll}
\mathrm{S}_{8}+12 \mathrm{Cl}_{2} \rightarrow 8 \mathrm{SCl}_{3} & \text { balanced? }{ }_{-} \text {Yes } \\
2 \mathrm{C}_{8} \mathrm{H}_{18}+24 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} 0 \text { balanced? }
\end{array}
$$

25
There are five basic types of chemical reactions that you must be able to recognize:
simple composition or synthesis
element + element \rightarrow compound
$A+B \rightarrow A B$
simple decomposition
compound \rightarrow element + element
$\mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$
single replacement
compound + element \rightarrow compound + element
$\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{AC}+\mathrm{B}$ (either the two metals or the two non-metals trade places)
double replacement
compound + compound \rightarrow compound + compound
$\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{BC}$ (either the two metals or the two non-metals trade places)
hydrocarbon combustion
hydrocarbon $+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

1. Classify each of the following reactions.

$$
\begin{gathered}
\mathrm{Mg}+\mathrm{I}_{2} \rightarrow \mathrm{MgI}_{2} \\
\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{~S}+2 \mathrm{HOH} \\
\mathrm{CaCl}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{CaBr}_{2}+\mathrm{Cl}_{2} \\
\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{Na}_{2} \mathrm{~F} \rightarrow 4 \mathrm{Na}+\mathrm{F}_{2} \\
\text { *Check your answers in the answer key. }
\end{gathered}
$$

simple composition (SC) double replacement (DR) single replacement (SR) hydrocarbon combustion (HC) simple decomposition (SD)

J．Molar Mass and the Mole

The molar mass of an element is the atomic mass expressed in grams／mole．For example，the atomic mass of lithium is 6.94 and its molar mass is $6.94 \mathrm{~g} / \mathrm{mol}$ ．For a compound，the molar mass is equal to the sum of all the molar masses of the elements making up that compound．For example sodium chloride NaCl has a molar mass equal to $22.99 \mathrm{~g} / \mathrm{mol}$ for $\mathrm{Na}+35.45 \mathrm{~g} / \mathrm{mol}$ for Cl ．This adds up to $58.44 \mathrm{~g} / \mathrm{mol}$ for one mole of NaCl ．We need to know molar mass in order to determine the mass of reactants and products in a chemical reaction．

1．Calculate the mass of one mole of each of the following elements or compounds．
O_{2}
$32.00 \mathrm{~g} / \mathrm{mol}$
CCl_{4}
$153.81 \mathrm{~g} / \mathrm{mol}$
Ca
P_{4}
$40.08 \mathrm{~g} / \mathrm{mol}$
$123.88 \mathrm{~g} / \mathrm{mol}$

2．Which element has a molar mass of：
$196.97 \mathrm{~g} / \mathrm{mol}$＿Au or gold＿＿$\quad 2.02 \mathrm{~g} / \mathrm{mol} \mathbf{H}_{2}$ or hydrogen gas
3．If you have 36.03 grams of carbon，how many moles do you have？
3.000 moles（ $36.03 / 12.01$ ）
＊Check you answers in the answer key．

K．WHMIS Symbols

You must know all the NEW（ ${ }^{\text {st }}$ picture）\＆OLD（ $2^{\text {nd }}$ picture）WHMIS symbols．
1．WHMIS stands for＿Workplace Hazardous Materials Information System
2．Write one example of where you might find each WHMIS symbol．

	Exploding bomb for explosion or eactivity haza		$\underset{\text { clame }}{\substack{\text { flome fire hazarss）}}}$		Flame over circle （for oxidizing hazards）
	$\underbrace{\substack{\text { ner }}}_{\substack{\text { Gas cylinder } \\ \text {（oressusese）under }}}$	䧑最	Corrosion （for corrosive damage to metals， as well as skin，eyes）		
	$\begin{aligned} & \text { Health hazard } \\ & \text { (may cause or } \\ & \text { suspected of } \\ & \text { causing serious } \\ & \text { health effects) } \end{aligned}$	0	Exclamation mark （may cause less effects or damage ozone layer＊	粦	Environment＊ （may cause dan environment）
（58）					

Class A： Compressed Gas	ClassB： Flammable and Combustable Material		Class D： Poisonous and Infectious Materials Division 1－Immediate and Toxic effects
Class D： Poisonous and Infectious Materials Division 2－Materials Causing Other Toxic Effects	Class D： Poisonous and Infectious Materials Division 3－Biohazardous Infectious Materials	Class E： Corrosive Materials	Class F： Dangerously Reactive Materials

1．TNT 2．Methane 3．Sodium

4．propane 5．Acid 6．Cynide

7．bleach 8．Lead 9．DDT

10．HIV

1．propane 2 ．Methane 3 ．Sodium 4．cynide

5．lead 6．HIV 7．acid 8．TNT

L. SKILL \#1: Significant Digits \& Unit Conversions

Name:
Due Date:
Score:
Definition of Significant digits
Significant digits indicate how accurate a measurement is. Significant digits are the digits that are certain plus one uncertain digit (the last digit). Significant digits are NOT defined as important digits.
Counting Significant Digits
When counting significant digits, count all the digits from 1 to 9 plus zeroes in between and zeroes following these digits. DO NOT count zeroes in front of a 1 to 9 because they only serve to set the decimal place.
Constants and exact numbers have infinite number of significant digits.
ie) 0.02050 kg The two zeros in front are NOT significant. This number has 4 significant digits. $\mathrm{x} \times \sqrt{ } \sqrt{ } \sqrt{ } \quad \sqrt{ }=$ significant digit $\mathrm{x}=$ not significant digit

Rounding off when using significant digits
When the next digit (after those that are kept as significant) is less than 5 , all the digits remain the same. When the next digit is 5 or greater, the last digit that is kept is increased by one.
Ie.) 19.95 m with 3 significant digits would be rounded off to 20.0 m .129 .49 g with 3 significant digits would be not be rounded off and remain 129 g

Scientific notation
Scientific notation is the method of expressing values as a number between 1 and 10 multiplied by a power of ten. (\#.\#\# x $10^{\#}$) Scientific notation is used for very large numbers or very small numbers with a few significant digits.
Ie) 1490 m with 2 significant digits would be expressed as $1.5 \times 10^{3} \mathrm{~m}$ The decimal moved 3 places to the left
0.0015678 g with 1 significant digit would be expressed as $2 \times 10^{-3} \mathrm{~g}$ The decimal moved 3 places to the right.

NOTE: There is always only one digit (other than 0) and then the decimal when using scientific notation. The digits in $10^{\#}$ are not significant.
SI (System International) Prefixes \& Unit Conversions
SI prefixes are often used to replace the power of ten in scientific notation. Here are the most common prefixes. These and other prefixes are also located in your databook on page 1.

$$
\begin{array}{lr}
\text { Giga }(G)=10^{9} & \text { centi }(c)=10^{-2} \\
\text { Mega }(M)=10^{6} & \text { milli }(\mathrm{m})=10^{-3} \\
\text { Kilo }(k)=10^{3} & \text { micro }(u)=10^{-6}
\end{array}
$$

Scientists need to be able to convert from one prefix to another.
Ie) $1.5 \times 103 \mathrm{~m} \rightarrow 1.5 \mathrm{~km} \quad 2 \times 10^{-3} \mathrm{~g} \rightarrow 2 \mathrm{mg}$
Addition \& Subtraction significant digit rules
Add/subtract and then round off the answer to the least number of decimal places contained in the question.
Ie) $26.5 \mathrm{~m}+7.01 \mathrm{~m}=33.51 \mathrm{~m}$ Rounded $=33.5$
(1 dec.) (2 dec .)
(1 dec.)
Multiplication \& Division significant digit rules
Multiply/divide and then round off the answer to the least number of total significant digits contained in the question. Decimal places are NOT considered for significant digits when you multiply or divide.
Ie) $100 \mathrm{~s} \times 5.0 \mathrm{~m} / \mathrm{s}=500 \mathrm{~m} \quad$ Rounded $=5.0 \times 10^{2} \boldsymbol{m}$
dig)

1. 1 Identify how many significant digits are in each of the following measurements:
a. 15.8 g \qquad b. $0.167 \mathrm{~m} / \mathrm{s} \quad 3$ \qquad
c. $1.50 \mathrm{~km} / \mathrm{h} \quad 3$
d. $23.005 \mathrm{~g} / \mathrm{L}$
5
e. $0.0061 \mathrm{~mol} / \mathrm{L}$ __ 2 \qquad f. $1.54 \times 10^{6} \mathrm{~km} \quad 3$
g. 1200 cm \qquad h. $5.00 \times 10^{-3} \mathrm{t}$ \qquad
i. 0.08 hectares $\quad \mathbf{1}$ 1
j. 14.03 C \qquad
2. Perform the following calculations.

			Unrounded	Rounded	SI Prefix
	$35.7 \mathrm{~mol} \mathrm{x} 168.92 \mathrm{~g} / \mathrm{mol}$	$=$	6030.44g	$6.03 \times 10^{3} \mathrm{~g}$	6.03 kg
	16.75 s x $85 \mathrm{~m} / \mathrm{s}$	$=$	1423.75m	$1.4 \times 10^{3} \mathrm{~m}$	1.4 km
b.	$0.00085 \mathrm{~L} \times 1.3111 \mathrm{~g} / \mathrm{L}$	$=$	$\underline{0.001114435 g}$	$\underline{1.1 \times 10^{-3} \mathrm{~g}}$	1.1 mg
c.	$0.000118 \mathrm{~mol} \times 18.02 \mathrm{~g} / \mathrm{mol}=$		$\underline{0.00212636 g ~}$	$\underline{2.13 \times 10^{-3} \mathrm{~g}}$	$\underline{2.13 ~ m g ~}$
d.	$0.12 \times 10^{6} \mathrm{~mol} \mathrm{x} 22.4 \mathrm{~L} / \mathrm{mol}$	$=$	$\underline{2.688 \times 10}{ }^{6} \underline{L}$	$\underline{2.7 \times 10}{ }^{6} \mathrm{~L}$	$\underline{\text { 2.7 ML }}$
	$0.178 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{mol}$	$=$	$\underline{0.014820982 m o l}$	$1.48 \times 10^{-2} \mathrm{~mol}$	1.48 cmol
f.	$0.1456 \mathrm{~mol} / 2.3 \mathrm{~L}$	$=$	$\underline{0.063304347 \mathrm{~mol} / \mathrm{L}}$	$6.3 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$	$\underline{6.3 \mathrm{cmol} / \mathrm{L}}$
	$452.65 \mathrm{~g} / 58.06 \mathrm{~g} / \mathrm{mol}$	$=$	$\underline{7.796245264 ~ m o l ~}$	7.796 mol	xxxxxxxxxx
h.	$1.12 \times 10^{-5} \mathrm{~mol} / 2.5 \mathrm{~mol} / \mathrm{L}$	$=$	$\underline{0.00000448 ~ L ~}$	$\underline{4.5 \times 10^{-6} \mathrm{~L}}$	4.5 uL
	$1.28 \times 10^{6} \mathrm{~g} \mathrm{x} 3.33 \times 10^{3} \mathrm{~J} / \mathrm{g}$	$=$	$\underline{4.2624 \times 10}{ }^{9} \mathrm{~J}$	$4.26 \times 109 \mathrm{~J}$	4.26 GJ
j.	$0.0088 \mathrm{~mol} / 179 \mathrm{~L}$	$=$	$\underline{0.000049162 ~ m o l} / \mathrm{L}$	$\underline{49 \times 10-6 \mathrm{~mol} / \mathrm{L}}$	$49 \mathrm{umol} / \mathrm{L}$
	$760 \mathrm{~m}+42.6 \mathrm{~m}$	$=$	802.6 m	802 m	$\underline{0.802 ~ k m}$
1.	$9.99 \mathrm{~mol}+1510.9 \mathrm{~mol}$	$=$	1520.89 mol	1520.9 mol	$\underline{1.5209 ~ k m o l ~}$
	$14.76 \mathrm{~mL}-4 \mathrm{~mL}$	$=$	10.56 mL	11 mL	xxxxxxxyxxx
	$129 \mathrm{~g}-29.5 \mathrm{~g}$	$=$	99.5 g	$\underline{100 g}$	$\underline{0.100 ~ k g ~}$
	CHALLENGE: $942 \mathrm{~m}-1.2 \mathrm{~km}$	=	0.258 km	0.3 km	xxxxxxyxyxx

HINT: convert to the highest unit first.

SKILL 2: LAB SAFETY: Learn the safety rules illustrated below.

Know location of emergency numbers \& safety equipment
Know the location of safety equipment and emergency phone numbers (Lab
Safety
Rules
Science labs offer great opportunities for learning, teaching, and research. They also pose hazards that require proper safety precautions.

Sources: Carolina Biological Supply Company. "Laa Safety Dos and Donts for Siudents. ${ }^{\circ}$

 CAROLINA

Identify 5 Safety mistakes in the picture below.

From top left:

1. popping bag (fooling around)
2. not wafting 3. test tube pointing towards
3. plashing water
4. cutting towards
5. long hair not tied
6. eating food
7. not attentive

Skill 3: Identify Lab equipment. Describe one use for each of the following pieces of equipment.

1. BB : heating
2. PT:
3. ED: removing water
4. TT: reacting small amounts of chemicals
5. Beaker: holding chemicals
6. GB: holding water
7. RS: holding glassware
8. UC: hold test tubes on RS
9. IR: hold beakers on RS
10. M \& P: grinding chemicals
11. C \& C:holding hot substances
12. WG: put on ring to make stand
13. SG: eye protection
14. Corks: cover test tubes
15. WG: observe reactions
16. EF: holding chemicals
17. Pipet: measuring small volumes
accurately(volumetric
measures one volume \& graduated measures many volumes)
18. Therm: measuring temperature
19. GC: measuring many large volumes
20. WB: wash glass with water
21. MP: measure small volumes not accurately
22. Dropper: add drops
23. Forceps: pick up objects
24. File: clean metal
25. Wire brush: clean glass
26. Well plate: observe small reactions
27. Scoopula: remove solid chemicals
28. Spatual: scrape out chemicals
29. Funnel: pour liquids into small opening
30. Test tube rack: hold test tubes
31. MISSING: volumetric flask: measure one volume
