Chemistry, The Central Science, 10th edition
 Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chemical Equilibrium

$$
\begin{gathered}
\text { Fast lnitial Step } \\
\text { Step 1: NO }+B r_{2} \rightleftharpoons \mathrm{NOBr}_{2}(\text { fast }) \\
\text { Step 2 : NOBr } 2+N O \rightarrow 2 N O B r \quad(\text { slow })
\end{gathered}
$$

- Because Rate ${ }_{f}=$ Rate $_{r}$,

$$
k_{1}[N O]\left[B r_{2}\right]=k_{-1}\left[N O B r_{2}\right]
$$

Solving for [NOBr_{2}] gives us

$$
\frac{k_{1}}{k_{-1}}[N O]\left[B r_{2}\right]=\left[N O B r_{2}\right]
$$

Can also write as: $\frac{k_{1}}{k_{-1}}=\frac{\left[N O B r_{2}\right]}{[N O]\left[B r_{2}\right]}$

The Concept of Equilibrium

Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.

The Concept of Equilibrium

- As a system approaches equilibrium, both the forward and reverse reactions are occurring.
- At equilibrium, the forward and reverse reactions are proceeding at the same rate.

A System at Equilibrium

Once equilibrium is achieved, the amount of each reactant and product remains constant.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A System at Equilibrium

Rates become equal

Concentrations become constant

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Depicting Equilibrium

In a system at equilibrium, both the forward and reverse reactions are running simultaneously. We write the chemical equation with a double arrow:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

The Equilibrium Constant

The Equilibrium Constant
 $$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Forward reaction:
Reverse reaction:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \quad \mathrm{N}_{2} \mathrm{O}_{4}(g) \leftarrow 2 \mathrm{NO}_{2}(g)
$$

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

Rate law
rate $=k_{f}\left[N_{2} O_{4}\right]$

Rate Law
rate $=k_{r}\left[\mathrm{NO}_{2}\right]^{2}$

The Equilibrium Constant

At equilibrium

$$
\text { rate }_{f}=\text { rate }_{b}
$$

$$
k_{f}\left[N_{2} O_{4}\right]=k_{r}\left[N O_{2}\right]^{2}
$$

Rearranging gives:

$$
\frac{k_{f}}{k_{r}}=\frac{\left[N O_{2}\right]^{2}}{\left[N_{2} O_{4}\right]}
$$

The Equilibrium Constant

The ratio of the rate constants is a constant (as long as T is constant). The expression becomes

$$
K_{e q}=\frac{k_{f}}{k_{r}}=\frac{\left[N O_{2}\right]^{2}}{\left[N_{2} O_{4}\right]}
$$

The Equilibrium Constant

To generalize, the reaction:

$$
a A+b B \rightleftharpoons c C+d D
$$

Has the equilibrium expression:

$$
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

This expression is true even if you don't know the elementary reaction mechanism.

SAMPLE EXERCISE 15.1 Writing Equilibrium-Constant Expressions
Write the equilibrium expression for K_{c} for the following reactions:
(a) $2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})$
(b) $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{NOCl}(g)$
(c) $\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(a q)$
(a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$,
(b) $\mathrm{Cd}^{2+}(a q)+4 \mathrm{Br}^{-}(a q) \rightleftharpoons \mathrm{CdBr}_{4}{ }^{2-}(a q)$.

PRS here...

SAMPLE EXERCISE 15.1 Writing Equilibrium-Constant Expressions

Write the equilibrium expression for K_{c} for the following reactions:
(a) $2 \mathrm{O}_{3}(g) \rightleftharpoons 3 \mathrm{O}_{2}(g)$
(b) $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{NOCl}(g)$
(c) $\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(a q)$

Solution

Analyze: We are given three equations and are asked to write an equilibrium-constant expression for each.
Plan: Using the law of mass action, we write each expression as a quotient having the product concentration terms in the numerator and the reactant concentration terms in the denominator. Each term is raised to the power of its coefficient in the balanced chemical equation.

Solve:

(a) $K_{c}=\frac{\left[\mathrm{O}_{2}\right]^{3}}{\left[\mathrm{O}_{3}\right]^{2}}$, (b) $K_{c}=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}$, (c) $K_{c}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}$

PRACTICE EXERCISE

Write the equilibrium-constant expression, K_{c} for
(a) $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$,
(b) $\mathrm{Cd}^{2+}(a q)+4 \mathrm{Br}^{-}(a q) \rightleftharpoons \mathrm{CdBr}_{4}{ }^{2-}(a q)$.

Answers: (a) $K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]^{\prime}}$; (b) $K_{c}=\frac{\left[\mathrm{CdBr}_{4}{ }^{2-}\right]}{\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{Br}^{-}\right]^{4}}$

Equilibrium Can Be Reached from Either Direction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

Experiment	Initial $\mathbf{N}_{2} \mathbf{O}_{4}$ Concentration (\boldsymbol{M})	Initial $\mathbf{N O}_{2}$ Concentration (\boldsymbol{M})	Equilibrium $\mathbf{N}_{2} \mathbf{O}_{4}$ Concentration (\boldsymbol{M})	Equilibrium $\mathbf{N O}_{\mathbf{2}}$ Concentration (\boldsymbol{M})	$\boldsymbol{K}_{\boldsymbol{c}}$
1	0.0	0.0200	0.00140	0.0172	0.211
2	0.0	0.0300	0.00280	0.0243	0.211
3	0.0	0.0400	0.00452	0.0310	0.213
4	0.0200	0.0	0.00452	0.0310	0.213

K_{c}, the final ratio of $\left[\mathrm{NO}_{2}\right]^{2}$ to $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$, reaches a constant no matter what the initial concentrations of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are (with const T).

$$
K_{e q}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}
$$

Equilibrium Can Be Reached from Either Direction

QuickTime ${ }^{\text {TM }}$ and
TIFF (LZW) decompre: e needed to see this pi

Equilibrium Can Be Reached from Either Direction

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

It does not matter whether we start with N_{2} and H_{2} or whether we start with NH_{3}. We will have the same proportions of all three substances at equilibrium.

What Does the Value of K Mean?

- If $K \gg 1$, the reaction is product-favored; product predominates at equilibrium.
(a) $K \gg 1$

What Does the Value of K Mean?

- If $K \gg 1$, the reaction is product-favored; product predominates at equilibrium.
(a) $K \gg 1$

- If $\mathrm{K} \ll 1$, the reaction is reactant-favored; reactant predominates at equilibrium.
(b) $K \ll 1$

Manipulating Equilibrium Constants

The equilibrium constant of a reaction in the reverse reaction is the reciprocal of the equilibrium constant of the forward reaction.
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad K_{e q}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=0.212$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

$$
K_{e q}^{\prime}=\frac{\left[N_{2} O_{4}\right]}{\left[N O_{2}\right]^{2}}=\frac{1}{0.212}
$$

$$
=4.72
$$

Manipulating Equilibrium Constants

The equilibrium constant of a reaction that has been multiplied by a number is the equilibrium constant raised to a power that is equal to that number.

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad K_{e q}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=0.212 \\
& 2 \mathrm{~N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 4 \mathrm{NO}_{2}(g) \quad K_{e q}^{\prime}=\frac{\left[\mathrm{NO}_{2}\right]^{4}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]^{2}}=(0.212)^{2}
\end{aligned}
$$

Manipulating Equilibrium Constants

The equilibrium constant for a net reaction made up of two or more steps can be found from the equilibrium constants for the individual steps.`
At 1565 K we have these equilibrium constants:

$$
\begin{array}{ll}
2 \mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) & K_{1}=1.6 \times 10^{-11} \\
2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) & K_{2}=1.3 \times 10^{-10} \\
\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \quad K_{3}=?
\end{array}
$$

The Equilibrium Constant

Because pressure is proportional to concentration for gases, the equilibrium expression can also be written in terms of partial pressures (instead of concentration):

$$
\begin{gathered}
a A(g)+b B(g) \rightleftharpoons c C(g)+d D(g) \\
K_{p}=\frac{\left(P_{C}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{A}\right)^{a}\left(P_{B}\right)^{b}}
\end{gathered}
$$

Mixed versions are also used sometimes:

$$
K_{\text {mixed }}=\frac{\left(P_{C}\right)^{c}[D]^{d}}{[A]^{a}\left(P_{B}\right)^{b}}
$$

Relationship between K_{c} and K_{p}

- From the ideal gas law we know that

$$
\begin{aligned}
P V & =n R T \\
P & =\frac{n}{V} R T \quad=\text { Pressure in terms of concentration } \\
P_{A} & =\frac{n_{A}}{V} R T=[A] R T
\end{aligned}
$$

Relationship between K_{c} and K_{p}

Substituting $\mathrm{P}=[\mathrm{A}] \mathrm{RT}$ into the expression for K_{p} for each substance, the relationship between K_{c} and K_{p} becomes

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

Where:
$\Delta n=$ (moles of gaseous product) - (moles of gaseous reactant)
Hint: 'products-reactants' and 'products over reactants' is a common theme in chemistry.

Heterogeneous Equilibrium

The Concentrations of Solids and

 Liquids Are Essentially Constant Concentrations of liquids and solids can be obtained by dividing the density of the substance by its molar mass-and both of these are constants at constant temperature.$$
\frac{\text { density }}{\text { molar mass }}=\frac{g / L}{g / m o l}=\frac{m o l}{L}
$$

The Concentrations of Solids and Liquids Are Essentially Constant

Therefore, the concentrations of solids and liquids do not appear in the equilibrium expression
$\begin{aligned} & \mathrm{PbCl}_{2(s)} \Longrightarrow \mathrm{Pb}^{2+}{ }_{(a q)}+2 \mathrm{Cl}^{-}{ }_{(a q)} \\ & K_{c}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}\end{aligned}$

$\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{CaO}_{(\mathrm{s})}$

As long as some CaCO_{3} or CaO remain in the system, the amount of CO_{2} above the solid will remain the same.

What Are the Equilibrium Expressions for These Equilibria?

$$
\begin{aligned}
& \mathrm{SnO}_{2}(s)+2 \mathrm{CO}(g) \rightleftharpoons \mathrm{Sn}(\mathrm{~s})+2 \mathrm{CO}_{2}(g) \\
& \mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \\
& \mathrm{Zn}(\mathrm{~s})^{+} \mathrm{Cu}^{2+}(a q) \rightleftharpoons \mathrm{Cu}(s)+\mathrm{Zn}^{2+}(a q)
\end{aligned}
$$

The real scoop: units of equilibrium constants

Equilibrium constants are really defined in terms of activity, not concentration.

$$
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \quad \text { becomes: } \quad K_{c}=\frac{a_{C}^{c} a_{D}^{d}}{a_{A}^{a} a_{B}^{b}}
$$

Activity is unitless, so K is unitless.
for pure liquids: $a=1.0$ for pure solids: $a=1.0$
for solutions: $a_{A}=[A] \gamma$
for dilute solutions: $\gamma=1.0 M^{-1}$

Equilibrium
 Calculations

Equilibrium Calculations

A closed system initially containing $1.000 \times 10^{-3} \mathrm{M} \mathrm{H}_{2}$ and $2.000 \times 10^{-3} \mathrm{M} \mathrm{I}_{2}$ At $448^{\circ} \mathrm{C}$ is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is $1.87 \times 10^{-3} \mathrm{M}$. Calculate K_{c} at $448^{\circ} \mathrm{C}$ for the reaction:

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)}
$$

2 HI
(g)

What Do We Know?

ICE method:

	$\left[\mathrm{H}_{2}\right], M$	$\left[\mathrm{I}_{2}\right], M$	$[\mathrm{HI}], M$
Initially	1.000×10^{-3}	2.000×10^{-3}	0
Change			
At Equilibrium			1.87×10^{-3}

[HI] Increases by $1.87 \times 10^{-3} \mathrm{M}$

	$\left[\mathrm{H}_{2}\right], M$	$\left[\mathrm{I}_{2}\right], M$	$[\mathrm{HI}], M$
Initially	1.000×10^{-3}	2.000×10^{-3}	0
Change			$+1.87 \times 10^{-3}$
At equilibrium			1.87×10^{-3}

Stoichiometry tells us $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]$ decrease by half as much

	$\left[\mathrm{H}_{2}\right], M$	$\left[\mathrm{I}_{2}\right], M$	$[\mathrm{HI}], M$
Initially	1.000×10^{-3}	2.000×10^{-3}	0
Change	-9.35×10^{-4}	-9.35×10^{-4}	$+1.87 \times 10^{-3}$
At equilibrium			1.87×10^{-3}

We can now calculate the equilibrium concentrations of all three compounds...

	$\left[\mathrm{H}_{2}\right], M$	$\left[\mathrm{I}_{2}\right], M$	$[\mathrm{HI}], M$
Initially	1.000×10^{-3}	2.000×10^{-3}	0
Change	-9.35×10^{-4}	-9.35×10^{-4}	$+1.87 \times 10^{-3}$
At equilibrium	6.5×10^{-5}	1.065×10^{-3}	1.87×10^{-3}

...and, therefore, the equilibrium constant

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
& =\frac{\left(1.87 \times 10^{-3}\right)^{2}}{\left(6.5 \times 10^{-5}\right)\left(1.065 \times 10^{-3}\right)} \\
& =51
\end{aligned}
$$

The Reaction Quotient (Q)

- To calculate Q, one substitutes the initial concentrations on reactants and products into the equilibrium expression.
- Q gives the same ratio the equilibrium expression gives, but for a system that is not at equilibrium.

$$
\text { If } Q=K \text {, }
$$

the system is at equilibrium.

If $Q>K$,
 there is too much product and the equilibrium shifts to the left.

$\begin{array}{lll}\text { Reaction } & \begin{array}{l}\text { Equilib- } \\ \text { forms }\end{array} & \begin{array}{l}\text { Reaction } \\ \text { fium } \\ \text { forms }\end{array} \\ \text { products } & & \text { reactants }\end{array}$

If $Q<K$,
 there is too much reactant, and the equilibrium shifts to the right.

Reaction Equilib- Reaction
forms rium forms products

Equilibrium

Le Châtelier's

 Principle

 Principle}

Le Châtelier's Principle

"If a system at equilibrium is disturbed by a change in temperature, pressure, or the concentration of one of the components, the system will shift its equilibrium position so as to counteract the effect of the disturbance."

Systems shift from "Q" towards "K".

What Happens When More of a Reactant Is Added to a System?

() The pictures below represent the system $A+B \rightleftarrows A B$ at eqilibrium. A molecules are represented as red, B molecules are represented as blue. Click Add more A button to stress the equilibrium.

Add more A

The Haber Process

The transformation of nitrogen and hydrogen into ammonia $\left(\mathrm{NH}_{3}\right)$ is of tremendous significance in agriculture, where ammonia-based fertilizers are of utmost importance.

The Haber Process

If H_{2} is added to the system, N_{2} will be consumed and the two reagents will form more NH_{3}.

The Haber Process

> This apparatus helps push the equilibrium to the right by removing the ammonia $\left(\mathrm{NH}_{3}\right)$ from the system as a liquid.

The Effect of Changes in Pressure

The Effect of Changes in Temperature

$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}{ }_{(a q)}+4 \mathrm{Cl}_{(a q)} \rightleftharpoons \mathrm{CoCl}_{4(a q)}+6 \mathrm{H}_{2} \mathrm{O}$

The Effect of Changes in Temperature

Catalysts increase the rate of both the forward and reverse reactions.

Reaction pathway

Equilibrium is achieved faster, but the

 equilibrium composition remains unaltered.

Reaction pathway
© Fill in the missing partial pressures and determine the value of the equilibrium constant for the reaction.

	$\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftarrows 2 \mathrm{C}(\mathrm{g})$		
Initial P (atm)	1.00	B	C
Change in P (atm)	\square	$\square .00$	0.00
Equilibrium P (atm)	\square	1.58	\square

