Name:	Period:	Due Date: 1-18-2019	/ 100 Formative pts
-------	---------	---------------------	---------------------

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes

Topic-1: review

- 1. Valence electrons
- 2. Lewis dot structures
- 3. Electronegativity
- 4. Cations and Anions
- 5. Octet Rule

Topic-2: Chemical Bonds

- 1. Ionic Bonds
- 2. Covalent bonds
- 3. Metallic bonds

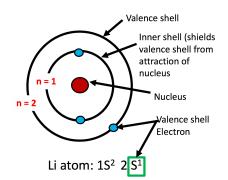
Topic-3: Inter-molecular Chemical Bonds

- 1. Van der Waalls attractions
- 2. Hydrogen bonds
- 3. Dipole-dipole bond

Topic-1: Review:

1. Valence electrons:

• The electrons in the outermost


____ of an atom

• Valence electrons are _____orduring chemical

reactions

 The _____ of valence electrons are directly responsible for the chemical properties and reactivity of elements

 Periodic-Table-Groups are based on electron numbers

2. Electron (Lewis) dot structures:

Lewis dot structures are _____ that show _____electrons of atoms.

Table-1: Lewis dot structures of atoms:

	Atomic number	Element	Electron configuration	# of Valence Electrons	Electron dot diagram
Period-1	1	Н	<u>1s¹</u>	1	H
Energy level: n=1 Sub-levels: s	2	He	<u>1s²</u>	2	••
	3	Li	1s ² 2s ¹	1	
Period-2	4	Ве			
Energy level: n=2	5	В			
Sub-levels: s.p	6	C			
	7	N			
	8	0			
	9	F			
	10	Ne			
Period-3	11	Na			
Energy level: n=3 Sub-levels: <u>s,p,d</u>	12	Mg			

3. Electron	egativity											
• Ele	ectronegativit	y occurs when a	one atom tha	at	electro	ons witl	h anot	her is	more	attrac	ted to	these
		o its higher electro										
		ne electr										
	general, the $\mathfrak e$	electronegativity	of an elemen	nt	as o	ne goes	s up a į	group	and le	eft to i	right a	cross a
• No	te that Noble	e gases (group 8A)) are not elec	ctronegative)								
Example: In	group 7A: El	ectronegativity		in the order: I	< Br < 0	Cl < F.						
Ir	n period 2: Li	has the lowest an	dh	as the highest	electro	negativ	√ity					
ATOM A (Weak Pull)			ATOM B (higher electors) Strong pull	ctron affinity				negativ	-	s		
(Weak Pull)							period	ic table:				
6	<u></u>	-e-e										
							F = mos	t electro	negativ	e		
							Fr = leas		_			
		alence electror					11 - 0 -	.l.:41	`			
Atomic number	Symbol of noble	Electron c	configuration	n (underline t	ne vaie	ence sr	ieli Or	Ditais)		umbe Valen	
Hullibel	gas										electro	
10	Ne										, icotire	7110
	Ar											
36												
	Xe											
86												
_		alance electrons a	_					_S (and	1)	are co	ompletely
filled with e	electrons. This	is the reason for	the Non-rea	ctivity and sta	bility of	noble (gases.					
4 Cations	and aniona	(avidation numb	oro):									
		(oxidation numb nd to form										_
-	rons to comp		Бу	Oxic	dation	Electron d	onators	+4	Elec	tron takers		
	-	m	taking	nur	nber: +1		+3	-4	-3			0 8A
-	complete o		. 0		¹ H							² He
						2A	3A	4A	5A	6A	7A	
					³ Li	⁴ Be	⁵ B	⁶ C	⁷ N	⁸ O	⁹ F	¹⁰ Ne
					¹¹ Na	12 Mg	13 Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
					¹⁹ K	²⁰ Ca		²² Ge	²³ As	²⁴ Se	²⁵ Br	²⁶ Kr
							1					
E Ootot D	ulo:					(d-block has b	een omitted	i			
5. Octet-R		ig to get e	Jactrone in t	their outer ch	all (nri	ncinal (anara	עפן ע	I) to h	م انادہ	the	
	, ,	he periodic table			٠.		•		,			lv verv
		(except and			g = 0.0	330	001		(9	300	.,
		heir desired no		ctron config	uratio	n base	ed on	ОСТ	ET-RI	JLE		
Flemer	ot Nu	mher of valence	n Dec	sired noble as	as elec	tron co	nfigur	ation	hase	d on i	OCT	-T_

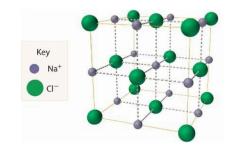
Element	Number of valence electrons	Desired noble gas electron configuration based on OCTET-RULE:
Na		
Mg		
С		
N		
CI		

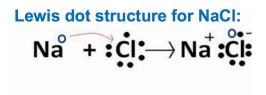
Name:	Period:	Date: 1-11-2019
inailie.	i eliou.	Date. 1-11-2013

Topic-2: Bonds that Occur Between Atoms (Ionic, Metallic and Covalent Bonds)

1. Ionic Bonds:

- lons with _____ charges are mutually attracted to each other.
- Attractions between oppositely charged ions are called ______ attractions.
- **lonic bonds** are electrostatic attractions that occur between ions with opposite charge.
- Ionic bonds always occur between _______ ions (cations) and metal ions (anions).
- All ionic compounds are ______ because their total _____ and total negative charges add up to zero.
- Ionic compounds arrange in a _____ called a _____ (like a lattice pie!)
- The energy needed to break this lattice is called _______
- When the lattice is broken, the ions will become atoms with zero charge and the ionic bonds will be broken.


Properties of Ionic compounds


- Form **crystalline solids** at room temperature
- Generally have high _____ points
- When dissolved in water, can conduct _____ and form _____.

Questions:

- a. What is an electric current?
- b. Why do ionic compounds conduct electricity?

Ex: Write the net ionic equation for the formation of Na⁺ and Cl⁻ ions:

Na – 1e⁻ → Na⁺ + 1e⁻ (1 electron donated by sodium)

Cl + 1e⁻ → Cl⁻ (Sodium electron accepted by Cl)

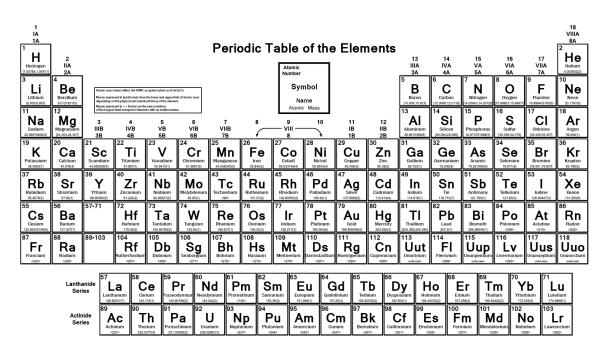
- Na is in group 1A = donate the valence electron 1 e -
- Cl is in Group 7A = accept this valence 1 e -
- So, when Na and Cl atoms form a chemical bond, Na will donate an electron to Cl.
- Na donates 1 electron and become an Na⁺ ion and Cl will accept 1 electron and become a Cl⁻ ion

Crisscross-method of predicting Ionic compound formulas:

- **Step-2**: Find out the number of valence electrons for each atom and the Charges made when they ionize (become ions). Ex: +2 or -1 etc. Write the Charge above the atoms (super-scrips): ______
- Step-3: Now swap the charges as shown by the arrows:
- Step-4: Then write the swapped ionic-charges as coefficient in front of the Ion:

Note: Ones are not shown when writing formulas:

This means, one CI-ion combines with 3 AI-ions in the ionic compound. This will become clear to you once your draw the Lewis dot structures of the atoms and the compound.


valence electrons to donate, electrons and complete their er 1-28-19 will NOT be graded) e: Due date 1-14-19 7s 4f 6d 7p
: Due date 1-14-19
7s 4f 6d 7p
would you use? The group)
etal ions tend to gain electrons
ons LOST when these metals
gram

Ar	a. 1S ²
Ca ²⁺	
Cl	b. $1S^2 2S^2 2p^6$
Li+	
Se ²⁻	c. $1S^2 2S^2 2p^6 3S^2 3p^6$
Не	
Ne	d. $1S^2 2S^2 2p^6 3S^2 3p^6 3d^{10} 4S^2 4p^6$
	ams of the following:
Ar	
Cl	
Li [⁺]	
Не	
Al ³⁺	
an ionic bond:	ionic compounds?
an ionic bond: e the properties of	ionic compounds?
an ionic bond: e the properties of	ionic compounds? e ionic compounds formed by the atoms below:
an ionic bond:e the properties of the formulas of the	e ionic compounds formed by the atoms below:
an ionic bond:e the properties of the formulas of the Na and Cl	e ionic compounds formed by the atoms below:
e the properties of the formulas of the Na and CI	e ionic compounds formed by the atoms below:
e the properties of the formulas of th Na and CI Na and S Na and P	e ionic compounds formed by the atoms below:
an ionic bond:e the properties of the formulas of the Na and CINa and PNa and CNa and C	e ionic compounds formed by the atoms below:
an ionic bond: e the properties of the formulas of th Na and CI Na and P Na and C Na and C Ma and C Mg and CI	e ionic compounds formed by the atoms below:
an ionic bond:e the properties of the formulas of the Na and ClNa and PNa and CMg and ClMg and S	e ionic compounds formed by the atoms below:
	Ca ²⁺ Cl ⁻ Li+ Se ²⁻ He Ne orbital box diagra Ar Cl ⁻ Li ⁺ He

9. Match the correct noble gas or ion with the electron configurations below using arrows:

10)	Al and S_	

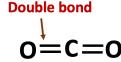
- 11) Al and P_____
- 12) Al and C_____
- 13) C and Cl _____
- 14) C and S _____
- 15) C and P_____
- 16) Mg and C_____
- 17) Potassium and Oxygen: _____
- 18) Magnesium and Nitrogen:_____

© 2013 Todd Helmenstine chemistry.about.com

Ch	7 and 8 notes contd. Name:		Period:	Date: 1-15-2019		
2.	Metallic Bonds					
	What is a metallic bond? The at between metal cations and the su sea of delocalized valence electrometallic bond.	rrounding	Metal atom	ic structure:		
	Physical Properties of Metals:		(+)(+)(+)(+)		
•	Metals form cub crystals Metals are good con they have readily mobile electron produce a current Theelectron mobiling why metals are (I into shapes) and into wires).	nductors as is to ty is also nammered	Positively charge Inside metals, positive a of delocation	alized valence electron (mobile ed ions- held in a rigid lattice ely charged ions (cations) swin alized valence electrons. These by all neighboring atoms around.	n in e	
	Metal Alloys: Vhat is a metal Alloy?					
(Metal alloys can be of two type 1. Substitution alloy = are of a former metal atom 2. Interstitial alloy: made atom that is in the Examples of alloys: 1: Cu + Tin + 2.Cast iron: Fe ++ Si 3.Steel: Fe + 2: Why is steel stronger than cast in	nother metal atom of (made up of 2 or mup of metal atoms ————————————————————————————————————	ore metals) and another metal atoms. g silver,			
3	. Covalent Bonds [c	o-valent = s	hared- vale	nce]		
	of the atoms within. • In covalent bonds, electr so that each can obtain the second s	ons are usually shather ons are usually sha	molecules are forn ared between 2 or ron configuration.	more atc	ding	
	 There can be single, double or triple covalent bonds between two atoms Based on the values of each atom in a covalent bond, the resulting molecule may have a dipole (polarity) based on negative and positive charged regions of the same molecule. [Polarity is explained with the symbol 'delta' = or Covalent bonds and ionic bonds exist in a (continuum) going from zero to extreme electronegativity. 					

Physical Properties of covalent molecules:

- Bond strength varies depending on type of bond and atoms involved in bonding
- Can be found in Solid, liquid or gas state depending on the compound
- Poor electrical conductors (as they do not have readily mobile electrons to produce a current)
- · Can be colorless or have colors
- · Low melting point and boiling point
- Do not conduct heat well


Τv	nes	of	cova	lent	bon	ids:
	\mathbf{p}	v	COVU	10116	201	ıus.

- Single bonds [formed by sharing __ electron-pair = ___ electrons between 2 atoms]
- 2. Double bonds [formed by sharing __ electron-pairs = ___electrons between 2 atoms]
- 3. Triple bonds [formed by sharing _____electron-pair = ____ electrons between 2 atoms]

Note:

- Each bond is represented as a straight _____. A single bond will have _____ line, double will have 2 lines and a triple bond will have _____ lines.
- ______ bonds are the strongest and single bonds are the weakest and _____ to break.
- Bond distance is shortest in triple bonds and longest in single bonds. See figure below:

Draw the Lewis dot structures of the following covalent compounds/molecules:

- 1. HCL
- 2. CO₂ (carbon dioxide)
- 3. N₂ (nitrogen gas)
- 4. H₂ (hydrogen gas)
- 5. O₂ oxygen gas
- 6. H₂O (Water)

Sale of valence electron sharing in covalent bonds:

		in
electronegativity		electronegativity
Equal sharing		Unequal sharing
Non-polar Covalent	Polar Covalent	lonic
bonds	bonds	bonds

Polar covalent bonds	
Ex: water molecule	

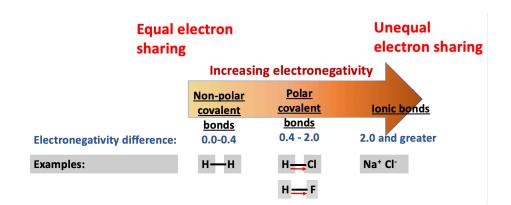
 H_2O

- Oxygen is much more _____ than Hydrogen, so Oxygen pulls the shared electrons towards itself
 This greater electronegativity of oxygen compared to hydrogen in the covalent bonds of water molecules result in a _____ or polarity. The result is a shifting of the electron density towards Oxygen.
- H gets a small positive charge Delta + (____) and Oxygen gets a _____ charge (____) as electrons are less equally shared between O and H.

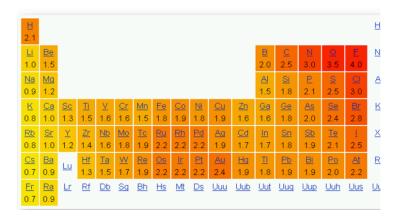
Non-polar covalent bonds:

Ex: N₂

- If a molecule if formed by the same kind of atom or atoms with similar electronegativity then the covalent bond is _____ (Ex: O₂, N₂, Cl₂, O₃, Br₂)
- Carbon and _____ makes non polar covalent molecules such as hydrocarbons (CH₄, C₂H₆, C₃H₈ and so on.)


Draw C₂H₈

Co-ordinate Covalent bonds:


In typical covalent bond, each atom in the bond provides an electron for a single bond. But in coordinate covalent bonds this is not the case. Here, one atom contributes both of the shared electrons for one covalent bond.

Q: How are covalent compounds (molecules) different from Ionic compounds?

Electronegativity difference and Bond-Types:

Periodic Table of Electronegativities

Calculate the electronegativity of

- 1. F:____
- 2. H:____
- 3. C:_____ 4. H-F:
- 5. C-C:
- 6. C-H:____

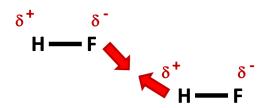

Properties of chemical bonds:

	Property	Meaning		
1	Bond Length	Distance between the nuclei of bonded atoms (unit = picometers =pm)		
2	Bond angle	Angles of any two bonds around an		
3	Bond energy (bond dissociation energy)	Energy required to break a bond. (unit = Kilo per mole = KJ/mol)		

Bond	Length	Energy	Compound		0	energy (kJ/mol)
C - C C = C		348 614	H ₂	H – H	74	436
$C \cong C$		839		F – H O – H	92 96	565 464
0-0 0=0		145 498	3	N – H C – H	101 109	389 414

^{**}Bond length decreases when number of bonds increase

Periodic Table of Electronegativities

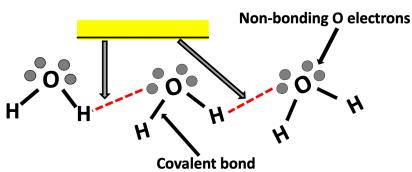

^{**}Bond Strength increases when number of bonds increase

Topic 3: INTER-MOLECULAR BONDS

1. Dipole-Dipole bonds (attractions)

When two polar molecules get near each other, the positive end (δ^+) of one attracts the negative (δ^-) end of the other. This attraction between the two dipoles is known as a dipole-dipole bond

Ex: HF



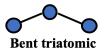
- Because F is very _______, it pulls the shared electrons towards it causing a partial negative charge. This leads to a partial positive charge on the side of H leading to a dipole (opposite charges) in the atom.
- Between HF molecules, the _____ charged ends attract as shown in thick arrows. These are called dipole-dipole attractions.

2. Hydrogen bonds:

Hydrogen bonds: formed between non-bonding electrons of O, N, F atoms of one molecule and atoms of another molecule

Ex: Water molecules

- 3. Van der Waal's attractions

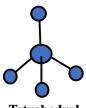

 - So, ____ compounds have these!

Topic 4: MOLECULAR GEOMETRY

VSPR: <u>Valence-Shell Electron Pair Repulsion theory:</u>

Repulsion between _____ ___ electron pairs cause molecular shapes to change so that valence electron pairs repel each bother and want to stay as far apart as possible.

Two bonds



180° Linear triatomic Three bonds

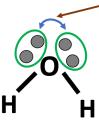
Trigonal planar

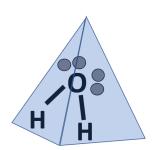
Four bonds

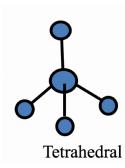
Square planar

Five bonds

Trigonal bipyramidal Six bonds




Octahedral


Example: Water molecule:

Repulsion between _____ electrons also effect 3D molecular shapes: Ex. H₂O In water, the two lone pair electron repulsion and the electron clouds of these electron pairs cause the molecule to have a _____rather than a triatomic shape.

Repulsive force between unpaired electrons

1-18-2019 (HW2) HOME WORK QUESTIONS Due date: 1-22-19 (will NOT be graded 2 weeks post due date)

- 1. How are covalent compounds (molecules) different from Ionic compounds?
- 2. What is the molecular geometries of the following molecules?
 - a. H₂O
 - b. CO₂
 - c. NH₃
- 3. Draw the Lewis dot structures of the following compounds:

Name	Chemical formula		
Hydrogen peroxide	H ₂ O ₂		
Hydrochloric acid	нсі		
Sulfur trioxide	SO ₃		
Hydrogen cyanide	HCN		
Nitrous Oxide	N ₂ O		
Nitrogen dioxide	NO ₂		
Ethane	C ₂ H ₂		

- 4. Explain why all molecules have van der Waals forces:
- 5. Consider the following molecule:

- a. What are the chemical bonds formed between atoms in the following molecule?
- b. Which types of the chemical bonds formed between these molecules? Draw the two molecules and indicate bonds with arrows
- c. What are chemical bonds formed between these molecules and H-Br molecules? Draw the two molecules and indicate bonds with arrows