Chemistry Monday, April 23rd – Tuesday, April 24th, 2018

Do-Now: "Ch. 16 CN Part A"

- 1. Write down today's FLT
- 2. Spontaneity of a rxn is determined by and ____.
- 3. The universe tends towards _______enthalpy and ______entropy.
- 4. What is Gibbs Free Energy?
- 5. What is the equation for Gibbs Free Energy?
- 6. ΔG is always spontaneous (or -) when and _____.

7. Take out your planner and ToC

FLT

 I will be able to describe the properties of acids and bases of a reaction by completing Ch. 16 Notes Part A

Standard

HS-PS1-1: Properties of Elements HS-ESS2-5: Properties of Water HS-ESS3-4: Human Impacts

Ch. 16: Acid-Base Theories

Introduction

Introduction

- lons to know:
 -OH⁻ = Hydroxide lon
 -H⁺ = Hydrogen lon = proton
 -H₃O⁺ = Hydronium lon
 H₃O⁺ and H⁺ are often used interchangeably
- in water because $H_2O + H^+ \leftarrow \rightarrow H_3O^+$

Acids and Bases

Acids and Bases

- What is an acid?
- What is a base?
 - -Both are necessary for life
 - Can be found in common substances, from sodas to soaps

• "Acid" \rightarrow Latin word acidus, for sour

Acids = Increase [H⁺] in water

Properties of Acids: –Taste <u>sour</u>

- Properties of Acids:
 - Electrolytes (conduct electricity)
 - May be a strong or weak electrolyte, depending on the acid

Properties of Acids:
 <u>– React w/ metals to form H₂ gas</u>

$\text{HCl}_{(\text{aq})} + \text{Mg}_{(\text{s})} \rightarrow \text{MgCl}_{2(\text{aq})} + \text{H}_{2(\text{g})}$

- Properties of Acids:
 Changes the color of indicators
 - Ex/ Blue litmus turns red

Acids Properties of Acids: -Neutralization: react w/ bases to form $H_2O + a salt$ Acid Base Salt + Water \rightarrow + $2HCI_{(aq)} + Mg(OH)_{2(s)} \rightarrow$ $MgCl_{2(aq)} + H_2O_{(l)}$

Properties of Acids: – Have a pH < 7

- Properties of Acids:
 - React with carbonates and bicarbonates to produce a salt, water, and carbon dioxide gas

- How do you know if a chemical is an acid?
 Usually (not always) starts with hydrogen
 - -Examples of acids:
 - -HCI (monoprotic)
 - -H₂SO₄ (diprotic)
 - -H₃PO₄ (triprotic)

Effects of Acid Rain on Marble

(marble is calcium carbonate)

George Washington: BEFORE acid rain George Washington: AFTER acid rain

Acids *Neutralize* Bases HCI + NaOH \rightarrow NaCI + H₂O

-Neutralization reactions ALWAYS produce a salt (which is an *ionic compound*) and water.

-Of course, it takes the *right proportion* of acid and base to produce a neutral salt

Pair-Share-Respond **1. Describe four properties of acids** 2. What does a neutralization reaction always produce? **3. Distinguish between the terms** monoprotic and diprotic 4. What are two names for H⁺?

Naming Acids

Naming Acids

- **Binary Acids** (hydrogen + another element)
- Named as hydro_____ic acid
- Ex/
- HF = hydro*fluor*ic acid
- $H_2S = hydrosulfuric acid$
- What would be the names of...
 - -HBr?
 - $-H_3P?$
 - -HCI?

Naming Acids

- Oxyacids (contain a polyatomic ion)
- IF the polyatomic ion ends in -ate, then...
 - _____ic acid (no hydro)
- Ex/

- $HNO_3 = nitric$ acid
- H_2SO_4 = sulfuric acid
- What would be the names of...

$$-H_2CO_3?$$

$$-H_3PO_4?$$

"Alkali" → Arabic for the ashes that come from burning certain plants

Bases = increases [OH⁻] in water

Bronsted-Lowry Acid-Base Reaction

Properties of Bases: Taste <u>bitter</u> and feel <u>slippery</u>

- -<u>Change the</u> <u>color of</u> <u>indicators</u>
- -Ex/Red litmus turns blue

Red litmus paper turns blue in contact with a base (and blue paper stays blue).

Bases

- Properties of Bases:
 - May be a strong or weak <u>electrolyte</u> in solution

Bases							
 Properties of Bases: Neutralization - react with acids to form 							
water and a salt							
Acid	+	Base	\rightarrow	<u>Salt</u>	+	<u>Water</u>	
2HCl _{(a}	$2\text{HCl}_{(aq)} + \text{Mg}(OH)_{2(s)} \rightarrow \uparrow$				MgCl _{2(aq)} + H ₂ O _(I)		

Properties of Bases: –Have a pH > 7

- How do you know if a chemical is a base?
 Usually (not always) ends with OH⁻
 - -Examples of bases:
 - -NaOH
 - -Ca(OH)₂
 - $-NH_3$

Bases Neutralize Acids

Milk of Magnesia contains magnesium hydroxide, Mg(OH)₂, which neutralizes stomach acid, HCI.

> 2 HCl + Mg(OH)₂ \downarrow MgCl₂ + 2 H₂O

Magnesium salts can cause diarrhea (thus they are used as a laxative) and may also cause kidney stones.

Three Definitions of Acids-Bases (Three Theories)
Three Acid-Base Theories

- Arrhenius
- Brønsted-Lowry
- Lewis

Arrhenius Acid-Base Theory

Arrhenius Acid-Base Theory Arrhenius Acid = Donates H⁺ in water Arrhenius Base = Donates OH⁻ in water

(Increases the concentration of ions in water)

Arrhenius Acid-Base Theory

- Arrhenius Acid = Donates H⁺ in water
- Arrhenius Base = Donates OH⁻ in water

+ (OH)⁻ →Na+ NaOH

Arrhenius Acid-Base Theory

 What about substances that still are acidic/ basic, but don't do this?

Brønsted-Lowry Acid-Base Theory

Brønsted-Lowry Acid-Base Theory

Brønsted-Lowry Acid: Donates a proton (H⁺)
 Brønsted-Lowry Base: Accepts a proton (H⁺)

$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$

Brønsted-Lowry Acid-Base Theory

Typically the most accepted theory

Lewis Acid-Base Theory

Lewis Acid-Base Theory

- Lewis Acid = Accepts an e⁻ pair
- Lewis Base = Donates an e⁻ pair

Lewis Acid-Base Theory

• Useful with organic chemistry

Sample ProblemsWhich is the acid? Base?

$HPO_4^{2-} + NH_4^+ \rightarrow H_2PO_4^- + NH_3$

Sample ProblemsWhich is the acid? Base?

$HCI + H_2O \rightarrow CI^{-1} + H_3O^{+1}$

Sample Problems What will form when the following donate (or lose) a proton?

- HCl
- H₂O
- HNO₃

Sample Problems What will form when the following accept (or gain) a proton?

• H₂O

Br⁻

- NO₃⁻
- SO₃²⁻

Pair-Share-Respond 1. What is the name of HCI? 2. What is the name of HClO₃? **3. Describe three properties of bases 4.List three acid-base theories 5. Distinguish between an Arrhenius** base and a Brønsted-Lowry Base

Chemistry Wednesday, April 25th – Thursday, April 26th, 2018

Do-Now: "Ch. 16 CN Part B"

- 1. Write down today's FLT
- 2. List two properties of acids.
- 3. List two properties of bases.
- 4. How do the definitions of Arrhenius acidbases differ from Brønsted-Lowry definitions?
- 5. Copy the equation: HBr + $H_2O \rightarrow Br^- + H_3O^+$

6. Draw arrows between your reactants and products to determine which molecule is your acid, and which is your base.

7. Take out your planner and ToC

Brainstorm Protocol

FLT

 I will be able to calculate the pH and pOH of a solution given concentrations by completing Ch. 16 CN Part B

Standard

HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known

Ch. 16: The pH Scale

Recall

Recall

- Acids increase [H⁺] in water
- Bases increase [OH-] in water

Recall

- Acids have a LOW pH
- Bases have a HIGH pH

- pH is a measure of how acidic or basic a solution is
- pH = measurement of [H⁺]
- pH \rightarrow potential of Hydrogen

 pH can be approximated using indicators (such as litmus paper) or measured accurately using a pH meter.

The pH Scale <u>The pH scale ranges from 0 to 14</u>

- A soln' with a pH =7 is neutral
- Pure water is neutral
- Is tap water neutral?

- <u>A soln' with a pH < 7 is acidic</u>
- pH of orange juice is ~ 3.3
- pH of lemon juice is ~2
- Which is more acidic?

The lower the pH, the more acidic the soln' is

- <u>A soln' with a pH > 7 is basic</u>
- pH of baking soda solution ~8.4
- pH of toothpaste ~10
- Which is more basic?

The higher the pH, the more basic the soln' is

- <u>A change of 1 pH is equivalent to a 10x</u> increase/decrease in acidity
- Ex/ pH 1 is ten times as acidic as pH 2
- Ex/ pH 0 is 10 x 10 = 100 times as acidic as pH 2

Calculating pH and pOH
Calculating pH and pOH • Formula given pH/pOH: pH + pOH = 14

Example 1

- What is the pOH of a solution if the pH is 5?
- Is the solution acidic or basic?

Ex. 2

- What is the pH of a solution if the pOH is 3.5?
- Is the solution acidic or basic?

Calculating pH and pOH Formulas given concentration: $pH = -log[H^+]$ $pOH = -log[OH^{-}]$

- What is the pH of a solution if the [H⁺] is 1 x 10⁻⁶ M?
- Is the solution acidic or basic?

- What is the pH of a solution if the [H⁺] is 4 x 10⁻¹⁰ M?
- Is the solution acidic or basic?

- What is the pH of a solution if the [OH⁻] is 4 x 10⁻¹¹ M?
- Is the solution acidic or basic?

- What is the pH of a solution if the [OH⁻] is 4.3 x 10⁻⁵ M?
- Is the solution acidic or basic?

Calculating pH and pOH • Formulas given pH or pOH: [H⁺] = 10^{-pH} [OH⁻] = 10^{-pOH}

 What is the [H⁺] of a solution with a pH of 5.2.

 What is the [OH⁻] of a solution with a pOH of 8.8.

Chemistry Wednesday, April 25th – Thursday, April 26th, 2018

Do-Now: "BrainPOP: Acids & Bases" 1. Write down today's FLT 2. The pH scale ranges from to 3. Which is more acidic: pH 3 or pH 6? 4. Which is more basic: pH 3 or pH 6? 5. If you have a pH of 3, what is your pOH? 6. What is the pH of a solution if the [H⁺] is $1.5 \times 10^{-6} \text{ M}$? Show all steps. 7. Take out your planner and ToC

BrainPOP: Acids & Bases Watch the BrainPOP video After the video, answer the questions in your group – every member must copy down the same answer The group with the most correct answers \rightarrow +5 dojo points each

https://www.brainpop.com/science/matterandchemistry/acidsandbases/

FLT

 I will be able to define strong acids and weak acids & define the products of an acid-base reaction by completing Ch. 16 CN part C

Standard

HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known

Ch. 16: Acid/Base Strength & Neutralization

- The pH scale ranges from 0-14
- What's more acidic?
- What's more basic?

- Brønsted-Lowry acids:
 - Donate H⁺ in water
- Brønsted-Lowry bases:
 - -Accept H⁺ in water

- Acids and bases are electrolytes
- This means that they dissociate into ions in water

• What if they only dissociate a little bit?

Electrolytes and Nonelectrolytes

- Weak electrolytes = only partially ionize
 Weak electrolytes have only a fraction of the solute that exists as ions (about 1%)
 - Weak acids and bases; ammonia, acetic acid

 Acids are classified as strong or weak depending on the degree to which they ionize in water

Strong acids = completely ionize in water
Ex/ HCI, HNO₃, H₂SO₄

$\begin{array}{c} \mathsf{HCI}_{(g)} + \mathsf{H2O}_{(I)} \xrightarrow{} \mathsf{H3O}_{(aq)}^{+} + \mathsf{CI}_{(aq)} \\ & 100\% \text{ ionized} \end{array}$

Acid/Base Strength • <u>Weak Acids = ionize only slightly in water.</u> • <u>Ex/ Ethanoic (acetic) acid</u> $CH_3COOH_{(aq)} + H_2O_{(l)} \leftarrow H_3O^+_{(aq)} + CH_3COO^-_{(aq)}$

Table 19.6

Relative Strengths of Common Acids and Bases

Substance	Formula	Relative Strength
Hydrochloric acid	нсі)	Strong Acid
Nitric acid	HNO ₃	
Sulfuric acid	H₂SO₄ Ĵ	ació
Phosphoric acid	H ₃ PO ₄	th of
Ethanoic acid	CH₃COOH	angt
Carbonic acid	H ₂ CO ₃	stre _
Hypochlorous acid	HCIO	Neutral Solution
Neutral Solution		D _
Ammonia	NH ₃	asin ase
Sodium silicate	Na ₂ SiO ₃	of b
Calcium hydroxide	Ca(OH) ₂	,
Sodium hydroxide	NaOH >	Strong Base
Potassium hydroxide	кон Ј	

 Bases are also classified as strong or weak depending on the degree to which they ionize in water

- Weak Bases = Produce a small amount of OH⁻ in water
- Ex/ Ammonia (NH₃)

 $NH_{3(aq)} + H_2O_{(I)} \leftrightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$ 99% NH₃ still present, ~1% ionized

Conjugate Acids & Bases

The Brønsted-Lowry Definition
We can label our acid-base reactions using proton-transfer

Conjugate Acids & Bases

In this equation, what is the acid? What is the base?

Conjugate Acids & Bases

- Note: This is a reversible reaction. The back reaction is also an acid-base reaction.
- Which is the acid and which is the base?

Conjugate Acids & Bases Conjugate Acid = formed when a base gains H⁺

Conjugate Acids & Bases Conjugate Base = formed when an acid loses H⁺

The Brønsted-Lowry Definition
We can label our acid-base reactions using proton-transfer

Try This:

• In the equation below, label the acid, base, conjugate acid, and conjugate base.

Donated (Lost) H⁺

• Amphoteric substances = act as both an acid or a base $NH_3 + H_2O \leftrightarrow NH_4^{1+} + OH^{1-}$ base acid $HCI + H_2O \leftrightarrow H_3O^{1+} + CI^{1-}$ acid base c.a. c.b.

 <u>Neutralization Reaction</u> - a reaction in which an acid and a base react in an aqueous solution to produce a salt and water:

 $\begin{aligned} & \text{HCl}_{(aq)} + \text{NaOH}_{(aq)} \rightarrow \text{NaCl}_{(aq)} + \text{H}_2\text{O}_{(l)} \\ & \text{H}_2\text{SO}_{4(aq)} + 2\text{KOH}_{(aq)} \rightarrow \text{K}_2\text{SO}_{4(aq)} + 2\text{H}_2\text{O}_{(l)} \\ & -\text{Table 19.9, page 613 lists some salts} \end{aligned}$

- Acid + Base \rightarrow Water + Salt
- Properties related to every day:
 - -antacids depend on neutralization
 - -farmers adjust the soil pH
 - -formation of cave stalactites
 - –human body kidney stones from insoluble salts

Pair-Share-Respond **1.Distinguish between strong and weak** acids

- 2. Distinguish between strong and weak bases
- 3.What are conjugate acids?
- 4. What are conjugate bases?
- 5. How can you determine if your conjugate acid/base is strong or weak?