Chemistry

Monday, April 23rd - Tuesday, April 24th, 2018

Do-Now: "Ch. 16 CN Part A"

1. Write down today's FLT
2. Spontaneity of a rxn is determined by and \qquad
3. The universe tends towards enthalpy and entropy.
4. What is Gibbs Free Energy?
5. What is the equation for Gibbs Free Energy?
6. $\Delta \mathrm{G}$ is always spontaneous (or -) when and
7. Take out your planner and ToC

FLT

- I will be able to describe the properties of acids and bases of a reaction by completing Ch. I 6 Notes Part A

Standard

HS-PS1-1: Properties of Elements
HS-ESS2-5: Properties of Water
HS-ESS3-4: Human Impacts

Ch. 16: Acid-Base Theories

Introduction

Introduction

- lons to know:
-OH- = Hydroxide lon
$-\mathrm{H}^{+}=$Hydrogen lon = proton
$-\mathrm{H}_{3} \mathrm{O}^{+}=$Hydronium lon
- $\mathrm{H}_{3} \mathrm{O}^{+}$and H^{+}are often used interchangeably in water because $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \longleftrightarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$

Acids and Bases

Acids and Bases

-What is an acid?
-What is a base?
-Both are necessary for life
-Can be found in common substances, from sodas to soaps

Acids

Acids

- "Acid" \rightarrow Latin word acidus, for sour

Acids

- Acids = Increase $\left[\mathrm{H}^{+}\right]$in water

Strong acids completely dissociate in water

Acids

- Properties of Acids:
-Taste sour

Acids

- Properties of Acids:
-Electrolytes (conduct electricity)
- May be a strong or weak electrolyte, depending on the acid

> | Each HCI molecule |
| :--- |
| dissociates when it |
| dissolves in water |

Acids

- Properties of Acids:
-React w/ metals to form H_{2} gas
$\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Mg}_{(\mathrm{s})} \rightarrow \mathrm{MgCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$

Acids

- Properties of Acids:
-Changes the color of indicators
- Ex/ Blue litmus turns red

Acids

- Properties of Acids:
-Neutralization: react w/ bases to form $\mathrm{H}_{2} \mathrm{O}+\mathrm{a}$ salt

Acids

- Properties of Acids:
- Have a pH < 7
pH scale

(c)www.phscale.net

Acids

- Properties of Acids:
- React with carbonates and bicarbonates to produce a salt, water, and carbon dioxide gas

$$
2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}
$$

$$
\begin{gathered}
\stackrel{\downarrow}{\downarrow} 2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
\end{gathered}
$$

Acids

- How do you know if a chemical is an acid?
-Usually (not always) starts with hydrogen
-Examples of acids:
-HCl (monoprotic)
$-\mathrm{H}_{2} \mathrm{SO}_{4}$ (diprotic)
$-\mathrm{H}_{3} \mathrm{PO}_{4}$ (triprotic)

Effects of Acid Rain on Marble

 (marble is calcium carbonate)George Washington: BEFORE acid rain

George Washington:
AFTER acid rain

Acids Neutralize Bases $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

-Neutralization reactions ALWAYS produce a salt (which is an ionic compound) and water.
-Of course, it takes the right proportion of acid and base to produce a neutral salt

Pair-Share-Respond

1. Describe four properties of acids

2. What does a neutralization reaction always produce?
3. Distinguish between the terms monoprotic and diprotic
4. What are two names for H^{+}?

Naming Acids

Naming Acids

- Binary Acids (hydrogen + another element)
- Named as hydro___ic acid
- Ex/
- HF = hydrofluoric acid
- $\mathrm{H}_{2} \mathrm{~S}=$ hydrosulfuric acid
- What would be the names of...
-HBr ?
$-\mathrm{H}_{3}$ P?
- HCl?

Naming Acids

- Oxyacids (contain a polyatomic ion)
- IF the polyatomic ion ends in -ate, then..
- ___ic acid (no hydro)
- Ex/
- $\mathrm{HNO}_{3}=$ nitric acid
- $\mathrm{H}_{2} \mathrm{SO}_{4}=$ sulfuric acid
- What would be the names of...
$-\mathrm{H}_{2} \mathrm{CO}_{3}$?
$-\mathrm{H}_{3} \mathrm{PO}_{4}$?

Bases

Bases

- "Alkali" \rightarrow Arabic for the ashes that come from burning certain plants

Bases

- Bases = increases [OH-] in water

Bases

- Properties of Bases:
- Taste bitter and feel slippery

Bases

- Properties of Bases:
-Change the color of indicators
-Ex/Red litmus turns blue

Red litmus/paper turns blue in contact with a base (and blue paper stays blue).

Bases

- Properties of Bases:
-May be a strong or weak electrolyte in solution

Bases

- Properties of Bases:
-Neutralization - react with acids to form water and a salt

Bases

- Properties of Bases:
-Have a pH > 7

Bases

- How do you know if a chemical is a base?
-Usually (not always) ends with OH^{-}
-Examples of bases:
$-\mathrm{NaOH}$
$-\mathrm{Ca}(\mathrm{OH})_{2}$
$-\mathrm{NH}_{3}$

Bases Neutralize Acids

Milk of Magnesia contains magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, which neutralizes stomach acid, HCl .
$2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2}$

$\mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Magnesium salts can cause diarrhea (thus they are used as a laxative) and may also cause kidney stones.

Three Definitions of Acids-Bases (Three Theories)

Three Acid-Base Theories

- Arrhenius
- Brønsted-Lowry
- Lewis

Arrhenius Acid-Base Theory

Arrhenius Acid-Base Theory

- Arrhenius Acid = Donates H^{+}in water
- Arrhenius Base = Donates OH- in water
- (Increases the concentration of ions in water)
$1 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

Arrhenius Acid-Base Theory

- Arrhenius Acid = Donates H^{+}in water
- Arrhenius Base = Donates OH- in water
$\mathrm{NaOH}_{(\mathrm{ac})} \longrightarrow \mathrm{Na}^{+}+(\mathrm{OH})^{-}$

Arrhenius Acid-Base Theory

- What about substances that still are acidic/ basic, but don't do this?

$$
\begin{aligned}
& \underset{\text { acid }}{\mathrm{HNO}_{\text {ap }}}+\underset{\text { base }}{\mathrm{NO}_{3}} \longrightarrow \underset{\substack{\text { cony } \\
\text { cons } \\
\text { acid }}}{\mathrm{NH}_{4}^{+}}+\underset{\substack{\text { corn) } \\
\text { base }}}{\mathrm{NO}_{3}^{-}} \\
& \underset{\text { acid }}{\mathrm{HNO}_{\text {(q) }}}+\underset{\text { base }}{\mathrm{CH}_{3} \mathrm{OH}} \rightarrow \underset{\substack{\text { cor } \\
\text { acid }}}{\mathrm{CH}_{3} \mathrm{OH}_{2 \text { ap }}^{+}}+\underset{\substack{\text { con) } \\
\text { base }}}{\mathrm{NO}_{3}^{-}}
\end{aligned}
$$

Brønsted-Lowry Acid-Base Theory

Brønsted-Lowry Acid-Base Theory

- Brønsted-Lowry Acid: Donates a proton (H^{+}) Brønsted-Lowry Base: Accepts a proton (\mathbf{H}^{+})
$\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)$

Brønsted-Lowry Acid-Base Theory

- Typically the most accepted theory

Lewis Acid-Base Theory

Lewis Acid-Base Theory

- Lewis Acid = Accepts an e- pair
- Lewis Base = Donates an é pair

Lewis Acid-Base Theory

- Useful with organic chemistry

Sample Problems

- Which is the acid? Base?

$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{NH}_{4}{ }^{+} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{NH}_{3}$

Sample Problems

 - Which is the acid? Base?$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-1}+\mathrm{H}_{3} \mathrm{O}^{+1}
$$

Sample Problems

- What will form when the following donate (or lose) a proton?
- HCl
- $\mathrm{H}_{2} \mathrm{O}$
- HNO_{3}
- $\mathrm{H}_{2} \mathrm{SO}_{4}$

Sample Problems

- What will form when the following accept (or gain) a proton?
- Br
- $\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{NO}_{3}{ }^{-}$
- $\mathrm{SO}_{3}{ }^{\mathbf{2 -}}$

Pair-Share-Respond

1. What is the name of HCl ?
2. What is the name of HClO_{3} ?
3. Describe three properties of bases
4. List three acid-base theories
5. Distinguish between an Arrhenius base and a Brønsted-Lowry Base

Chemistry

Wednesday, April $25^{\text {th }}-$ Thursday, April 26th, 2018

Do-Now: "Ch. 16 CN Part B"

1. Write down today's FLT
2. List two properties of acids.
3. List two properties of bases.
4. How do the definitions of Arrhenius acidbases differ from Brønsted-Lowry definitions?
5. Copy the equation: $\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Br}^{-}+$ $\mathrm{H}_{3} \mathrm{O}^{+}$
6. Draw arrows between your reactants and products to determine which molecule is your acid, and which is your base.
7. Take out your planner and ToC

Brainstorm Protocol

FLT

- I will be able to calculate the pH and pOH of a solution given concentrations by completing Ch. 16 CN Part B

Standard

HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known

Ch. 16: The pH Scale

Recall

Recall

- Acids increase $\left[\mathrm{H}^{+}\right]$in water
- Bases increase $\left[\mathrm{OH}^{-}\right]$in water

Recall

- Acids have a LOW pH
- Bases have a HIGH pH

The pH Scale

The pH Scale

- pH is a measure of how acidic or basic a solution is
- $\mathrm{pH}=$ measurement of [H+]
- pH \rightarrow potential of Hydrogen

The pH Scale

- pH can be approximated using indicators (such as litmus paper) or measured accurately using a pH meter.

The pH Scale

- The pH scale ranges from 0 to 14

The pH Scale

The pH Scale

- A soln' with a $\mathrm{pH}=7$ is neutral
- Pure water is neutral
- Is tap water neutral?

The pH Scale

- A soln' with a pH <7 is acidic
- pH of orange juice is ~ 3.3
- pH of lemon juice is ~2
- Which is more acidic?

(c)www.phscale.net

The pH Scale

- The lower the pH, the more acidic the soln' is

The pH Scale

- A soln' with a pH > 7 is basic
- pH of baking soda solution ~8.4
- pH of toothpaste ~10
- Which is more basic?

(c)www.phscale.net

The pH Scale

- The higher the pH, the more basic the soln' is

The pH Scale

- A change of 1 pH is equivalent to a 10 x increase/decrease in acidity
- Ex/ pH 1 is ten times as acidic as pH 2
- Ex/ pH 0 is $10 \times 10=100$ times as acidic as pH 2

Calculating pH and pOH

Calculating pH and pOH

 - Formula given pH/pOH: pH + pOH = 14
Example 1

-What is the pOH of a solution if the pH is 5 ?

- Is the solution acidic or basic?

Ex. 2

- What is the pH of a solution if the pOH is 3.5?
- Is the solution acidic or basic?

Calculating pH and pOH

- Formulas given concentration:

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
\end{gathered}
$$

Ex. 3

- What is the pH of a solution if the $\left[\mathrm{H}^{+}\right]$is 1 x $10^{-6} \mathrm{M}$?
- Is the solution acidic or basic?

Ex. 4

- What is the pH of a solution if the $\left[\mathrm{H}^{+}\right]$is 4 x $10^{-10} \mathrm{M}$?
- Is the solution acidic or basic?

Ex. 5

- What is the pH of a solution if the $\left[\mathrm{OH}^{-}\right]$is 4 x $10^{-11} \mathrm{M}$?
- Is the solution acidic or basic?

Ex. 6

- What is the pH of a solution if the $\left[\mathrm{OH}^{-}\right]$is 4.3 x $10^{-5} \mathrm{M}$?
- Is the solution acidic or basic?

Calculating pH and pOH

 - Formulas given pH or pOH:$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10-\mathrm{pH} \\
{\left[\mathrm{OH}^{-}\right] } & =10-\mathrm{pOH}
\end{aligned}
$$

Ex. 7

- What is the $\left[\mathrm{H}^{+}\right]$of a solution with a pH of 5.2.

Ex. 8

- What is the $[\mathrm{OH}]$ of a solution with a pOH of 8.8.

Chemistry

Wednesday, April $25^{\text {th }}-$ Thursday, April 26th, 2018

Do-Now: "BrainPOP: Acids \& Bases"

1. Write down today's FLT
2. The pH scale ranges from \qquad to
3. Which is more acidic: pH 3 or pH 6 ?
4. Which is more basic: pH 3 or pH 6 ?
5. If you have a pH of 3 , what is your pOH ?
6. What is the pH of a solution if the $\left[\mathrm{H}^{+}\right]$is $1.5 \times 10^{-6} \mathrm{M}$? Show all steps.
7. Take out your planner and ToC

BrainPOP: Acids \& Bases

- Watch the BrainPOP video
- After the video, answer the questions in your group - every member must copy down the same answer
- The group with the most correct answers $\rightarrow+5$ dojo points each https://www.brainpop.com/science/matterandchemistry/acidsandbases/

FLT

- I will be able to define strong acids and weak acids \& define the products of an acid-base reaction by completing Ch. 16 CN part C

Standard

HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known

Ch. 16: Acid/Base Strength \& Neutralization

Recall

Recall

- The pH scale ranges from 0-14
- What's more acidic?
- What's more basic?

Recall

- Brønsted-Lowry acids:
- Donate H^{+}in water
- Brønsted-Lowry bases:
- Accept H^{+}in water

$$
\underset{\text { Water }}{\mathrm{H}_{2} \mathrm{O}}+\underset{\text { Ammonia }}{\mathrm{NH}_{3}} \underset{\substack{\text { Hydroxide } \\ \text { ion }}}{\mathrm{OH}^{-}}+\underset{\mathrm{NH}_{4}^{+}}{\text {Ammonium ion }}
$$

Recall

- Acids and bases are electrolytes
- This means that they dissociate into ions in water

Recall

- What if they only dissociate a little bit?

Electrolytes and Nonelectrolytes

- Weak electrolytes = only partially ionize Weak electrolytes have only a fraction of the solute that exists as ions (about 1\%)
-Weak acids and bases; ammonia, acetic acid

(b) A weak acid such as $\mathrm{H}_{2} \mathrm{CO}_{3}$ does not dissociate completely.

Acid/Base Strength

Acid/Base Strength

- Acids are classified as strong or weak depending on the degree to which they ionize in water

Acid/Base Strength

- Strong acids = completely ionize in water
- $\mathrm{Ex} / \mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{gathered}
\mathrm{HCl}_{(\mathrm{g})}+{\left.\mathrm{H} 2 \mathrm{O}_{(\mathrm{l}}\right)}^{100 \% \text { H3O}}{ }_{\left({ }_{(\mathrm{aq)}}\right.}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \\
\text { ionized }
\end{gathered}
$$

Acid/Base Strength

- Weak Acids = ionize only slightly in water.
- Ex/ Ethanoic (acetic) acid
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}$
dissociation of acetic acid

only 4 out of 100 molecules dissociate

Table 19.6

Relative Strengths of Common Acids and Bases

Substance	Formula	Relative Strength
Hydrochloric acid	HCl ）	Strong Acid
Nitric acid	$\left.\mathrm{HNO}_{3}\right\}$	
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	
Ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	
Hypochlorous acid	HClO	
Neutral Solution		Neutral Solution
Ammonia	NH_{3}	氝気范
Sodium silicate	$\mathrm{Na}_{2} \mathrm{SiO}_{3}$	¢ ¢
Calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$	$\checkmark \downarrow$
Sodium hydroxide	NaOH	Strong Base
Potassium hydroxide	KOH	

Acid/Base Strength

- Bases are also classified as strong or weak depending on the degree to which they ionize in water

Acid/Base Strength

- Strong bases = completely dissociate into metal ions and OH^{-}ions in water
- $\mathrm{Ex} / \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{NaOH}, \mathrm{KOH}$

$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Acid/Base Strength

- Weak Bases = Produce a small amount of OH^{-}in water
- Ex/ Ammonia $\left(\mathrm{NH}_{3}\right)$
$\mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \rightarrow \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$ $99 \% \mathrm{NH}_{3}$ still present, $\sim 1 \%$ ionized

Conjugate Acids \& Bases

The Brønsted-Lowry Definition

- We can label our acid-base reactions using proton-transfer
- Ex 1:

Donated (Lost) H+

- Ex 2:

Accepted (gained) H^{+}

Conjugate Acids \& Bases

- In this equation, what is the acid? What is the base?

$$
\underset{\text { Bufuric Acid }}{\underset{\text { Water }}{\mathrm{H}_{2} \mathrm{SO}_{4}+\underset{\mathrm{H}_{2} \mathrm{O}}{\text { Sulfate ion }}} \underset{\text { Bydronium ion }}{\rightleftharpoons}}
$$

Conjugate Acids \& Bases

- Note: This is a reversible reaction. The back reaction is also an acid-base reaction.
- Which is the acid and which is the base?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+
$$

Sulfuric Acid

$$
\mathrm{H}_{2} \mathrm{O}
$$

Water
$\mathrm{HSO}_{4}^{-}+$
Bisulfate ion

Hydronium ion

Conjugate Acids \& Bases

- Conjugate Acid = formed when a base gains H^{+}

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Conjugate Acids \& Bases

- Conjugate Base = formed when an acid loses H+

$$
\underset{\text { Bisulfate ion }}{\underset{\text { Water }}{\mathrm{H}_{2} \mathrm{SO}_{4}+} \underset{\substack{\mathrm{H}_{2} \mathrm{O}} \underset{\text { Hydronium ion }}{\mathrm{H}_{3}} \underset{\text { Huric Acid }}{ }}{\mathrm{HSO}_{4}^{-}+}}
$$

The Brønsted-Lowry Definition

- We can label our acid-base reactions using proton-transfer
- Ex 1:

Donated (Lost) H+

- Ex 2:

Accepted (gained) H^{+}

Try This:

- In the equation below, label the acid, base, conjugate acid, and conjugate base. Donated (Lost) H+

Conjugate Acids \& Bases

- Conjugate Acid-Base Pair Strengths:
- Strong acids/bases form weaker conjugates
-Weak acids/bases form stronger conjugates
Conjugate acid-base pair

Weak acid Weak base Strong acid Strong base

Conjugate acid-base pair

Last Tidbits

Last Tidbits

- Amphoteric substances = act as both an acid or ahase
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4}{ }^{1+}+\mathrm{OH}^{1-}$

Last Tidbits

- Neutralization Reaction - a reaction in which an acid and a base react in an aqueous solution to produce a salt and water:
$\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
- Table 19.9, page 613 lists some salts

Last Tidbits

- Acid + Base \rightarrow Water + Salt
- Properties related to every day: -antacids depend on neutralization
-farmers adjust the soil pH
-formation of cave stalactites
-human body kidney stones from insoluble salts

Pair-Share-Respond

1.Distinguish between strong and weak acids
2.Distinguish between strong and weak bases
3. What are conjugate acids?
4.What are conjugate bases?
5. How can you determine if your conjugate acid/base is strong or weak?

