

DEFINITIONS

What is enthalpy? It is a measure of the heat content of a substance

Enthalpy change $(\Delta \mathrm{H})=$ Change in heat content at constant pressure
Standard conditions $\left(\Delta \mathrm{H}^{\ominus}\right)=100 \mathrm{kPa}$ and a stated temperature

Exothermic reactions

Endothermic reactions

Standard enthalpy change of formation ($\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$) ("enthalpy of formation")

Enthalpy change when 1 mole of a substance is formed from its constituent elements with all reactants and products in standard states under standard conditions.
e.g. $\mathrm{CH}_{4}(\mathrm{~g})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$
$\mathrm{CH}_{3} \mathrm{Br}(\mathrm{I})$
$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$
Note: re $\Delta H_{f}{ }^{\circ}$ of an element in its standard state $=0$ by definition

Standard enthalpy change of combustion ($\left.\Delta \mathrm{H}^{\circ}{ }^{\circ}\right)$ ("enthalpy of combustion")

Enthalpy change when 1 mole of a substance is completely burned in oxygen with all reactants and products in standard states under standard conditions.
e.g. $\quad \mathrm{CH}_{4}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$
Na (s)
$\mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I})$

CALORIMETRY

- The enthalpy change for a reaction can be found by measuring the temperature change in a reaction.
- The heat energy given out (or taken in) is used to heat (or cool) a known mass of water. We know that it takes 4.18 J of energy to raise the temperature of 1 g of water by $1^{\circ} \mathrm{C}$ (i.e. 1 K).
- The amount of energy needed to make 1 g of a substance $1^{\circ} \mathrm{C}(1 \mathrm{~K})$ hotter is called the specific heat capacity (measured in $\left.\mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right)$.
- The following equation is then used to find the amount of heat energy give out (or absorbed).

```
q=m c \DeltaT T q = heat energy given out (J)
    m = mass of substance heated (g)
    \DeltaT = temperature rise (K)
    c}=\mathrm{ specific heat capacity ( }\mp@subsup{\textrm{J g}}{}{-1}\mp@subsup{\textrm{K}}{}{-1}
```

- To find the enthalpy change in terms of J (or kJ) per mole, the following expression is needed: (THINK kJ per mole!)

$$
\text { Enthalpy change (per mole) }=\frac{q}{\text { number of moles reacting }}
$$

- Heat loss is a major problem with calorimetry and can lead to errors in the results. The techniques used in calorimetry are designed to reduce heat loss (one way to reduce errors from heat loss is to measure the heat capacity of the calorimeter as a whole (see flame calorimeters and bomb calorimeters)

1) Reactions taking place in solution

- The reaction is carried out in an insulated beaker and the temperature change measured.
- The reaction must be fast so that the maximum temperature is reached quickly (before it starts to cool).
- The specific heat capacity of the solution must be taken as being the $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$ (the same as water) and we usually use the mass of the water (not the solution) in the calculation.

2) Flame calorimeters

- Flame calorimeters are usually used to find the enthalpy of combustion of substance (usually a fuel).
- The fuel, which is in a bottle with a wick, is burned so that the heat is passed to water which it heats.
- Sometimes the specific heat capacity of water is used, but in more accurate flame calorimeters, the actual heat capacity of the flame calorimeter can be determined and used (by finding the temperature rise when a known amount of a substance with an accurately known enthalpy of combustion is tested).

Calorimetry calculations - worked examples

1) In an experiment, 0.60 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ was completely burned in air. The heat evolved raised the temperature of 100 g of water by $64.9^{\circ} \mathrm{C}$. Use this data to calculate the enthalpy of combustion of propane (the specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$).
2) $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid was added to $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution. The temperature rose by $6.8^{\circ} \mathrm{C}$. Calculate the enthalpy of neutralisation for this reaction. Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.
3) $100 \mathrm{~cm}^{3}$ of $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ copper sulphate solution was put in a calorimeter and 2.0 g of magnesium powder added. The temperature of the solution rose by $25.1^{\circ} \mathrm{C}$. Work out which reagent was in excess and then calculate the enthalpy change for the reaction. Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. Ignore the heat capacity of the metals.

TASK 1 - CALORIMETRY CALCULATIONS 1

Basic level questions

1) In an experiment, 1.00 g of propanone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$ was completely burned in air. The heat evolved raised the temperature of 150 g of water from $18.8^{\circ} \mathrm{C}$ to $64.3^{\circ} \mathrm{C}$. Use this data to calculate the enthalpy of combustion of propanone (the specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$).
2) In an experiment, 1.00 g of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ was completely burned in air. The heat evolved raised the temperature of 200 g of water from 293.5 K to 345.1 K . Use this data to calculate the enthalpy of combustion of hexane (the specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$).
3) In an experiment, 1.56 g of propan-1-ol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ was completely burned in air. The heat evolved raised the temperature of $0.250 \mathrm{dm}^{3}$ of water from 292.1 K to 339.4 K . Use this data to calculate the enthalpy of combustion of propan-1-ol (the specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$).
4) $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid was added to $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide solution. The temperature rose by $13.7^{\circ} \mathrm{C}$. Calculate the enthalpy of neutralisation for this reaction. Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.
5) $50 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid was added to $50 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{ammonia}$ solution. The temperature rose by $12.4^{\circ} \mathrm{C}$. Calculate the enthalpy of neutralisation for this reaction. Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.
6) $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid was added to $20 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ barium hydroxide solution. The temperature rose by $7.9^{\circ} \mathrm{C}$. Calculate the enthalpy of neutralisation for this reaction (per mole of nitric acid reacting). Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.

Intermediate level questions

7) $25 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ copper sulphate solution was put in a calorimeter and 6.0 g of zinc powder added. The temperature of the solution rose by $50.6^{\circ} \mathrm{C}$. Work out which reagent was in excess and then calculate the enthalpy change for the reaction. Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. Ignore the heat capacity of the metals.

$$
\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

8) $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate solution was put in a calorimeter and 0.2 g of zinc powder added. The temperature of the solution rose by $4.3^{\circ} \mathrm{C}$. Work out which reagent was in excess and then calculate the enthalpy change for the reaction (per mole of zinc that reacts). Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. Ignore the heat capacity of the metals.

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

9) 3.53 g of sodium hydrogencarbonate was added to $30.0 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. The temperature fell by 10.3 K . Work out which reagent was in excess and then calculate the enthalpy change for the reaction. Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$, the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.

$$
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

High level questions

10) A calorimeter was calibrated by burning 2.00 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ whose enthalpy of combustion is $-715 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The temperature of the calorimeter rose from $19.6^{\circ} \mathrm{C}$ to $52.4^{\circ} \mathrm{C}$. The same calorimeter was used to measure the enthalpy of combustion of propan-2-ol. 1.50 g of propan- $2-\mathrm{ol} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ raised the temperature by from $19.8^{\circ} \mathrm{C}$ to $56.2^{\circ} \mathrm{C}$. Calculate the heat capacity of the calorimeter and then the enthalpy of combustion of propan-2ol.

TASK 2 - CALORIMETRY CALCULATIONS 2

Basic level questions

1) In an experiment, 0.750 g of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ were completely burned in air. The heat evolved raised the temperature of 200 g of water by $43.7^{\circ} \mathrm{C}$. Use this data to calculate the enthalpy of combustion of benzene (the specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$).
2) $\quad 25.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid was added to $25.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonia solution. The temperature rose by $12.4^{\circ} \mathrm{C}$. Calculate the enthalpy of neutralisation for this reaction. Assume that the density of the solution is $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$ and the specific heat capacity of the solution is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$.
3) a) Write an equation to represent the $\Delta \mathrm{H}^{\ominus}{ }_{c}$ of butan- $1-\mathrm{ol}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{I})\right)$.
b) A simple flame calorimeter was used to measure the $\Delta \mathrm{H}^{\ominus}{ }_{\mathrm{c}}$ of butan-1-ol. 0.600 g of butan-1ol was burned in a simple lamp burner under a container of water. There was 250 g of water in the container and its temperature rose by $19.4^{\circ} \mathrm{C}$. Using the specific heat capacity of water as $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$, calculate the enthalpy of combustion of butan-1-ol.
4) When 80.0 g of ammonium nitrate dissolves in $1000 \mathrm{~cm}^{3}$ of water, the temperature falls by $5.0^{\circ} \mathrm{C}$. Calculate the enthalpy change of solution of ammonium nitrate (i.e. the enthalpy change when one mole of ammonium nitrate dissolves).
5) Calculate the standard enthalpies of combustion of hexane given that combustion of 1.720 g of hexane released 84.06 kJ of heat.
6) $\quad 0.200$ moles of cyclohexane, $\mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{I})$, can release 784 kJ when it is burnt.
a) Write an equation for the reaction that represents the enthalpy of combustion of cyclohexane.
b) Calculate the enthalpy of combustion of cyclohexane.
7) When $25.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid is added to $25 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution, the temperature rises by $6.5^{\circ} \mathrm{C}$.
a) Write an equation for the reaction.
(1)
b) Calculate the number of moles of each reagent and state which one is in excess.
c) Calculate the enthalpy change of neutralisation for this reaction.
(Total 7)
8) $\quad 1.16 \mathrm{~g}$ of propanone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{I})$, was burnt and raised the temperature of 250 g of water in a calorimeter from $19.0^{\circ} \mathrm{C}$ to $40.9^{\circ} \mathrm{C}$. Calculate the enthalpy of combustion of propanone.
(Total 4)
9) When 0.92 g of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$, was burnt in this calorimeter, the temperature rose by $11.7^{\circ} \mathrm{C}$. The calorimeter contains 500 g of water.
a) How much heat was given out by the burning ethanol?
b) How many moles of ethanol were burnt?
c) Write an equation for the reaction that represents the enthalpy of combustion of ethanol.
d) Calculate the enthalpy of combustion of ethanol.(2)
(Total 5)

Intermediate level questions

10) When 0.500 g of powdered iron is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ copper sulphate solution in an insulated vessel, the temperature rises by $3.3^{\circ} \mathrm{C}$.

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

a) Why is the iron added as a powder?
b) Calculate the heat evolved in the reaction. The specific heat capacity of the solution can be taken as 4.18 J $\mathrm{g}^{-1} \mathrm{~K}^{-1}$, and the heat capacity of the iron can be ignored.
c) Calculate the number of moles of iron and copper sulphate, and so state which reagent is in excess?
d) Calculate the enthalpy change for the reaction.
11) Decide whether each of the following changes is exothermic or endothermic, giving a brief explanation.
a) methane burning
b) water freezing
c) water boiling
12) When 0.40 g of calcium reacts with $100 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, the temperature rises by $12.0^{\circ} \mathrm{C}$. The equation for the reaction is shown below. The specific heat capacity of the water is $4.18 \mathrm{~J} \mathrm{~mol}^{-1}$ K^{-1}.

$$
\mathrm{Ca}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

a) Calculate the heat released in the reaction.
b) Calculate which reagent is in excess.
c) Calculate the enthalpy change for this reaction per mole of calcium reacting
13) The apparatus shown was used to find the enthalpy of combustion of methanol. The experimental data is shown below.

starting temperature	$=19.4^{\circ} \mathrm{C}$
final temperature	$=40.3^{\circ} \mathrm{C}$
starting mass of burner $+\mathrm{CH}_{3} \mathrm{OH}$	$=28.44 \mathrm{~g}$
final mass of burner $+\mathrm{CH}_{3} \mathrm{OH}$	$=27.42 \mathrm{~g}$
specific heat capacity of water	$=4.18 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
volume of water	$=250 \mathrm{~cm}^{3}$

a) Define enthalpy of combustion.
(3)
b) Calculate the enthalpy of combustion of methanol.
(4)

14) When 1.30 g of zinc reacts with $100 \mathrm{~cm}^{3}$ of $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid, the temperature rises by $6.0^{\circ} \mathrm{C}$. The equation for the reaction is shown below.

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

a) Calculate which reagent is in excess.
b) Calculate the heat given out in the experiment.
c) Calculate the enthalpy change for the reaction.

High level questions

15) a) The enthalpy of combustion of propan-1-ol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})$, is $-2020 \mathrm{~kJ} \mathrm{~mol}^{-1}$. 0.600 g of propan- $1-\mathrm{ol}$ is burnt and used to heat 200 g of water in a calorimeter. The starting temperature of the water is $20.3^{\circ} \mathrm{C}$. How much heat is released when 0.600 g of propan-1-ol is burned?
b) Calculate the theoretical temperature of the water at the end of the experiment.
c) Is the final temperature likely to be higher or lower than this theoretical answer? Explain your answer.
16) a) An experiment was performed to measure the overall heat capacity of a bomb calorimeter. A pellet of benzenecarboxylic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ of mass 0.7934 g was burned, and the temperature rise found to be $2.037^{\circ} \mathrm{C}$. The $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{c}}$ of benzenecarboxylic acid is $-3227.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the overall heat capacity of the calorimeter.
b) The same bomb calorimeter was then used to measure the $\Delta \mathrm{H}^{\ominus}{ }_{\mathrm{c}}$ of butan-1-ol. 0.8233 g of butan-1-ol raised the temperature by $2.860^{\circ} \mathrm{C}$. Calculate the $\Delta \mathrm{H}^{\circ}$ c of butan-1-ol.

17) Mrs Grime is on a very rare camping trip and is, not unusually, desperate for a cup of tea. However, she is very short of Calor gas. She estimates that she has $1.12 \mathrm{dm}^{-3}$ of the Calor gas left (measured at $16^{\circ} \mathrm{C}$ and $100000 \mathrm{~Pa})$. Calculate the maximum volume of water that she could boil.

Assume that Calor gas is pure butane, $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})\left(\Delta \mathrm{H}^{\ominus}{ }_{\mathrm{c}}=-3000 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, the specific heat capacity of the water is $4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$, that the water is at $16^{\circ} \mathrm{C}$ and that 75% of the heat from the gas is taken in by the water.
2) $\quad 300 \mathrm{~cm}^{3}$ of Coca-Cola was poured into a glass. Its temperature was $25^{\circ} \mathrm{C}$. Two ice cubes, of total volume $35 \mathrm{~cm}^{3}$ and initial temperature $-10^{\circ} \mathrm{C}$, were added. Given the following data, calculate by how much the temperature of the Coca-Cola will fall.
density of ice $=0.92 \mathrm{~g} \mathrm{~cm}^{-3}$
specific heat capacity of ice $=2.09 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
enthalpy change of fusion for ice $=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}\right)$
specific heat capacity of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$

HESS'S LAW QUESTIONS

1) Hess's Law

The enthalpy change for a reaction is independent of the route taken

e.g. the enthalpy change to go from $A \rightarrow B$ direct is the same as going from $A \rightarrow C \rightarrow B$

2) Calculations involving enthalpies of formation ("Type 1 questions")

- If the enthalpy of formation for the reactants and products in a reaction are known, the overall enthalpy change is easy to calculate.

```
\DeltaH = [SUM of \DeltaH
```

- Remember that ΔH_{f} of all elements is zero.
- Watch for the very frequent mistake of doing reactants - products, rather than products - reactants.
- If the overall enthalpy change for a reaction is known along with the enthalpy of formation of all but one of the reactants/products, then this equation can be used to find the missing enthalpy of formation.

Example 1

Calculate the overall enthalpy change for this reaction: $\quad \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta \mathrm{H}^{+} \mathrm{CH}_{4}(\mathrm{~g})=-75, \mathrm{CO}_{2}(\mathrm{~g})=-393, \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-286 \mathrm{~kJ} / \mathrm{mol}$

Example 2

The enthalpy change for the following reaction is -2877 kJ/mol: $\quad \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+61 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Calculate the enthalpy change of formation of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})\right.$) given the following data:
$\Delta \mathrm{H}^{+} \mathrm{f}_{\mathrm{f}} \quad \mathrm{CO}_{2}(\mathrm{~g})=-393, \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-286 \mathrm{~kJ} / \mathrm{mol}$

TASK 3 - HESS'S LAW 1

Basic level questions

1) Calculate the ΔH° for the following reactions given the values of ΔH^{\ominus} in the following table.

	$\mathrm{ZnCO}_{3}(\mathrm{~s})$	$\mathrm{ZnO}(\mathrm{s})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$	-812	-348	-393	-111	-286	-822	-1669	+52

a) $\mathrm{ZnCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
b) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
c) $2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
d) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
e) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2) The $\Delta \mathrm{H}^{\ominus}$ for the following reaction is shown.

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{N}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\ominus}=-623 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Given that the $\Delta \mathrm{H}^{\ominus}$ fof $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the $\Delta \mathrm{H}^{\ominus}$ f of $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})$.
3) Calculate the $\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$ of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$, given the enthalpy change for the following reaction and the $\Delta \mathrm{H}^{\ominus}$ of ethene, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, which is $+52 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\ominus}=-137 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

4) Use the enthalpies of formation below to calculate the enthalpy change for the following reaction.

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})
$$

$\Delta \mathrm{H}^{\ominus} \mathrm{f}: \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g})-242 ; \quad \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})-1117 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5) The ΔH^{\ominus} for the following reaction is shown. Use it and the $\Delta H^{\ominus} \mathrm{f}$ values below to calculate the $\Delta \mathrm{H}^{\ominus} \mathrm{f}$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{~s})+2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\ominus}=+301 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\Delta \mathrm{H}^{\mathrm{e}} \mathrm{f}: ~ \mathrm{PbO}(\mathrm{S})-217 ; \quad \mathrm{NO}_{2}(\mathrm{~g})+33 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6) Use the enthalpies of formation below to calculate the enthalpy change for the following reaction.

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{I})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}(\mathrm{I})
$$

$\Delta \mathrm{H}^{\ominus} \mathrm{f}: \quad \mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{I})-248 ; \quad \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}(\mathrm{I})-318 \mathrm{~kJ} \mathrm{~mol}^{-1}$

3) Calculations involving enthalpies of combustion ("Type 2 questions")

Best method (for students at grade A-C)

- Questions that involve enthalpies of combustion can usually be done using the cycle shown below.
- The reaction involved across the top is often an enthalpy of formation (from elements to a compound).
- The sum of the clockwise arrows equals the sum of the anticlockwise arrows.
- Be careful when drawing your cycle to ensure that arrows are going in the right direction and the number of moles is correct.

- If you use a cycle like this, there is no need to worry about getting the number of oxygen molecules in the downward arrows.

Simpler method (for students at grade D/E)

- This is a simpler method that works for most simple questions.
$\Delta H=$ [SUM of ΔH_{c} reactants] - [SUM ΔH_{c} products]
- Note that this is reactants - products which is the opposite of the equation that uses enthalpies of formation.

Example 1

Calculate the enthalpy of formation of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ given the following enthalpies of combustion.
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{c}} \quad \mathrm{C}(\mathrm{s})=-393, \mathrm{H}_{2}(\mathrm{~g})=-286, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})=-1371 \mathrm{~kJ} / \mathrm{mol}$

Example 2

Calculate the enthalpy change for this reaction given the following data.
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
$\Delta \mathrm{H}^{\ominus}{ }_{\mathrm{c}} \quad \mathrm{C}(\mathrm{s})=-393, \mathrm{H}_{2}(\mathrm{~g})=-286, \mathrm{CH}_{4}(\mathrm{~g})=-890 \mathrm{~kJ} / \mathrm{mol}$

TASK 4 - HESS'S LAW 2

Basic level questions

1) Calculate the enthalpy of combustion of propane, $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$, given the following enthalpy changes.

$$
\Delta \mathrm{H}_{\mathrm{c}}^{\circ}: \quad \mathrm{C}(\mathrm{~s})-393 ; \quad \mathrm{H}_{2}(\mathrm{~g})-286 \mathrm{~kJ} \mathrm{~mol}^{-1}, \quad \Delta \mathrm{H}^{\ominus}{ }_{\mathrm{f}}: \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{I})-103 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

2) Calculate the enthalpy change for the following reaction using the enthalpies of combustion given.

$$
\mathrm{C} \text { (graphite) } \rightarrow \mathrm{C} \text { (diamond) }
$$

$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{c}}$: C (graphite) -393; $\mathrm{C}\left(\right.$ diamond) $-395 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) Calculate the enthalpy change during the fermentation of glucose using the enthalpies of combustion given.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+2 \mathrm{CO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{H}^{\ominus} \mathrm{c}: \quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})-2820 ; \quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})-1368 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4) Calculate the enthalpy of formation of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{I})$, given the following enthalpies of combustion.

$$
\Delta \mathrm{H}^{\ominus}{ }_{\mathrm{c}}: \mathrm{H}_{2}(\mathrm{~g})-286 ; \quad \mathrm{C}(\mathrm{~s})-393 ; \quad \mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{I})-3509 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

5) Calculate the enthalpy of combustion of propanone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{I})$, given the information below.

Intermediate level questions

6) Calculate the enthalpy of combustion of $\mathrm{CS}_{2}(\mathrm{I})$ given the following enthalpy changes.
```
\DeltaH}\mp@subsup{}{\textrm{c}}{\textrm{c}
```

7) Calculate the standard enthalpy change for the following reaction using the enthalpy changes given.

$$
\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\Delta \mathrm{H}^{\circ} \mathrm{c}: ~ \mathrm{~S}(\mathrm{~s})-297 \mathrm{kJmol}^{-1} \quad \Delta \mathrm{H}^{\circ} \mathrm{f}: \mathrm{H}_{2} \mathrm{O}(\mathrm{I})-286 ; \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$

4) Calculations involving bond enthalpies ("Type 3 questions")

- Bond enthalpy is the enthalpy change to break one mole of covalent bonds in the gas phase.
- For most bonds (e.g. C-H, C-C, C=O, O-H, etc.) the value for the bond enthalpy is an average taken from a range of molecules as the exact value varies from compound to compound. For some bond enthalpies (e.g. $\mathrm{H}-\mathrm{H}, \mathrm{H}-\mathrm{Cl}, \mathrm{O}=\mathrm{O}$, etc) the value is exact as only one molecule contains that bond.
- Enthalpies of reaction that have been calculated using mean bond enthalpies are not as accurate as they might be because the values used are averages and not the specific ones for that compound.

Best method (for students at grade A-C)

- This cycle works for any question that involves bond enthalpies, whether to find a bond enthalpy or $\Delta \mathrm{H}$ for a reaction.
- Remember that substances must be in the gas state before bonds are broken, and so $\Delta \mathrm{H}$ to go to the gas state is needed for solids and liquids. (Note - $\Delta \mathrm{H}$ vaporisation is the enthalpy change to convert a liquid to a gas)

- As with other cycles, the sum of the clockwise arrows equals the sum of the anticlockwise arrows. Be careful to ensure that arrow directions and number of moles are correct.

Simpler method (for students at grade D/E)

- This is the way you would have done the questions at GCSE.
- The problem is that it only works if all reactants and products are in the gas phase, though this is usually the case at AS (but not at A2).
- In this method, simply
- add up the energy needed to break all the bonds in the reactants
- add up the energy released forming bonds in the products
- enthalpy change is simply:

- Sometimes you may be given the overall enthalpy change and all the bond enthalpies except one and will need to find the unknown bond enthalpy.

Example 1

Calculate the enthalpy change for the following reaction given the following bond enthalpies.

$$
\mathrm{CH}_{3}-\mathrm{CH}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

Bond enthalpies: C-C 348, C-H 412, Cl-Cl 242, C-Cl 338, H-Cl $431 \mathrm{~kJ} / \mathrm{mol}$

Hydrazine has the formula $\mathrm{N}_{2} \mathrm{H}_{4}$ and is used as a rocket fuel (e.g. for the Apollo moon rockets). It burns in the following reaction for which the enthalpy change is $-583 \mathrm{~kJ} / \mathrm{mol}$.

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the N-N bond enthalpy in hydrazine given the following bond enthalpies.
Bond enthalpies: N-H 388, O=O 498, N $\equiv \mathrm{N} 944$, $\mathrm{O}-\mathrm{H} 463 \mathrm{~kJ} / \mathrm{mol}$

Example 3

Ethanol has the formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and is used as a fuel (e.g. for cars in Brazil). It burns in the following reaction for which the enthalpy change is $-1015 \mathrm{~kJ} / \mathrm{mol}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Calculate the C-C bond enthalpy in ethanol given the following bond enthalpies and enthalpy of vaporisation of ethanol.
Bond enthalpies: C-H 412, O-H 463, C-O 360, C=O 743, O=O $498 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of vaporisation of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})=44 \mathrm{~kJ} / \mathrm{mol}$

TASK 5 - HESS'S LAW 3

Basic level questions

1) Use the following bond enthalpies to calculate $\Delta \mathrm{H}^{\ominus}$ for the following reactions. You may assume that all species are in the gaseous state.

Bond	$\mathrm{H}-\mathrm{H}$	$\mathrm{O}=\mathrm{O}$	$\mathrm{C}-\mathrm{C}$	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}-\mathrm{H}$	$\mathrm{F}-\mathrm{F}$	$\mathrm{H}-\mathrm{O}$	$\mathrm{Br}-\mathrm{Br}$	$\mathrm{C}-\mathrm{Br}$	$\mathrm{H}-\mathrm{Br}$	$\mathrm{C}=\mathrm{O}$
$\mathrm{KJ} \mathrm{mol}^{-1}$	436	496	348	612	412	158	463	193	276	366	743

a) $\mathrm{H}-\mathrm{H}+\mathrm{Br}-\mathrm{Br} \longrightarrow 2 \mathrm{H}-\mathrm{Br}$
b)

c)
 $0=0$ \qquad $2 \mathrm{O}=\mathrm{C}=\mathrm{O}$ $+2$ $\mathrm{H}-\mathrm{O}$
d) $\Delta \mathrm{H}^{\circ} \mathrm{c}$ of methane

Intermediate level questions

2) Calculate the average $\mathrm{N}-\mathrm{H}$ bond energy in $\mathrm{NH}_{3}(\mathrm{~g})$ using the data below.

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{f}} \text { of } \mathrm{NH}_{3}(\mathrm{~g})=-46 \mathrm{~kJ} \mathrm{~mol} \\
& \text { Bond enthalpies: } \mathrm{N} \equiv \mathrm{~N}=944 ; \mathrm{H}-\mathrm{H}=436 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

3) Calculate the $\mathrm{C}=\mathrm{C}$ bond energy in ethene using the data below.

$$
\begin{aligned}
& \mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\ominus}=-138 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Bond enthalpies: } \mathrm{C}-\mathrm{C}=348 ; \mathrm{H}-\mathrm{H}=436 ; \mathrm{C}-\mathrm{H}=412 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

4) Calculate the $\mathrm{C} \equiv \mathrm{C}$ bond enthalpy in the gas propyne using the bond enthalpy values in the table above and the enthalpy changes for the reactions shown below.

$$
\mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{C}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\ominus}=+715 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{f}}=+185 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

High level questions

5) Calculate the average $\mathrm{S}-\mathrm{F}$ bond energy in $\mathrm{SF}_{6}(\mathrm{~g})$ using the bond data in the table, the $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{SF}_{6}(\mathrm{~g})$ which is $-1100 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and

$$
\mathrm{S}(\mathrm{~s}) \rightarrow \mathrm{S}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\ominus}=223 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

6) Calculate $\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}$ for bromomethane, $\mathrm{CH}_{3} \operatorname{Br}(\mathrm{~g})$, given the bond data in the table and

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{C}(\mathrm{~g}) & \Delta \mathrm{H}^{\ominus}=715 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\ominus}=15 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

TASK 6 - A MIXTURE OF SIMPLE THERMODYNAMICS QUESTIONS

1) Find ΔH_{f} of butane given that the following data.

$$
\Delta \mathrm{H}_{\mathrm{c}}: \quad \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})=-2877, \mathrm{C}(\mathrm{~s})=-394, \mathrm{H}_{2}(\mathrm{~g})=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

2) Find $\Delta \mathrm{H}$ for the following reaction using the data below.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\Delta \mathrm{H}_{\mathrm{f}}: \quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})=-104, \quad \mathrm{CO}_{2}(\mathrm{~g})=-394, \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) Find $\Delta \mathrm{H}$ for the following reaction using the bond enthalpy data below.

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+31 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\mathrm{C}-\mathrm{C}=348, \mathrm{C}-\mathrm{H}=412, \mathrm{O}=\mathrm{O}=496, \mathrm{C}=\mathrm{O}=743, \mathrm{O}-\mathrm{H}=463 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4) Find $\Delta \mathrm{H}_{\mathrm{c}}$ of propan-2-ol given that the following data.
$\Delta \mathrm{H}_{\mathrm{f}:}: \quad \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}(\mathrm{I})=-318, \quad \Delta \mathrm{H}_{\mathrm{c}}: \quad \mathrm{C}(\mathrm{s})=-394, \quad \mathrm{H}_{2}(\mathrm{~g})=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5) Calculate $\Delta \mathrm{H}_{\mathrm{f}}$ of $\mathrm{CCl}_{4}(\mathrm{I})$ given the following data.

$$
\begin{aligned}
& \mathrm{CCl}_{4}(\mathrm{I}) \rightarrow \mathrm{CCl}_{4}(\mathrm{~g})=+31 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{C}(\mathrm{~g})=+715 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Bond enthalpy }(\mathrm{Cl}-\mathrm{Cl})=+242 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { Bond enthalpy }(\mathrm{C}-\mathrm{Cl})=+338 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

6) Find $\Delta \mathrm{H}$ for the hydrogenation of propene using the data below.

$$
\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathrm{~g})
$$

$\Delta \mathrm{H}_{\mathrm{c}}: \quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}(\mathrm{~g})=-2059, \mathrm{H}_{2}(\mathrm{~g})=-286, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathrm{~g})=-2220 \mathrm{~kJ} \mathrm{~mol}^{-1}$
7) 0.55 g of propanone was burned in a calorimeter containing 80 g of water. The temperature rose by $47.3^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}_{\mathrm{c}}$ for propanone given the specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
8) $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid was reacted with $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide is an insulated cup. The temperature rose from $20.2^{\circ} \mathrm{C}$ to $33.9^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ for the reaction given the specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

Full worked solutions are available to subscribers of www.chemsheets.co.uk.
Subscribe for many more exercises with answers.

TASK 1 - Calorimetry calculations 1

1	$-1650 \mathrm{~kJ} \mathrm{~mol}^{-1}$	2	$-3710 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$-1900 \mathrm{~kJ} \mathrm{~mol}^{-1}$ 4
$-57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$	5	$-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$	6	$-57.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
7	$-212 \mathrm{~kJ} \mathrm{~mol}^{-1}$	8	$-359 \mathrm{~kJ} \mathrm{~mol}^{-1}$	9
10	$-1984 \mathrm{~kJ} \mathrm{~mol}^{-1}$			

TASK 2 - Calorimetry calculations 2

1	$-3800 \mathrm{~kJ} \mathrm{~mol}^{-1}$	2	$-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$	3
4	$+20.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$	5	$-4203 \mathrm{~kJ} \mathrm{~mol}^{-1}$	6
7	$-54.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$	8	$-1145 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
10	$-154 \mathrm{~kJ} \mathrm{~mol}^{-1}$	11 exo, exo, endo	$-1223 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
13	$-685 \mathrm{~kJ} \mathrm{~mol}^{-1}$			
16	$-2649 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$14-126 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$12-503 \mathrm{~kJ} \mathrm{~mol}^{-1}$	

CHALLENGE

$1 \quad 299 \mathrm{~cm}^{3}$
2 too good a challenge to give away the answer!!

TASK 3 - Hess's Law 1

$1+71 \mathrm{~kJ} \mathrm{~mol}^{-1},-564 \mathrm{~kJ} \mathrm{~mol}^{-1},-847 \mathrm{~kJ} \mathrm{~mol}^{-1},-1410 \mathrm{~kJ} \mathrm{~mol}^{-1},-846 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2+51 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 3-85 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 4 \quad-149 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$5-452 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 6 \quad-70 \mathrm{~kJ} \mathrm{~mol}^{-1}$

TASK 4 - Hess's Law 2

$1 \quad-2220 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\begin{array}{ll}2 & +2 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ 5 & -1820 \mathrm{~kJ} \mathrm{~mol}^{-1}\end{array}$
$3-84 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$4 \quad-172 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$6-1075 \mathrm{~kJ} \mathrm{~mol}^{-1}$

TASK 5 - Hess's Law 3

```
1 -103 kJ mol}\mp@subsup{}{}{-1},-95\mp@subsup{\textrm{kJ mol}}{}{-1},-1076\mp@subsup{\textrm{kJ mol}}{}{-1},-698\mp@subsup{\textrm{kJ mol}}{}{-1
2 +391 kJ mol-1 3 +598 \mp@subsup{\textrm{kJ mol}}{}{-1}
5 +300 kJ mol}\mp@subsup{}{}{-1
```


TASK 6 - Mixture

1	$-129 \mathrm{~kJ} \mathrm{~mol}^{-1}$	2	$-2222 \mathrm{~kJ} \mathrm{~mol}^{-1}$	3
4	$-2008 \mathrm{~kJ} \mathrm{~mol}^{-1}$	5	$-184 \mathrm{~kJ} \mathrm{~mol}^{-1}$	6
7	$-1669 \mathrm{~kJ} \mathrm{~mol}^{-1}$	8	$-57.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$	$-125 \mathrm{~kJ} \mathrm{~mol}^{-1}$

