
chidb: Building a Simple Relational Database System from
Scratch

Borja Sotomayor
University of Chicago

borja@cs.uchicago.edu

Adam Shaw
University of Chicago

ams@cs.uchicago.edu

ABSTRACT
We present chidb, a medium to large-scale programming
project where students implement the main components of
a relational database management system, including B-tree
data structures for tables and indexes, a database machine
with registers and a selection of high-level and low-level
instructions, and a SQL compiler targeting that machine.
Moreover, chidb’s SQL compiler’s internal representation
is a direct encoding of the relational algebra, whereby the
theory that might otherwise be relegated to notes and black-
boards is directly connected to practice and experience. The
project uses the C programming language and is demon-
strably suitable for use in advanced undergraduate courses;
we have administered this project through five iterations of
our databases course for advanced undergraduates. chidb

is freely available online and customizable to suit the needs
and tastes of any particular instructor.

Keywords
computer science education; databases; relational database
management systems; SQL

1. INTRODUCTION
Teaching subjects that have immediate practical applica-

tions, like databases, often involves balancing the practical
with the theoretical. Both kinds of knowledge are impor-
tant; they are, ideally, mixed in such a way as to give stu-
dents solid instruction in both areas, stinting on neither.

At the University of Chicago, this principle is apparent in
many of our systems-oriented courses (Operating Systems,
Networks, Databases, etc.), most of which involve an exten-
sive hands-on programming project with a strong theoretical
connection. Furthermore, these projects are designed to be
as realistic as practicable during a quarter-long project. For
example, instead of having students in our Operating Sys-
tems course implement standalone components of the OS,
such as writing a memory allocator as an isolated program-
ming assignment, they work in teams to implement an x86

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’16, March 02 - 05, 2016, Memphis, TN, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3685-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2839509.2844638

OS kernel nearly from scratch using the Pintos project [3].
Similarly, students in our Networks class must implement a
version of TCP that is RFC-compliant to the extent that, at
the end of the quarter, they are able to write socket-based
applications (capable of communicating over the Internet)
that use their TCP implementation instead of the operating
system’s.

Of course, few students will be asked in their careers
(whether in industry or academia) to write an operating
system or their own network stack directly, and doing so
arguably takes time away from gaining more immediately
applicable skills. Even so, we believe that this approach
allows students to understand and appreciate the core con-
cepts of a subject, making the connection between theory
and practice clearer, and enabling them to better engage
with the subject matter after they complete the class.

Our first foray into this style of teaching began in our
major-level Introduction to Databases course, where we de-
veloped chidb: a quarter-long C programming project where
students have to implement a relational database manage-
ment system (RDBMS) largely from scratch, from the file-
based B-trees all the way up to the SQL compiler. By the
end of the quarter, students are able to bootstrap their own
database (without using any instructor-provided samples)
and run a variety of SELECT, INSERT, and CREATE statements
on that database within the system they build themselves.
More importantly, when students run a SQL statement, they
will have written most of the code that is run from the mo-
ment the SQL statement is parsed to when individual blocks
of the B-tree file are read from disk.

The chidb project makes the following contributions to
the teaching of databases:

• Provides a framework for a database course to explore
the complete implementation of a realistic RDBMS, in-
cluding B-trees, its internal architecture, cursors, com-
pilation of SQL queries, and query optimization. Ours
is one on the only projects that spans all these layers,
providing an integral view of the entire RDBMS.

• Allows students to engage directly with concepts that
are typically only covered in the abstract. Notably, our
internal representation of SQL queries is based on rela-
tional algebra (containing sigma, pi and rho abstract
syntax tree nodes, for example), reinforcing in a work-
ing system what the students have otherwise seen only
on paper. The relational algebra is, furthermore, an
especially congenial representation for both reasoning
about and implementing query optimizations.

407

http://dx.doi.org/10.1145/2839509.2844638

Figure 1: chidb architecture

• The project is structured as an open-ended architec-
ture, not as a fixed set of assignments. So while we
provide a number of assignments ourselves, it would be
relatively easy for other instructors to build additional
assignments. All the code is freely available under a
BSD license at http://github.com/uchicago-cs/chidb,
and we provide documentation on chidb’s architecture
and assignments at http://chi.cs.uchicago.edu/chidb.

The rest of this paper is structured as follows. We begin
by describing the architecture of chidb in Section 2, followed
by a summary of the assignments we currently use in Sec-
tion 3, and a discussion of our experience so far with chidb

in Section 4. Next, we discuss related work in Section 5, and
present our conclusions and future work in Section 6.

2. ARCHITECTURE
Consistent with the style of teaching we described in the

previous section, chidb’s architecture is guided by two main
principles:

1. It must replicate, as closely as possible, the architec-
ture of a real RDBMS. We chose to base the architec-
ture of chidb on SQLite [2], particularly by using a
file format that is a subset of the SQLite file format
(all chidb files are valid SQLite files, but not the other
way around.) This feature provides the benefit that
chidb databases can be viewed and operated on from
within the SQLite shell.

2. It must be structured in such a way that students can
focus on database-specific implementation tasks, with
an apparent connection to the theory of databases,
without getting bogged down in orthogonal and un-
interesting implementation details.

In this section, we discuss the chidb architecture in its
fully implemented state, which is summarized in Figure 1.
Section 3 focuses on which implementation tasks could be
assigned to students as part of specific assignments.

2.1 File Format
Like SQLite, chidb uses a single file to store a relational

database. In fact, the chidb file format is a subset of the
SQLite file format and, thus, a chidb file can store any num-
ber of tables, physically stored as a B+-tree (referred to as
a table B-tree), and each table can have records with any
number of fields of different datatypes. Indexes are also
supported, and are stored as B-trees (referred to as index
B-trees).

A detailed file format specification is available in the chidb
website. In summary, a file is divided into equally-sized
pages (typically 1–4 kilobytes), each storing one node of a
B-tree. Each node can contain multiple cells, with a dif-
ferent cell structure depending on the type (table or index)
and level (internal or leaf) of the node. Of special note
are the leaf nodes of table B-trees, where the cells contain
a 〈key, database record〉 pair, where each record represents
one row of the table. Finally, each B-tree has at least one
root node, and the location of this root node is stored in a
special schema table (itself a table B-tree) rooted in page 0
of the file.

Although the file format is remarkably close to the SQLite
file format, to the point that valid chidb files can be read
by SQLite, we do allow students to make the following sim-
plifying assumptions:

• Each table must have an explicit primary key (SQLite
allows tables without primary keys to be created), and
the primary key must be a single unsigned 4 byte in-
teger field.

• Indexes can only be created for unsigned 4-byte integer
unique fields.

• Only a subset of the SQLite datatypes are supported.

• The size of a record cannot exceed the size of a file page
(more specifically, SQLite overflow pages are not sup-
ported). This effectively also limits the size of certain
datatypes (such as strings).

• A user is assumed to have exclusive access to the database
file.

These assumptions were made to simplify the implementa-
tion of many low-level details, so that students can focus on
tasks that directly relate to database concepts (while still re-
quiring a healthy amount of low-level programming). For ex-
ample, although supporting database records that span mul-
tiple pages is a necessary feature in production databases,
its implementation requires a fair amount of low-level pro-
gramming that is algorithmically dull (at least when com-
pared with algorithms for B-tree insertion, query optimiza-
tion, etc.), and ultimately irrelevant to the main thread of
our curriculum.

2.2 B-trees
The B-tree module of chidb is the only part of the chidb

code that reads and manipulates chidb files. It has a well-
defined API with functions to create new B-trees, insert
records, search for records with a given key, etc.

2.3 Database Machine
The database machine (or DBM) is a virtual machine

specifically designed to operate on chidb files, and includes

408

low-level assembly-like instructions such as Integer, which
loads an integer constant into a register, and Eq, which
jumps to a specified address if the contents of two registers is
the same, as well as high-level database-specific instructions
such as CreateTable, which creates a new table B-tree and
stores its root page number in a register, and Seek, which
moves a cursor to point to the first entry in a B-tree with a
given key k, and jumping to a given address if no such entry
exists in the B-tree.

The DBM is inspired by SQLite’s VDBE1 and, in fact,
supports many of the same instructions. There are 36 DBM
instructions, each with up to four operands: P1, P2, P3,
and P4. P1 through P3 are signed 32-bit integers, and P4 is
a pointer to a null-terminated string. The implementation
of these instructions often requires using functions from the
B-tree module.

An instance of the DBM includes the following:

Program A sequence of one or more DBM instructions.
The program is typically produced by the code gener-
ator, but we also provide the ability to load arbitrary
programs easily for the purposes of testing.

Program Counter Keeps track of what instruction is cur-
rently being executed. Certain instructions can di-
rectly modify the program counter to jump to a specific
instruction in the program.

Registers A machine can have an arbitrary number of reg-
isters, each of which can contain a 32-bit signed in-
teger, a pointer to a null-terminated string or to raw
binary data, or a NULL value.

Cursors A cursor is a pointer to a specific entry in a B-tree.

2.4 SQL Compiler
The SQL compiler consumes plaintext SQL programs and

produces DBM programs. We provide a SQL parser that
parses a small but significant fraction of the SQL language,
including, for example, WHERE conditions and natural joins,
but excluding certain others like groupings or nested sub-
queries which are, in our experience, infeasible to imple-
ment within our time frame. The internal representation
the parser targets is an abstract syntax tree that matches
the notation of relational algebra (σ, π, ρ). From a peda-
gogical standpoint, this has the effect of unifying the theo-
retical treatment of certain optimizations—pushing sigmas,
for example—with their practical implementations.

2.5 API
chidb exposes all the above functionality through a simple

API that can be accessed from other C programs simply by
including a chidb.h header file, and linking with a libchidb

library produced by our Makefile. This means that, given
a fully-implemented chidb system, chidb databases can be
used from other C programs in the same way that SQLite
databases can be used through the SQLite API2.

The chidb API, shown in Figure 2, provides functions
to open and close database files, execute SQL statements,
and, in the case of SELECT statements, provide access to the
results of the query.

1https://www.sqlite.org/opcode.html
2https://www.sqlite.org/capi3ref.html

/* Functions to open and close a database file */
int chidb_open(const char *file, chidb **db);
int chidb_close(chidb *db);

/* Takes a SQL statement and compiles it. The resulting
database machine (DBM) is stored in the "stmt"
output parameter */

int chidb_prepare(chidb *db, const char *sql,
chidb_stmt **stmt);

/* Frees all the resources associated with a DBM
previously created with chidb_prepare */

int chidb_finalize(chidb_stmt *stmt);

/* For SELECT queries, step to the next row
in the results */

int chidb_step(chidb_stmt *stmt);

/* Column access functions */
int chidb_column_count(chidb_stmt *stmt);
int chidb_column_type(chidb_stmt *stmt, int col);
const char *chidb_column_name(chidb_stmt* stmt, int col);
int chidb_column_int(chidb_stmt *stmt, int col);
const char *chidb_column_text(chidb_stmt *stmt, int col);

Figure 2: chidb API

2.6 Shell
We provide a command-line shell that can be useful for

interactively testing a chidb implementation (even an in-
complete one). It provides the following functionality:

• Running SQL statements and, in the case of SELECT

statements, displaying their results.

• Running arbitrary DBM programs.

• Parsing SQL and showing the syntax tree produced by
the parser.

• An EXPLAIN directive which, given a SQL statement,
shows the DBM program produced by the code gener-
ator.

3. ASSIGNMENTS
The chidb architecture can support countless assignments

and, in fact, could be used in more that just a databases
course. A data structures class could assign the implemen-
tation of the B-tree module; an introductory systems course
could focus on implementing the DBM; and, a compilers
course could focus on scanning, parsing, optimizing, and
generating code for the DBM set of instructions. This is not
to mention the many ways in which chidb could be modified
or extended even in the context of a databases course.3

We have chosen to structure the chidb project somewhat
differently in each of the years of our teaching it; the most
recent format we used divided the project into four assign-
ments, the first of which is done in pairs, and the latter three
done in teams of four students each.

Assignment 1: B-trees Students implement the B-tree mod-
ule, starting only from the API specification of that
module. At the end of this assignment, fully working

3For example, chidb has never been used in a semester
length course, which would necessitate some adaptation.

409

https://www.sqlite.org/opcode.html
https://www.sqlite.org/capi3ref.html

student implementations (of which there have always
been a few) are chosen as reference B-tree implemen-
tations for the rest of the quarter, and shared with the
rest of the class.

Assignment 2: Database Machine (DBM) This assign-
ment provides students with the instructors’ imple-
mentation of the core DBM (registers, program load-
ing, etc.), but leaving the implementation of the DBM
instructions up to the students. Students must also
implement the cursor data structure, and must do so
in a way that allows the cursor to move to the next or
previous entry in a B-tree in amortized O(1) time.4

In the past, students had to implement the entire DBM
from scratch themselves. This had the advantage of
giving students the freedom to design their implemen-
tation however they wanted, within the context of a
tight specification, of course, instead of being given it
by their instructors. However, as a practical matter,
this made it impossible for our graders to automate
testing of all the different DBM implementations, since
they did not know quite what they would be getting,
and we have since standardized the internal represen-
tation of the DBM.

Assignment 3: Code Generation Students must imple-
ment a code generator which, given a simple SELECT,
INSERT, CREATE TABLE or CREATE INDEX statement, will
generate the appropriate DBM program. A SQL lexer
and parser is already provided for them (implemented
in lex and yacc) which produces an abstract syntax
tree representation of the SQL statement. Students
needed to be able to compile SELECT statements with
any number of fields or * (for which consulting the
database schema is necessary), conjunctions of com-
parisons in their WHERE clauses, and two-way natu-
ral joins (which also entails examining the database
schema), among a few others.

Assignment 4: Query Optimization Students must mod-
ify the compiler to optimize certain queries where pos-
sible. This includes using indexes when indexes are
available, or transforming the tree representation of
the query in accordance with certain well-known op-
timizations, such as sigma-pushing and sigma coalesc-
ing.

Students had two or three weeks to complete each of these
phases of the project. In all but the last assignment, stu-
dents are provided with an extensive set of unit tests they
can use to test their implementation.

Although this is the way we have structured the project,
other instructors could take the chidb architecture, described
in the previous section, and create new assignments or vari-
ations on the existing ones. For example, a possible new
assignment could involve adding support for concurrent ac-
cess and transactions. A variation on an existing assignment
could involve providing a complete implementation of the
DBM (including all the instructions), to spend more time
on the code generation and query optimization assignments,
covering a larger portion of the SQL language (a greater
variety of SELECT statements, for example, or DELETE and

4See Section 4 for colorful feedback on this point.

UPDATE statements). Modifying the compiler to do join or-
der analysis, for example, or to support n-way joins, would
be natural extensions of the optimization exercises.

4. EXPERIENCE
As mentioned above, our department teaches an advanced

undergraduate course entitled Introduction to Databases. The
prerequisites for the course at our department are three
quarters of introductory study in computer science, includ-
ing two quarters doing a substantial amount of C program-
ming and systems programming, with some assembly lan-
guage. These prerequisites have worked in the context of
our curriculum and our student population, and may not
directly translate to other programs of study. In general,
students working on this project must have acquired enough
knowledge of C programming and software development to
tackle a relatively large C programming project, as well as
enough of a sense of the low level operations of a machine
to understand what code generation requires of them. Fur-
thermore, while students in our course work on chidb while
simultaneously learning about databases for the first time,
chidb could also be used in an advanced databases course
where students are assumed to already be familiar with fun-
damental database concepts.

We have taught chidb in the databases course each of the
last five times we have offered it, in five non-consecutive
years between 2009 and 2015. The enrollments in these
courses have ranged from a minimum of 6 students in 2010
to a maximum of 62 students most recently in 2015. (Our
department’s enrollments have, of late, surged across the
board.)

There are two ways to discuss our experience of having
taught chidb. One is from our perspective, and the other
is from the students’ perspective. We will begin with the
students.

Our evidence about students’ experience with chidb is,
admittedly, not statistically rigorous. We have anecdotal
evidence from working with the students directly, since the
authors have been involved in teaching this course five and
three times, respectively, and we also have the students’
course evaluations, which are available online internally at
our institution.

Although we have not quantified our experience of work-
ing with students in person, anecdotally and having inter-
acted with the by now more than 100 students who have
taken this course in some form over the last five years, the
project is generally well liked and valued by those who have
undertaken it. This is not to say it has been universally well
liked, because some students’ work on this project, for the
usual variety of reasons, has been less than stellar. Nonethe-
less, every time we have taught chidb, the project has been
the source of great interest and spurred countless interesting
discussions about the inner workings of this kind of system.
It is a project that appeals very strongly to students who
like to roll up their sleeves and write a lot of code!

As recorded in the college’s post-course surveys, the stu-
dents’ feelings towards the course are positive, on the whole.
The surveys the students are given do not (unfortunately)
ask the students outright whether they liked and/or valued
the course itself; the questions are mostly about the instruc-
tor. Nevertheless, in their comments, students commented
favorably on chidb:

410

The chidb project really is a great learning expe-
rience and also is very cool.

They shared impartial observations on its difficulty:

The projects were very intense and required an
immense investment of time.

And they vented their frustrations:

[The project was] at times an absolute night-
mare...

as well as

I cringe when I hear the word Cursor.

Nevertheless, when the survey asked the students directly
“Were the demands of the course reasonable?”, in the most
recent batch, 34 students responded that yes, the demands
were reasonable, and only one responded no5 (and this is
roughly in line with previous years).

As instructors, per our internal measures, we feel the
project has been a great success! The fact that it has not
received unanimous acclaim from students is, we believe,
entirely to be expected, given its difficulty. The students
emerge with what we hope and expect is a relatively deep
understanding of the diverse machinery that needs to come
together for data to be stored on disk in a sensible way
and efficiently retrieved by queries. Furthermore, having
implemented basic SQL queries “only” up to natural join
and indexes, students develop a great appreciation for the
achievements of a full SQL compiler. In other words, the
knowledge and experience the students gain is well beyond
what they would get merely by writing and executing SQL
queries, however serpentine and clever those queries might
be. When we consider the content of this course alongside
the database courses we took at similar points in our educa-
tions, what our own students learn from having worked on
chidb is much richer in depth and detail.

Still furthermore, and looking at this work as part of the
students’ education more broadly, it is important for stu-
dents to have grappled with a file format and set of data
structures that are engineered for actual use, and are not
exercises contrived for the students’ benefit. Real data struc-
tures (such as B-trees whose nodes fit disk blocks) have a
shape, texture and scope that reaches beyond what students
are able to work with in the usual sandboxes of their intro-
ductory coursework.

5. RELATED WORK
The SimpleDB project [5], while different from chidb in

nearly every particular, is the most current, most similar
work to ours in terms of the role it plays in database in-
struction. chidb was developed roughly concurrently and
independently of any knowledge of SimpleDB, so chidb is
in no way a response to or a critique of SimpleDB. The
philosophies of the two projects are quite different. Broadly
speaking, chidb is in our judgment a narrower project, but a
deeper one in its area. chidb deals with the particular con-
cerns of storing data in B-trees and compiling SQL queries to
operate on that data, in a particular virtual machine frame-
work following SQLite’s example. SimpleDB, by contrast, is

5Not all students respond to the surveys, or to every ques-
tion in the surveys.

struct RA_s {
enum RA_Type t;
union {

struct { char *name; } table;
struct { RA_t *ra; Condition_t *cond; } sigma;
struct { RA_t *ra; Expression_t *expr_list; } pi;
struct { RA_t *ra1, *ra2; } binary;
struct { RA_t *ra;

Expression_t *to_rename;
char *new_name;} rho;

};
Column_t *columns;

};

Figure 3: Excerpt of the RA (relational algebra)
data structure

concerned with the larger scope of database systems, includ-
ing major units on transactions and concurrency. SimpleDB
treats topics that are not part of chidb at all, including user
authentication, buffer management, deadlock detection, re-
covery, and more. If these latter elements of database sys-
tems are of particular importance to a particular curriculum,
then SimpleDB is surely the appropriate choice among these
two.

Within the area of overlap between the two projects, there
are enough technical dissimilarities between them to make
them substantially different from one another:

• chidb stores table data, indexes, and even database
schema information in B-trees. SimpleDB uses a linear
data store for tables.

• chidb uses an internal representation that hews closely
to relational algebra; see Figure 3 for an excerpt.

• The back end of chidb compilation is code generation
to a target virtual machine.

• SimpleDB follows a client/server architecture, with data-
bases stored in collections of files; chidb is a library
that other programs can link with, with each database
stored in a single file.

As a practical matter, SimpleDB is written in Java, while
chidb is in straight C. This might make SimpleDB or chidb
suitable or unsuitable for different academic programs, de-
pending on which programming languages students know
and are expected to use. Unlike chidb, SimpleDB is sup-
ported by a textbook [6].

Going back a bit further, the Minibase framework [4] is
also similar in its educational approach. It is an impor-
tant predecessor to SimpleDB, and named as such in the
abstract of the SimpleDB paper. Like SimpleDB, and like
chidb, Minibase is designed for students to learn databases
by implementing an RDBMS. With respect to its techni-
cal details, Minibase implements B+-tree indexes, as chidb

does, but stores record data in unordered heap files, unlike
chidb. Furthermore, database queries are implemented in
Minibase as different kinds of iterators: iterators for sim-
ple queries, for selection, for joins, etc. This differs from
the compiled-query approach taken by chidb and following
SQLite.

As far as we can tell, Minibase is not an active project,
although we were able to find adaptations of it in recent

411

use (for example, a Java version of Minibase was taught at
Purdue as recently as 2012).

MinSQL [7] is a project similar in design and scope to
Minibase, although its implementation is in Java. We do not
believe this to be an active project. It also worth noting that
a course taught at Berkeley and CMU [1] favored modifying
the codebase of an actual database system (Postgres, in this
case) to working with an educational system (Minibase), on
the grounds that the latter was insufficiently representative
of real-world software.

6. CONCLUSIONS AND FUTURE WORK
We have described chidb, a simple relational database

management system that is small enough to comprehend,
and even implement, over the course of a quarter or semester,
yet complete enough to provide functionality found in many
existing database systems, including the ability to run a va-
riety of SQL statements. Furthermore, chidb’s architecture
lends itself easily to design a variety of programming assign-
ments.

Our experiences using chidb have been, overall, positive.
However, there are still a number of aspects in which chidb

can be improved. The biggest gap in chidb is its assump-
tion that the database file will be used by a single user;
there is no attempt to implement any sort of locking, and
concurrent access to the database will likely result in an in-
consistent state. This is an arguably fair assumption if we
want students to focus on implementing the DBM or the
SQL compiler, but it does not meet our standard of pro-
ducing a system that is as realistic as possible, and it also
precludes instructors from designing assignments revolving
around transactions.

We have in mind a number of medium-scale improvements
to be made in the near future, including the following:

• We have never been fully satisfied with the query op-
timization assignment, since the SQL queries that are
currently supported only lend themselves to some lim-
ited optimizations. Also, the result of these optimiza-
tions is hard to test automatically. While we consider
the first three assignments to be relatively stable, we
expect our next efforts will focus on improving the
fourth assignment.

• We would like to streamline the data structures that
represent relational algebra expressions, and provide
better documentation for them.

• Although our suite of tests gives students the ability to
load arbitrary DBM programs, we realize that debug-
ging those DBM programs using traditional debuggers
can be challenging. We will address this by including a
tool that allows students to run a DBM program step
by step, providing a dump of the DBM registers and
cursors at each step.

Acknowledgments
We owe a large debt of gratitude and inspiration to the cre-
ators of SQLite. It is a remarkably robust, elegant, compact
system, not to mention an immensely popular one. SQLite
has no publications in the academic record, so we are un-
able to provide a paper citation, but chidb is its direct de-
scendant. We acknowledge our colleague Sharon Salveter,

who taught the chidb course in its first two iterations, and
so got the ball rolling with what was at the time untested
work. We are also grateful to Allen Nelson, who imple-
mented the current incarnation of the SQL parser that is in-
cluded with chidb. We appreciate the thoughtful comments
of our anonymous reviewers; they improved the paper.

7. REFERENCES
[1] A. Ailamaki and J. M. Hellerstein. Exposing

undergraduate students to database system internals.
SIGMOD Rec., 32(3):18–20, Sept. 2003.

[2] D. R. Hipp. SQLite (http://www.sqlite.org), 2015.

[3] B. Pfaff, A. Romano, and G. Back. The Pintos
Instructional Operating System Kernel. SIGCSE Bull.,
41(1):453–457, Mar. 2009.

[4] R. Ramakrishnan. The Minibase Home Page (http:
//research.cs.wisc.edu/coral/mini doc/minibase.html),
1996.

[5] E. Sciore. SimpleDB: A Simple Java-based Multiuser
System for Teaching Database Internals. SIGCSE
Bull., 39(1):561–565, Mar. 2007.

[6] E. Sciore. Database Design and Implementation. Wiley,
2008.

[7] G. Swart. MinSQL: A simple componentized database
for the classroom. In Proceedings of the 2Nd
International Conference on Principles and Practice of
Programming in Java, PPPJ ’03, pages 129–132, New
York, NY, USA, 2003. Computer Science Press, Inc.

412

http://www.sqlite.org
http://research.cs.wisc.edu/coral/mini_doc/minibase.html
http://research.cs.wisc.edu/coral/mini_doc/minibase.html

	Introduction
	Architecture
	File Format
	B-trees
	Database Machine
	SQL Compiler
	API
	Shell

	Assignments
	Experience
	Related Work
	Conclusions and Future Work
	References

