This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

Department: Head
Editor: Name, xxxx@email

Chipyard: Integrated Design,
Simulation, and
Implementation Framework for
Custom SoCs

Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison
Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt,
John Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanovi¢, Borivoje Nikoli¢

University of California, Berkeley

Abstract—Continued improvement in computing efficiency requires functional specialization of
hardware designs. Agile hardware design methodologies have been proposed to alleviate the
increased design costs of custom silicon architectures, but their practice thus far has been
accompanied with challenges in integration and validation of complex systems-on-a-chip.

We present the Chipyard framework, an integrated SoC design, simulation, and implementation
environment for specialized compute systems. Chipyard includes configurable, composable,
open-source, generator-based IP blocks that can be used across multiple stages of the hardware
development flow while maintaining design intent and integration consistency. Through
cloud-hosted FPGA-accelerated simulation and rapid ASIC implementation, Chipyard enables
continuous validation of physically realizable customized systems.

B In the face of the slowdown in technology
scaling, sustaining improvements in system ca-
pability requires a greater use of domain-specific
architectures. This era of specialization is being
seen as a new golden age of computer architec-
ture [1], but creates the challenge of escalating
development costs. Differentiated architectures
require productive digital system design methods
for architectural exploration, system integration,
verification, validation, and physical design.

IEEE Micro

Published by the IEEE Computer Society

To reduce development costs, a generator-
based agile design process for hardware has been
proposed and demonstrated through a series of
RISC-V microprocessor chips developed with
small teams [2] and made available as a now
widely used open-source codebase [3]. Designs
captured as generators enable reuse through rich
parameterization and incremental extension. Past
efforts have focused on the module generator
development and an implementation of relatively

© 2020 IEEE

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

2

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Department Head

10°

108

|

107
-
—I
108

Transistors
| Ba

E0S14. Raven-2 E0S16 Raven-3 E0s18 E0520 E0s22 Raven-d Swerve
(2012) (2012) (2012) (2012) (2013) (2013) (2014) (2014) (2015)

‘I
|8 L mfT

E0S24 Hurricane-l ~ CRAFT-0 Hurricane-2 CRAFT-P1 CRAFT-FFT2 BROOM EAGLE GPSSOC EAGLE-X
(2015) (2016) (2016) (2017) (2017) (2017) (2018) (2018) (2019) (2019)

Test Chip (Chronological)

Figure 1. Increasing complexity of custom RISC-V SoC test chips built at Berkeley using the Rocket Chip SoC

generator since 2012.

small, homogeneous processor architectures with
uniform interconnect and core-level configura-
bility. Enabling the development of complex
heterogeneous systems-on-a-chip (SoCs) requires
greater levels of coordination and synchronization
between many disparate open-source designs and
development tools, motivating the creation of a
new unified open-source SoC design framework,
which we call Chipyard'.

Chipyard provides a framework to bring to-
gether a collection of independently developed
open-source tools and RTL generators, allowing
development of heterogeneous SoCs through in-
tegrated design, simulation, and implementation
environments. Chipyard helps alleviate many of
the challenges that exist when using indepen-
dent and uncoordinated open-source tools and
designs, as often experienced in concurrent and
non-uniform feature design iterations, typical in
the agile design process.

Agile SoC Development

A number of RISC-V test chips have been
designed by small groups of students at UC
Berkeley over the past eight years. These designs
have been based on the open-source Rocket Chip
SoC generator [3] that includes Rocket, an in-
order RISC-V core, and supports coherent caches

Uhttps://github.com/ucb-bar/chipyard/

and standard interconnects via the TileLink pro-
tocol. Customizations to test chips based on the
Rocket Chip generator have been performed by
adding multiple generations of vector processors,
peripheral devices, and by replacing the stan-
dard in-order core with an out-of-order core.
The design process outlined in [2] was gradually
enhanced on the physical design front to support
much larger silicon dies and many more placeable
instances in the SoC, resulting in increasingly
complex test chips (Figure 1). The most recent
test chips in this series are representative of
modern SoCs composed of a diverse set of IP
blocks and include multiple cores, accelerators,
and complete analog subsystems, including high-
speed serial links (SerDes), analog-to-digital con-
verters (ADCs) and phase-locked loops (PLLs).

Verification and validation are major com-
ponents of the SoC design cycle. By relying
on many previously verified open-source compo-
nents such as the Rocket core, and incrementally
extending SoCs based on the Rocket Chip gen-
erator, it was often possible to sidestep rigorous
verification and validation steps in this series of
test chips. Each test chip has a focus on testing
either a particular design feature of a module
or a component of the design methodology, and
therefore, the verification of a test chip was
respectively limited to a small set of functionality.

IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ucb-bar/chipyard/

This reliance on open-source generators shifts
the verification challenge from block-level test-
ing to system-integration verification and vali-
dation. Rich module-level configurability in the
generator-based approach allows for quick, itera-
tive design customization, enabled by expansive
configuration and parameter systems. While these
parameter systems enable quick iterations across
many design points, their flexible nature makes
them prone to misconfiguration, underscoring the
need for continuous full-system integrated val-
idation and verification. Rich module-level pa-
rameterization makes it possible to continuously
update the SoC design in an agile way, but does
not inherently aid the design verification or pre-
silicon validation of the chip performance. In
addition, issues relating to on- and off-chip inter-
faces, clock domain crossings, third-party IP inte-
gration, and power management are all vulnerable
to insufficient full-system verification coverage.
Our previous chips have encountered both ver-
ification and validation gaps of this type: one
chip’s cache capacity was inadvertently reduced
to half of its desired size, when the configuration
was changed late in the design process to meet
physical design constraints.

Although design and verification executed by
a small team in an agile manner has a high appeal
for small companies and industrial and academic
research labs, our experiences with test chips
developed through an agile process also identify
some challenges in execution. The increasing
complexity of test chips makes it difficult to
parallelize and distribute effort among the small
number of designers, as architecture definition,
RTL implementation, physical design, verifica-
tion, and validation all take varying amounts
of time, which is difficult to account for. Fur-
thermore, it is difficult to maintain institutional
memory of good design practices, especially in
academic environments and when working with
complex physical design tool flows in deeply
scaled technologies.

Finally, transitioning between process tech-
nologies is a significant undertaking in both sys-
tem and test chip design. The test chips in this ret-
rospective have been designed in several different
process technologies, including IBM 45nm SOI,
ST 28nm FD-SOI, TSMC 28nm, TSMC 16nm
FFC, and Intel 22nm FFL. The generator-based

July/August 2020

approach simplifies process technology transition,
since it allows for adjustment of design param-
eters through high-level descriptions. However,
this flexibility does not propagate across the
abstraction layers to the physical design pro-
cess. Each custom test chip requires significant
manual effort in mapping RTL abstractions to
process-specific components (such as memory
and register-file macros), as well as meeting the
design rules. When generator parameters change
between design iterations, a new rigid physical
design script is often created.

While some of the issues described in this
section are not specific to agile hardware de-
sign methodologies, their visibility increases as
the cost and complexity of other parts of the
flow diminish. Nevertheless, a common theme
throughout our observations relates to integration
and partitioning—on the chip level, and on the
methodology and flow level.

The Chipyard Framework

Chipyard provides a unified framework and
work flow for agile SoC development. Multiple
separately developed and highly parameterized IP
blocks can be configured and interconnected to
form a complete SoC design. The SoC design
can be verified and validated through both FPGA-
accelerated and standard software simulations,
then pushed through portable VLSI design flows
to obtain tapeout-ready GDSII data for various
target technologies. Chipyard also provides a
workload management system to generate soft-
ware workloads to exercise the design.

Chipyard Front-End RTL Generators

The front end of the Chipyard framework is
based on the Rocket Chip SoC generator [2],
[3]. Chipyard inherits Rocket Chip’s Chisel-
based parameterized hardware generator method-
ology [3], including a Scala-based parameter-
negotiation framework, Diplomacy [4], that nego-
tiates mutually compatible parameterizations and
interconnections across all IP blocks in a design.
A unified top-level SoC generator enables the
generation of heterogeneous systems based on pa-
rameterized configurations. Chipyard also allows
IP blocks written in other hardware languages,
e.g., Verilog, to be included via a Chisel wrapper.

Chipyard adds a large corpus of open-source

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

3

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

Department Head

4

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Custom SoC
Configuration
y
RTL Generators
RUEA Accelerators AUIHEE, Peripherals el
Cores Caches P Verilog
¥
RTL Build Process
FIRRTL IR
v v
FireSim Transforms: VLSI Transforms:
FAME Decoupling Top and Harness Split
FPGA Platform Mapping Replace Memories
Assertion/Printf Synthesis Module Promotion
ILA Wiring Module Grouping
RAM Optimizations IO Cell Technology Mapping
¥ ¥]
FireSim Behavioral :
Verilog Verilog VLSl Verilog
—
A 4 l v
FireSim FPGA- Software RTL Simulation Hammer Automated
Accelerated Simulation Commercial Open-Source VLSI Flow

Figure 2. Multiple disparate design flows supported by the Chipyard framework through generators and
transformations. A series of FIRRTL transformations consumes generators with a custom configuration, and
outputs appropriate Verilog and associated collateral for different design stage platforms.

IP generators to the existing Rocket Chip base
library, allowing for the construction of modern
digital SoCs. These include the Berkeley Out-
of-Order Machine (BOOM) generator [5], the
Ariane core [6], the Hwacha vector-unit genera-
tor [7], digital signal processing (DSP) modules,
domain-specific accelerators (including machine
learning and cryptography), memory systems, and
peripherals. The majority of these generators have
silicon-proven instances through the aforemen-
tioned series of test chips.

While some commercial IP vendors have large
collections of proprietary configurable IP for cer-
tain portions of an SoC, Chipyard provides a
publicly extensible open-source alternative for

complete SoCs to support continuing research and
development of specialized state-of-the-art SoCs.

Other open-source SoC design frameworks
focus on tile-granularity customization in many-
core architectures [8], [9], or rely on rigid sub-
systems and proprietary IP [10]. The gener-
ator approach used in Chipyard does not rely
solely on static interfaces for integration of IP
blocks, but allows for dynamic customization
of encodings, memory maps, and buses during
the hardware generation stage, enabling custom
components to be created and integrated at var-
ious levels, including in the MMIO periphery,
as tightly integrated accelerators, and as het-
erogeneous cores and controllers. For example,

IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

through its fine-grained intra-core parameter sys-
tem, the Rocket core can be used for different
purposes in an SoC. Specifically, in several of
our recent test chips, the application cores consist
of fully Linux-capable Rocket cores supporting
RV64GC with floating-point units and virtual
memory support, while the controller cores (e.g.
a power-management unit) are a Rocket core
supporting only RV64IMAC, with significantly
smaller branch prediction and cache resources
and no virtual memory. In essence, a significant
portion of the microcontrollers running firmware
on the SoC can be implemented using variants
of Rocket or BOOM cores. This common core
configuration interface for all software-managed
controllers within the system improves designer
productivity, compared to alternative SoC de-
velopment frameworks that enable drop-in re-
placement core options or only coarse-grained
sizing. Similarly, machine-learning accelerators
have been integrated with Rocket and other core
generators as tightly integrated accelerators [11],
as well as in the form of MMIO periphery ac-
celerators [12], demonstrating the various levels
of possible customization in the Chipyard frame-
work. Figure 3 demonstrates the various degrees
of customization on the core, tile, and SoC levels,
enabled by the Chipyard Framework.

FIRRTL Intermediate Representation

The Chipyard framework currently integrates
tools to address the three main activities within
the custom SoC design cycle: front-end RTL de-
sign, system validation/verification, and back-end
chip physical design. These different stages of the
SoC design flow require different levels of de-
scription of the design. For example, while front-
end RTL descriptions usually use abstract notions
of memory and I/O, back-end RTL requires more
precise descriptions mapped to the underlying
process technology. Similarly, FPGA emulation
will require the digital design to interact with
FPGA-specific interfaces, periphery, and internal
components, which requires particular collateral.
Co-simulation also requires additional hardware
clock gating to control simulation progress.

Chipyard elaborates the front-end RTL de-
sign into a FIRRTL [13] intermediate represen-
tation. Custom FIRRTL transformations convert
the generated FIRRTL design to drive the differ-

July/August 2020

ent flows used at different stages of the design
cycle. Using FIRRTL transformations to enable
multiple concurrent design flows from the same
shared code repository and source RTL helps
to reduce and amortize the environment setup
costs incurred with frequent iterations between
development stages, as is needed for an agile
methodology. This approach is demonstrated in
Figure 2.

While Chisel is the primary language for
design entry in Chipyard using the FIRRTL com-
piler, a FIRRTL-based flow can integrate Verilog
IP through either “Blackbox™ IP integration or
Verilog-to-FIRRTL support by certain Verilog
elaboration tools [14]. Furthermore, while the
Verilog outputs of various stages of a FIRRTL-
based flow can be integrated into standard dy-
namic verification environments or compared us-
ing logical equivalence checking, tools for both
simulation and temporal property checking of
“FIRRTL-native” circuits are openly available
[15].

Verilog or SystemVerilog-based design frame-
works [10], [8] must rely on design-specific cus-
tom scripts or interface adjustments when transi-
tioning between emulation, simulation and phys-
ical design. In contrast to alternative hardware
package management systems [16] or integration
standards like IP-XACT, which focus on metadata
associated with particular IP components to target
different EDA flows, the FIRRTL transformations
used by Chipyard can be applied to any Chisel
design integrated with the Chipyard framework.

Software RTL Simulation

Software-based RTL simulators are a critical
tool in most phases of the design process. Com-
piling a software simulator of a top-level design,
including various IP components, peripheral and
memory models, and an external test harness can
be a time-consuming engineering task. Chipyard
provides build flows for both the open-source
Verilator simulator and proprietary commercial
simulators. Open-source RTL simulators such as
Verilator are also used in industry [17] to provide
efficient and cost-effective digital design veri-
fication. Chipyard provides Makefile wrappers
for direct generation of a simulation executable
which simulates tethered designs with emulated
peripherals. The Makefile wrappers generate the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

5

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

6

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Department Head

Rocket RV64IMAC
Control Core Unit

Rocket/BOOM RV64GC
Application Processor

4 KB 4 KB
| Spad || L11s Rocket RV64GC
RoCC F""“il;'r?““i"‘ ¥ ¥ class MyCustomConfig extends Config(- -
Accelerator s RoCC L2 Accelerator new WithTop - W - z
16 KB 16 KB \ oy =l new WithBootROM ++ Floa-‘i;‘; — =
L1D$ L1I$ N new sha3.withSha3Accel ++ SHA3 RoCC il
T T 7 1 7 Accelerator T|
- new rocketchip.subsystem.WithNBigCores(1)++
| Tilelink Crossbar |
+ + new rocketchip.system.BaseConfig) 16 KB 16 KB
] 512 KB L2 Cache L1D$ L11$
Peripherals
(UART, Block

TileLink Crossbar

Device, NIC, MMIO
Accelerators)

(a) (b)

class MyCustomConfig extends Config(Gemmini Mat. Tile 0: Rocket RV32GC Tile 2: BOOM RV64GC ol Hwacha Vector Lane 0
new WithTop ++ Mult. Accel. - Vector -
new WithExtMemSize((1¢<30) * 2L) ++ | controlter @: i | Wi Accel. V“S:""E(’\‘;;CJ)‘"’"
new WithBlockDevice “ (Ooooool e 1 Rocket FVe1GG v """"
new WithGPIO w |l TP : d xpander
new WithUART ++ Systolic] ns v ROB
new WithJtagDTM -+ Aray][] il i Scalar
new WithBootROM + } 16 KB 16 KB 32KB 32 KB Unit W
new WithMultiRoCCGemmini(1) . L1D$ L11$ L1D$ L1I$
new WithMultiRoCCHwacha(2) ++ 512 KB * * ¥ 3 4 KB Vector Memory
new WithInclusiveCache(capacitykB=1024) ++ Scratchpad 1’ Tilelink Crossbar T{ VI$ r \—,U"" (VMU)
new boom.common.WithLargeBooms ++ e
new boom.system.WithNBoomCores (1) + UART GPIO JTAG 1024 KB L2 Cache
new WithRV32Harts(@) -+
new rocketchip.subsystem.WithNBigCores(1)++ SimBlockDevice SimAXIMem
new rocketchip.system.BaseConfig)

(c)

Figure 3. SoC customization in Chipyard using the Rocket Chip generator configuration system. (a) A typical
Chipyard SoC can include multiple heterogeneous application cores, as well as multiple configurations of
BOOM or Rocket cores that can serve various purposes within the SoC, such as a controller unit. Customization
can be performed across various levels of the SoC, including RoCC accelerators, MMIO accelerators and
peripherals. (b) An example configuration of a simple design, consisting of a single Rocket in-order processor
core and a custom educational SHA3 tightly-integrated accelerator. (c) An example configuration of a more
complex SoC, consisting of a multiple cores of various capabilities (RV32 Rocket in-order control core, RV64
Rocket in-order application core, RVv64GC BOOM 3-wide out-of-order application core), custom accelerators
attached to each core, a standard set of peripherals, and a deeper memory hierarchy with an L2 cache. This
example also includes a simulated block device and simulated backing DRAM memory.

top-level design and matching test harnesses
based on the SoC configuration. Tethered designs
use a host to send transactions that bring up
the simulated SoC and load programs. These
software RTL simulation wrappers enable quick
design cycles and execution of RISC-V binaries
in simulation. While tethered designs are the de-
fault form to generate software RTL simulations
in Chipyard, Chipyard also supports un-tethered
SoC configurations in which the SoC can boot
standalone using a boot ROM.

FPGA-Accelerated Simulation with FireSim

For full-system validation and evaluation, the
Chipyard framework harnesses the FireSim [18§]
open-source FPGA-accelerated simulation plat-
form using the AWS EC2 public cloud. In con-
trast with FPGA prototyping, FPGA-accelerated
simulation correctly models timing behavior of
not only the design under test, but also the I/Os
and peripherals of the SoC. FPGA-accelerated
simulation enables deterministic and reproducible
evaluation with a realistic system environment,
as opposed to FPGA prototyping where each
execution is sensitive to the FPGA environment

IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

and timing depends on FPGA peripheral device
performance (e.g. DRAM performance).

Originally developed as a platform to enable
scale-out simulation for datacenter architecture
research on hundreds of cloud FPGAs, FireSim
necessarily automates the infrastructure manage-
ment and simulation mapping necessary to auto-
matically run high-performance simulations. As
part of the agile chip-design stack, this automa-
tion and integration reduces the level of expertise
required to harness cloud FPGAs for emulation
purposes and thus increases the accessibility of
high performance full-system simulation to a
broad spectrum of designers. FireSim has been
useful in pre-silicon verification, validation, and
software development. From the perspective of
small agile teams with limited resources, FireSim
provides many of the features available in costly
commercial emulation platforms. In contrast with
prior FPGA-accelerated simulation tools, the ac-
cessibility of FireSim through FPGA instances on
the AWS public cloud, together with the automa-
tion of host-target interfaces with the FPGA, have
made FireSim a popular tool within Berkeley and
other academic hardware development users, as
well as emerging startup companies.

FireSim enables co-development of software
and hardware simultaneously, allowing for quick
software adjustment turnarounds based on hard-
ware modifications. Furthermore, FireSim plays
a major role in the performance and functional
validation of processors, since it enables the
identification of bugs deep into simulation ex-
ecution time thanks to FPGA-acceleration with
appropriate peripheral modeling. Unlike many
other open-source hardware development plat-
forms with FPGA support, FireSim’s focus on
simulation and emulation as opposed to prototyp-
ing enables true pre-silicon performance evalua-
tion and validation in a full-system context within
the Chipyard framework. While maintaining its
stand-alone operation as an architectural research
platform, FireSim was transformed into a library
which is integrated into the broader Chipyard
framework. As such, FireSim can now consume
design configurations composed within the Chip-
yard framework, and transform them into FPGA-
accelerated simulations. Furthermore, the FireSim
Golden Gate compiler has been integrated into
the Chipyard framework, so it can now consume

July/August 2020

arbitrary FIRRTL as its input, as well as external
Verilog components necessary for broader system
integration.

Back-End Physical Design with Hammer

For back-end physical design, Chipyard in-
cludes a modular VLSI flow named Hammer [19].
The Hammer VLSI flow provides an abstraction
layer above process-technology- and EDA-tool-
specific concerns, with the goal of increasing
re-use and modularity of vendor-specific com-
ponents of the physical design flow. To this
end, the Hammer VLSI flow utilizes separate
vendor-specific process technology plug-ins and
EDA-tool-specific plug-ins, which implement ab-
stracted software APIs to generate design flow
collateral like Tcl scripts, clock constraints, and
power specifications based on higher-level design
inputs. For example, Hammer will emit process-
and vendor-specific macro placement, obstruc-
tion, and power-strap placement commands from
a high-level process- and vendor-agnostic descrip-
tion of the design. This separation of abstraction
layers between design, process technology, and
EDA tool vendor enables faster adoption of open-
source components.

The Hammer flow aspires to support open-
source tools in conjunction with commercial and
proprietary tools using common levels of ab-
straction. As such, while the first Hammer-based
designs were implemented using proprietary pro-
cess technologies, a plug-in for the ASAP7 [20]
open-source predictive PDK was created in only
a few weeks and is now included in the core
Hammer repository. With this, small teams and
academic users can prototype design flows and
experiment with RTL designs using predictive
or simple physical design kits, while being able
to reuse similar Hammer descriptions for chip
fabrication using advanced process nodes.

Hammer was designed to support hierarchi-
cal physical design flows. Hierarchical physi-
cal design flows are of particular importance in
highly complex custom SoCs, composed of mul-
tiple specialized blocks with a variety of phys-
ical design constraints. Decomposing a design
into these smaller hierarchical components not
only improves the quality of results emitted by
EDA tools, but it also allows the distribution of
physical design tasks among multiple hardware

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

7

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

8

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Department Head

developers, which is important for agile design.
FIRRTL-based grouping and flattening transfor-
mations in Chipyard further assist the hierarchical
physical design flow in Hammer by enabling
users to specify one logical hierarchy in the
source RTL, while choosing a different hierarchy
for physical boundaries through automated trans-
formations.

Workload Management with FireMarshal

Finally, no hardware development environ-
ment is complete without relevant software in-
terfaces. In order to support continuous and con-
current full-system validation, Chipyard enables
shared software development across the feature
design stages through the FireMarshal software
workload generation tool. Shared software de-
velopment is especially important in integrated
validation of specialized and custom designs.
FireMarshal provides a standard and version-
controlled format for software workload descrip-
tions and automates the generation of these work-
loads for various simulation targets. Software
developers can begin work as soon as a functional
model is available (e.g. in the Spike RISC-V
ISA simulator or the QEMU emulator). Those
workloads can then be used without any modi-
fication on RTL simulations and FireSim simula-
tions. In this way, the complex task of software
development and porting (particularly for Linux-
based workloads) can be reused by anyone on
the design team without requiring special exper-
tise. FireMarshal includes several examples and
templates for Linux-based workloads, enabling
fast ramp-up of software development across the
various simulation and emulation targets using
preset Linux kernel configurations and base dis-
tribution images with matching drivers. Chipyard
provides a versioned set of standard RISC-V
software development tools (e.g. GNU toolchain,
QEMU, Spike), as well as a set of equivalent
non-standard RISC-V development tools for non-
standard extensions of custom IP blocks. The
two software development tool sets can be used
interchangeably in the framework. The software
development structure in Chipyard is illustrated
in Figure 4.

Core Application Logic

Libraries
User-space distros
OS Kernel Kernel
Bypass
Drivers
RISC-V Toolchain
I Standard II Custom I
QEMU Spike Software .
Functional ISA RTL | resim | Test
Emulation || Simulation || Simulation P

Figure 4. Shared software development in Chip-
yard using FireMarshal. Designer can use the stan-
dard RISC-V software toolchains, or custom software
toolchains. While the core application logic and li-
braries are consistent with the SoC design, kernel
and driver configuration may change based on the
target platforms or tethered systems. FireMarshal
automates workload generation to enable targeting
multiple platform using a single description.

Concurrent Agile Hardware Development

Together, the components of the Chipyard
framework enable continuously integrated devel-
opment of custom and specialized SoCs, taking
advantages of the accessibility of open-source
tooling. The Chipyard framework enables further
adoption of agile hardware development method-
ologies, by lowering the barrier-to-entry and pro-
viding support and integration of development
environments for different stages of the design
process.

Chipyard is designed for concurrent develop-
ment of multiple custom SoC features by multiple
members of a small team, with each feature going
through iterative design cycles which include
modeling, simulation, system-integration, FPGA
emulation and validation, and physical design.
The structure of Chipyard enables independent
development of the various IP modules and/or
configured SoC instances, with continuous inte-
gration using configured workloads for system
validation and verification.

IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

Open-Source SoC Development

Chipyard aims to be a fully open-source SoC
development framework. However, while open-
source tools and projects within the digital-logic
abstraction layer of the hardware design stack
have been gaining traction and trust in research
and industrial communities, design aspects that
are closer to underlying technologies such as
analog and mixed-signal (AMS) modules and
the manufacturing interfaces still need to identify
appropriate open-source development and inte-
gration models.

In the analog domain, new generator-based
approaches such as the Berkeley Analog Gen-
erator (BAG) [21] are envisioning a portable
and process-technology agnostic generator-based
approach to AMS design. However, this approach
requires tight integration with digital SoC com-
ponents. Future integration of analog generators
and their simulation environments, such as BAG,
into the Chipyard framework will help support
common interfaces and integration between ana-
log and digital components through integrated
tools and automation of design collateral such as
appropriate generated behavioral models of ana-
log blocks, as well as matching physical design
constraints.

In the digital domain, there is a large inter-
dependence of standard commercial EDA tool
stacks with tightly controlled NDA-only physical
design kits due to the complexities of sub-micron
process technologies. This issue has been identi-
fied in the past [22], and open-source hardware
projects choose to address this challenge in var-
ious ways: some publish “patches” to the com-
mon flow scripts provided by EDA vendors [8],
or partially associate hardware design template
implementations with particular process technolo-
gies [23], but are largely obscured elsewhere. The
approach used in the Hammer VLSI flow within
Chipyard is a “plug-in” model. These plug-ins
provide a mapping between the Hammer vendor-
agnostic level of abstraction, to the proprietary
vendor-specific APIs. Open-source physical de-
sign initiatives such as the OpenROAD project
[24] are making encouraging progress towards
addressing this challenge.

July/August 2020

Conclusion

In this article, we presented the Chipyard
framework which was developed to provide an
integrated design, simulation, and implementation
environment to support the growing complexity
and differentiation of custom SoCs. Through in-
tegration with the Rocket Chip generator ecosys-
tem, Chipyard provides a large number of easily
composable and extensible open-source digital
IP blocks. The additional integration of multiple
simulation and implementation tools enables con-
tinuous and simultaneous development for higher-
quality verification, validation, and system inte-
gration. Future integration with analog genera-
tor frameworks will open the door to breaking
the digital-analog divide, and the enabling of
complete open-source custom SoC development
solutions.

Acknowledgments

The information, data, or work presented
herein was funded in part by the Defense
Advanced Research Projects Agency (DARPA)
through the Circuit Realization at Faster
Timescales (CRAFT) Program under Grant
HRO011-16-C0052, and by the Advanced
Research Projects Agency-Energy (ARPA-E),
U.S. Department of Energy, under Award
Number DE-AR0000849. Research was partially
funded by ADEPT Lab industrial sponsors and
affiliates. We thank Intel, STMicroelectronics,
and TSMC for donating prototypes fabrication.
The views and opinions of authors expressed
herein do not necessarily state or reflect those
of the United States Government or any agency
thereof.

B REFERENCES

1. J. L. Hennessy and D. A. Patterson, “A new golden
age for computer architecture,” Commun. ACM, vol. 62,
no. 2, pp. 48-60, Jan. 2019.

2. Y. Lee, A. Waterman, H. Cook et al., “An agile ap-
proach to building RISC-V microprocessors,” IEEE Mi-
cro, vol. 36, no. 2, pp. 8-20, Mar 2016.

3. K. Asanovi¢, R. Avizienis, J. Bachrach et al., “The
Rocket Chip generator,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,
Apr 2016.

4. H. Cook, W. Terpstra, and Y. Lee, “Diplomatic design

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

9

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

Department Head

10

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

patterns: A TileLink case study,” in 1st Workshop on

Computer Architecture Research with RISC-V, 2017.

C. Celio, D. A. Patterson, and K. Asanovi¢, “The

berkeley out-of-order machine (BOOM): An industry-

competitive, synthesizable, parameterized RISC-V pro-
cessor,” EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2015-167, 2015.

F. Zaruba and L. Benini, “The cost of application-

class processing: Energy and performance analysis of a

linux-ready 1.7-ghz 64-bit RISC-V core in 22-nm FDSOI

technology,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629—

2640, Nov 2019.

Y. Lee, C. Schmidt, A. Ou et al., “The hwacha vector-

fetch architecture manual, version 3.8. 1,” EECS De-

partment, University of California, Berkeley, Tech. Rep.

UCB/EECS-2015-262, 2015.

J. Balkind, M. McKeown, Y. Fu et al., “OpenPiton: An

open source manycore research framework,” in Pro-

ceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’16. New York,

NY, USA: ACM, 2016, pp. 217-232.

L. P. Carloni, “Invited - the case for embedded scalable

platforms,” in Proceedings of the 53rd Annual Design

Automation Conference, ser. DAC '16. New York, NY,

USA: ACM, 2016, pp. 17:1-17:6.

. P. Whatmough, M. Donato, G. Ko et al., “CHIPKIT: An
agile, reusable open-source framework for rapid test
chip development,” 2020.

. H. Genc, A. Haj-Ali, V. lyer et al., “Gemmini: An agile
systolic array generator enabling systematic evalua-
tions of deep-learning architectures,” arXiv:1911.09925
[cs.DCJ, 2019.

. F. Farshchi, Q. Huang, and H. Yun, “Integrating NVIDIA
deep learning accelerator (NVDLA) with RISC-V SoC
on FireSim,” in Proccedings of The 2nd Workshop
on Energy Efficient Machine Learning and Cognitive
Computing for Embedded Applications, at HPCA 2019,
2019.

. A. Izraelevitz, J. Koenig, P. Li et al., “Reusability is FIR-
RTL ground: Hardware construction languages, com-
piler frameworks, and transformations,” in Proceedings
of the 36th International Conference on Computer-
Aided Design, ser. ICCAD ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 209-216.

. C. Wolf. (2018) Yosys open synthesis suite - write_firrtl
- write design to a FIRRTL file. [Online]. Available:
http://www.clifford.at/yosys/cmd_write_firrtl.nhtml

. A. Magyar, D. Biancolin, J. Koenig et al., “Golden gate:

16.

17.

18.

19.

20.

21.

22.

23.

24.

Alon Amid

Bridging the resource-efficiency gap between ASICs
and FPGA prototypes,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019,
pp. 1-8.

O. Kindgren, “Invited paper: A scalable approach to
ip management with FuseSoC,” in Workshop on Open
Source Design Automation, 2019.

D. Das Sarma and G. Venkataramanan, “Compute
and redundancy solution for teslas full self driving
computer,” in Hot Chips 31: Stanford Memorial
Auditorium, Stanford, California, August 18-20, 2019,
2019. [Online]. Available: https://www.hotchips.org/
hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf
S. Karandikar, H. Mao, D. Kim et al., “FireSim: FPGA-
accelerated cycle-exact scale-out system simulation in
the public cloud,” in 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA),
June 2018, pp. 29-42.

E. Wang, C. Schmidt, A. Izraelevitz et al., “A method-
ology for reusable physical design,” in Twenty First
International Symposium on Quality Electronic Design,
2020. Proceedings., March 2020.

L. T. Clark, V. Vashishtha, L. Shifren et al., “ASAP7: A
7-nm FinFET predictive process design kit,” Microelec-
tronics Journal, vol. 53, pp. 105-115, 2016.

E. Chang, J. Han, W. Bae et al., “BAG2: A process-
portable framework for generator-based AMS circuit
design,” in 2018 IEEE Custom Integrated Circuits Con-
ference (CICC), April 2018, pp. 1-8.

G. Gupta, T. Nowatzki, V. Gangadhar et al., “Kickstarting
semiconductor innovation with open source hardware,”
Compuiter, vol. 50, no. 6, pp. 50-59, 2017.

M. B. Taylor, “Basejump STL: Systemverilog needs
a standard template library for hardware design,” in
Proceedings of the 55th Annual Design Automation
Conference, ser. DAC '18. New York, NY, USA: ACM,
2018, pp. 73:1-736.

T. Ajayi, V. A. Chhabria, M. Fogaca et al., “Toward
an open-source digital flow: First learnings from the
OpenROAD project,” in Proceedings of the 56th Annual
Design Automation Conference 2019, ser. DAC '19.
New York, NY, USA: ACM, 2019, pp. 76:1-76:4.

is currently a PhD candidate in the

Electrical Engineering and Computer Sciences De-
partment, University of California, Berkeley. His cur-
rent research focus includes parallel and distributed
computing, energy-efficient processors and architec-
tures, and hardware-software co-design. He has a
B.Sc in electrical engineering from Technion — Is-

IEEE Micro

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

http://www.clifford.at/yosys/cmd_write_firrtl.html
https://www.hotchips.org/hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf
https://www.hotchips.org/hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf

rael Institute of Technology and an M.S. from the
University of California, Berkeley. Contact him at
alonamid@berkeley.edu.

David Biancolin is currently a PhD candidate in the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley. He has
a BASc in engineering science from the University of
Toronto. Contact him at biancolin@berkeley.edu.

Abraham Gonzalez is currently a PhD candidate
in the Electrical Engineering and Computer Sciences
Department, University of California, Berkeley. His
research interests are in warehouse-scale comput-
ing, high-performance microarchitectures, and com-
puter architecture tooling. He received a B.S. in
Electrical and Computer Engineering from the Uni-
versity of Texas at Austin in 2018. Contact him at
abe.gonzalez@berkeley.edu.

Daniel Grubb is currently a PhD student in the
Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley.
His current research focus includes navigation sys-
tems for autonomous robots and agile physical
design methodologies. He has a BS in electri-
cal engineering and computer sciences from the
University of California, Berkeley. Contact him at
dpgrubb@eecs.berkeley.edu.

Sagar Karandikar is currently a PhD student in the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley. His re-
search focuses on exploring hardware-software co-
design in warehouse-scale machines. He has a BS
and an MS in electrical engineering and computer
sciences from the University of California, Berkeley.
He is a member of the the Association for Comput-
ing Machinery (ACM) and the IEEE. Contact him at
sagark@eecs.berkeley.edu.

Harrison Liew is currently a PhD student in the
Electrical Engineering and Computer Sciences De-
partment, University of California, Berkeley. His cur-
rent research is advised by Borivoje Nikoli¢ and is
at the intersection of the BWRC and ADEPT labs,
focusing on signal processing generators for multi-
user massive MIMO base stations and its imple-
mentation in integrated circuits using agile physi-
cal design frameworks and methodologies. He re-
ceived a BS and MS from Columbia University in
2016, also in Electrical Engineering. Contact him at
harrisonliew@berkeley.edu.

July/August 2020

Albert Magyar is currently a PhD candidate
in the ADEPT Lab at the University of Cali-
fornia Berkeley, advised by Krste Asanovic and
Jonathan Bachrach. His research interests include
increasing productivity of RTL design and improving
the usability of FPGA simulation. Contact him at
albert.magyar@berkeley.edu.

Howard Mao is currently a PhD candidate at the
University of California, Berkeley. He is a member
of the ADEPT lab and is interested in designing
microarchitectures for datacenter systems. Contact
him at zhemao@eecs.berkeley.edu.

Albert Ou is currently a PhD student at the Uni-
versity of California, Berkeley. He received his B.S.
(2014) and M.S (2015) in Electrical Engineering and
Computer Sciences from UC Berkeley. His research
focuses on energy-efficient vector processor archi-
tectures, VLSI implementation, and data-parallel pro-
gramming models. He is a student member of the
IEEE. Contact him at aou@eecs.berkeley.edu.

Nathan Pemberton is currently a PhD student in the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, study-
ing computer architecture and operating systems for
warehouse-scale computers. He has a BS in com-
puter engineering from the University of California
Santa Cruz, and an MS in computer science from
the University of California, Berkeley. He is a member
of the Association for Computing Machinery (ACM).
Contact him at nathanp@berkeley.edu.

Paul Rigge is currently pursuing a Ph.D. degree at
the University of California, Berkeley, CA, USA. He
received the B.S. degree in electrical engineering and
in computer science from the University of Michigan,
Ann Arbor, MI, USA in 2012. His current research in-
terests are agile hardware methodologies for wireless
systems. Contact him at rigge@berkeley.edu.

Colin Schmidt is currently a PhD candidate at the
University of California, Berkeley, where he works on
architecting, implementing, and building software for
vector accelerators. He has a BS in electrical and
computer engineering and computer science from
Cornell University. He is a student member of the
Association for Computing Machinery (ACM). Contact
him at colins@berkeley.edu.

John Wright is currently a Ph.D. candidate in the
Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley. He

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

11

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.2996616, IEEE Micro

Department Head

received the B.S. degree (2011) from the Univer-
sity of Kentucky and the M.S. degree (2017) from
the University of California, Berkeley. He was previ-
ously with Cypress Semiconductor. Contact him at
johnwright@berkeley.edu.

Jerry Zhao s currently a PhD student in the De-
partment of Electrical Engineering and Computer
Sciences at the University of California, Berkeley,
studying the microarchitecture of high-performance
processors. He received a BS in Electrical Engineer-
ing and Computer Science from the University of
California, Berkeley. He is a student member of the
Association for Computing Machinery and the IEEE.
Contact him at jzh@berkeley.edu.

Yakun Sophia Shao is currently an assistant pro-
fessor in the Department of Electrical Engineer-
ing and Computer Sciences at the University of
California, Berkeley. She has a PhD in computer
science from Harvard University. Contact her at
ysshao@berkeley.edu.

Krste Asanovi¢ is currently a professor in the
Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley. He
has a PhD in computer science from the University
of California, Berkeley. He is a Fellow of the IEEE
and the Association for Computing Machinery (ACM).
Contact him at krste@berkeley.edu.

Borivoje Nikoli¢ is the National Semiconductor Dis-
tinguished Professor of Engineering at the University
of California, Berkeley. He has a PhD in electrical and
computer engineering from the University of Califor-
nia, Davis. He is a Fellow of the IEEE. Contact him at
bora@eecs.berkeley.edu.

1 2 IEEE Micro

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 25,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

