Chlorine Safety: The Rest of the Story

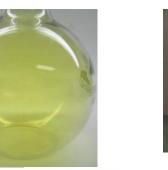
April 25, 2013

PA-AWWA 65th Annual Conference Hershey, PA

Gary M. Lohse, P.E., Regional Sales Manager, Severn Trent Services

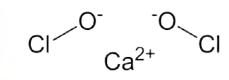
Topics to Be Covered

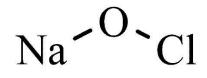
- Background
- Solid Chlorine
 - Calcium Hypochlorite
- Liquid Chlorine
 - Commercial (Bulk)Sodium Hypochlorite
 - On-Site Hypochlorite Generation
- Gas Chlorine
 - Gas Basics
 - Your Father's Chlorine Safety
 - Containment Systems
 - Automatic Shut Off Valves
 - Emergency Scrubber Systems
- Summary



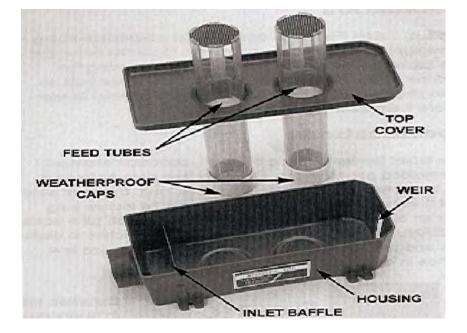
Potable Water Disinfection

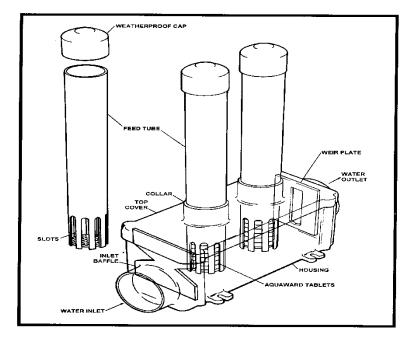
- Chlorine Based
 - Calcium Hypochlorite
 - Commercial hypochlorite
 - Gas chlorination
 - On-site hypochlorite generation
 - Chlorination-De-chlorination
 - Chloramines
 - Chlorine dioxide
- Alternate
 - UV disinfection
 - Ozone




qdbaigon vrice ibc

a.com





Calcium Hypochlorite Tablet Feeders

They are not complicated

Calcium Hypochlorite Tablet Feeders

- Safe and simple
- Low initial cost
- Low annual maintenance
- Typically used for smaller Systems

Calcium Hypochlorite

Advantages	Disadvantages
Very effective at typical pH	Difficult to dose
Proven & reliable	Reacts with ammonia
Leaves a residual	Effectiveness decreases at high pH
Safety	Safety
Easily stored	Dust concerns
Stable as solid	 Incompatibility with solvents
Not highly regulated	Safety issues often overlooked

Calcium Hypochlorite Safety Lesson

Spontaneous fire in SUV cause by calcium hypochlorite mixing with a solvent which caused the death of two children

Commercial Sodium Hypochlorite

Typical Sodium Hypochlorite Dosing Station

Commercial Sodium Hypochlorite Highlights

- Delivered to site in usable liquid form
- Delivered as 12-15% chlorine
- Major system
 components include
 1) storage tanks, 2)
 metering pumps 3)
 analytical
 instrumentation

Commercial Sodium Hypochlorite

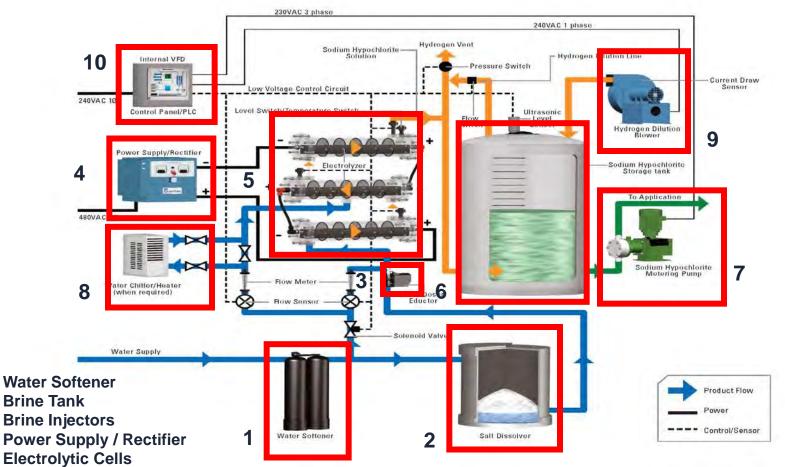
Advantages	Disadvantages
Very effective at typical pH	Reacts with ammonia
Proven & reliable	Effectiveness decreases at high pH
Widely used for water	Concentration decays quickly
Leaves a residual	THM Formation
Simple chemical feed system	High cost per pound
Low capital cost	
Safety	
 Liquid safer & more familiar than Gas 	Can cause severe burns
No make down required	Potential for gas formation
Not highly regulated	Secondary Containment required
	Safety issues often overlooked

On-Site Sodium Hypochlorite Generation

On-site Sodium Hypochlorite Highlights

- Delivered to site as salt
- Sodium hypochlorite produced on-demand with minimum storage
- 0.8 % sodium hypochlorite solution produced
- Utilizes DC current, salt, water

Typical 24 lb On-Site Hypochlorite Generation System


On Site Sodium Hypochlorite Generation

$NaCI + H_2O + 2E = NaOCI + H_2$

- For each lb. equivalent of Cl2:
 - Salt (NaCl) 3.0 lbs
 - Softened Water 15 gal
 - Electrical energy 2 kWh
- For each pound of Cl2 equivalent produced:
 - (15 gallons of 0.8% concentration Sodium Hypochlorite)
 - 1/35 lb. of H2 gas produced (5.6 ft3)
- H2 gas Immediately diluted upon production with air blower 100:1 to reduce H2 to 25% of LFL

On-site Sodium Hypochlorite Generation

6. NaOCI Tank

1.

2.

3.

4.

5.

- 7. NaOCI Dosing System
- 8. Water Chiller / Heater
- 9. Hydrogen Dilution system
- 10. Control Panel

On-Site Hypochlorite Generation System Schematic

On-site Sodium Hypochlorite Generation

On-Site Generated Sodium Hypochlorite

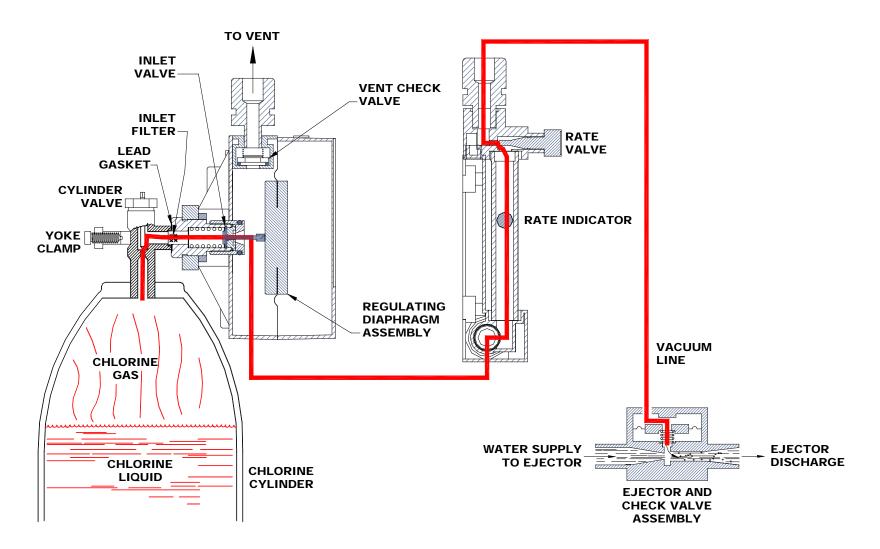
Advantages	Disadvantages
Very effective at typical pH	Reacts with ammonia
Proven & reliable	• Effectiveness decreases-high pH
Often used for water	THM Formation
Leaves a residual	More complex process than Bulk
Minimal Concentration decay	Higher capital cost than bulk
 Low cost per pound 	
Safety	Safety
0.8% liquid safer than Bulk	Can cause severe burns
 Deliver & Store salt. Small quantity of chlorine on-site 	 Potential for gas formation
Not highly regulated	Secondary Containment required
 Secondary containment not required 	Safety issues often overlooked

Chlorine Gas Feed Systems

Typical Chlorine Gas Feed System

Chlorine Gas System Highlights

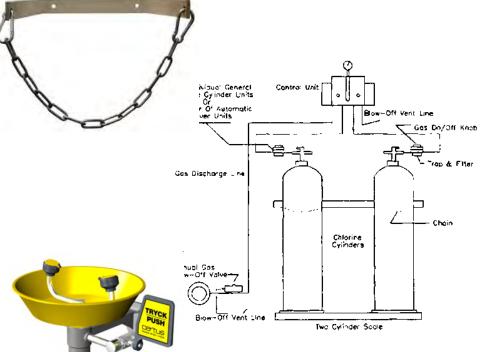
- Delivered to site as gas in cylinders or containers or rail cars
- Stored on-site in original containers
- Chlorine removed from containers as liquid or gas
- Mixed with water prior to injection


Automatic control valve controlled by residual

Gas Properties Comparisons

	Chlorine (Cl ₂)	Sulfur Dioxide (SO ₂)	Ammonia (NH ₃)
Detectable Odor:	1.0 PPM	3 - 5 PPM	5 PPM
Throat Irritation:	5.0 PPM	8 - 12 PPM	400 PPM
Coughing:	20 PPM	20 PPM	1700 PPM
Dangerous in 30 - 60 Min.:	40 - 60 PPM	400 - 500 PPM	2500 - 4500 PPM
Specific Gravity (Air=1.0):	2.49:1	2.26:1	0.596:1
Color:	Yellow-Green	Colorless	Colorless
Solubility in Water (Lbs/Gal) :	0.1216	1.9	4.417
Expansion Factor (Liquid/Gas):	1:457	1:73	1:146

 Of the three gases, Chlorine (Cl₂) is the most commonly used in the water and wastewater industry, followed by Sulfur Dioxide (SO₂), and Ammonia (NH₃).

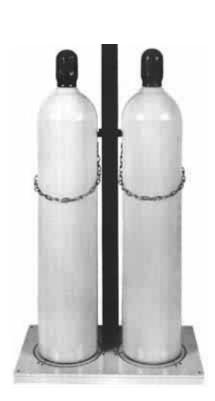

How Gas Vacuum Feeders Work

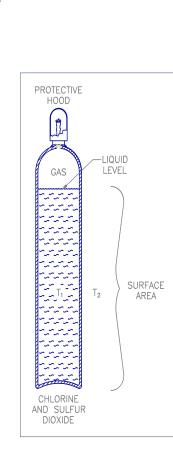
Your Father's Chlorine Gas Safety

- Pressurized systems
- Dangers Signs
- Ammonia bottle to find leaks
- Cylinders vertical, containers horizontal
- Chain cylinders together
- Keep cool and away from combustibles
- Eye wash

Modern Chlorine Gas Safety

- Significant Technical Advances
- Residual analyzer with feedback loop
- Non-pressurized vacuum systems
- Chlorine gas leak detector
- Alarm Systems / SCADA
- Automatic shut off valve
- Vega scrubber system for small leaks
- Scrubber system for gas containment
- Positive pressure breathing apparatus
- Specialized chlorine safety kits
- Fully automated system to contain leaks
- Federal, state and local regulations
- Written Emergency Procedures


FST™

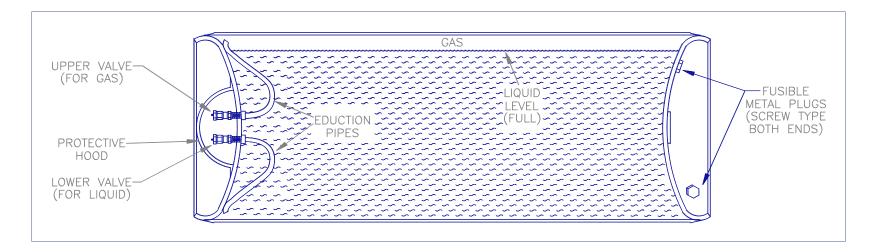


Chlorine Gas Storage Cylinders

Fusible Plug

Chlorine Gas Cylinders

Capacity 1 to 150 lb

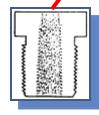

150 lb. predominate

One opening - valve connection

Standard cylinder valve with pressure relief device &fusible metal plug

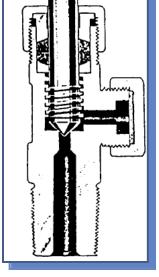
Fusible plug melts at 158-165°F

Ton Containers



- Capacity 2000 lb.
- Two identical valves
- Can use as gas feed (upper valve)
- Can use as liquid feed with vaporizer (lower valve)
- Six (6) fusible plugs three (3) in each end, melt at 158-165°F

ONE-TON CONTAINER LEAK SOURCES



Sides and Heads of Container Fusible Plugs and Feed Valves

Fusible Plug Core Fusible Plug Threads

Valve Packing Valve Seat Valve Threads – In & Out & Nut Broken Valve – usually at container thread

Chlorine Gas

Advantages	Disadvantages
Very effective at typical pH	Reacts with ammonia
Proven & reliable	• Effectiveness decreases-high pH
Widely used for water	THM Formation
Leaves a residual	• Leaves residual - potential declor
Low Capital Cost	
 Low cost per pound 	
Safety	Safety
Smaller room area required	Gas phase dangers
Widely used in industry	• Higher risk -catastrophic accident
 Significant advances in safety systems decrease risk 	 Highly regulated – OSHA, NFPA.USEPA, USDHS
	More training & reporting required

Chlorine Containment Systems

Typical Chlorine Containment Systems for Ton Container

Chlorine Containment Highlights

Steel shell containment system

Available for 150 lb. cylinders or one ton containers

Chlorine Containment Systems -150# Cylinder

Typical 150 Lb Cylinder Containment System 25

Chlorine Containment Systems

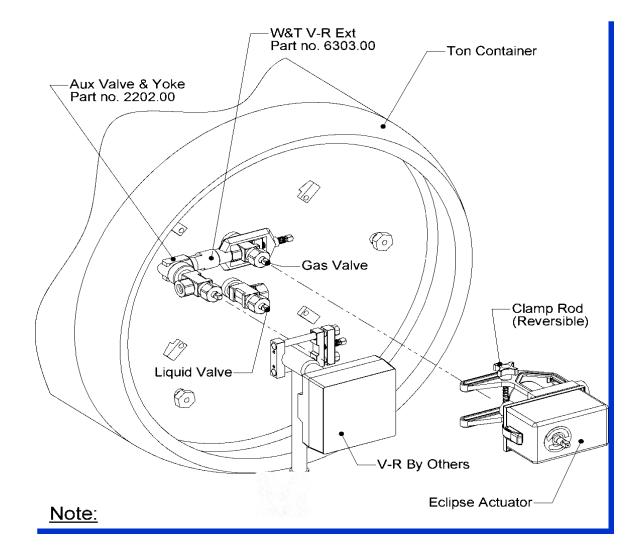
150 Lb Cylinder

One Ton Container

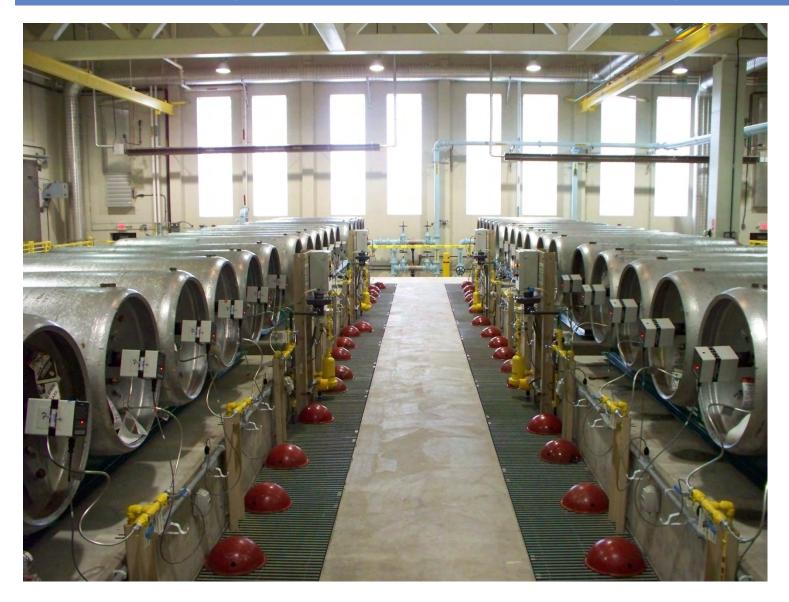
Chlorine Containment Systems

Advantages	Disadvantages
Often used for wastewater	Relatively Expensive
Proven & reliable	One containment system required for each connection (cylinder or container)
Can reuse any chlorine captured	Extra time to change out cylinders or containers
Does not shut feed system down upon leak	
Safety	Safety
Effective for leaks at tank	No protection from leaks in line
 No release of chlorine at all for leaks at tank 	
Can enter room after leak	

Automatic Valve Shut Off Systems

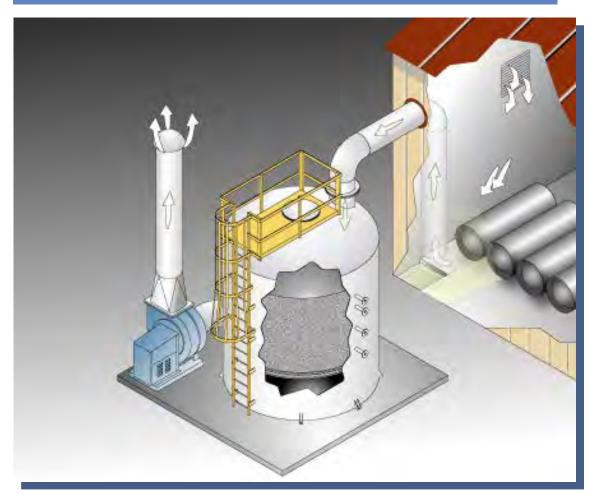


Automatic Actuator - 150 Lb Cylinder


Automatic Valve Shut off System Highlights

- Actuators mount directly to standard valve assemblies on ton containers and cylinders
- Fully automated system to automatically close the valves
- Can be activated by
 - Leak Detector
 - Panic or Emergency Button
 - SCADA and Fire Alarm System

Mounting the Emergency Actuator


Multi Tank System Automatic Shutoff System

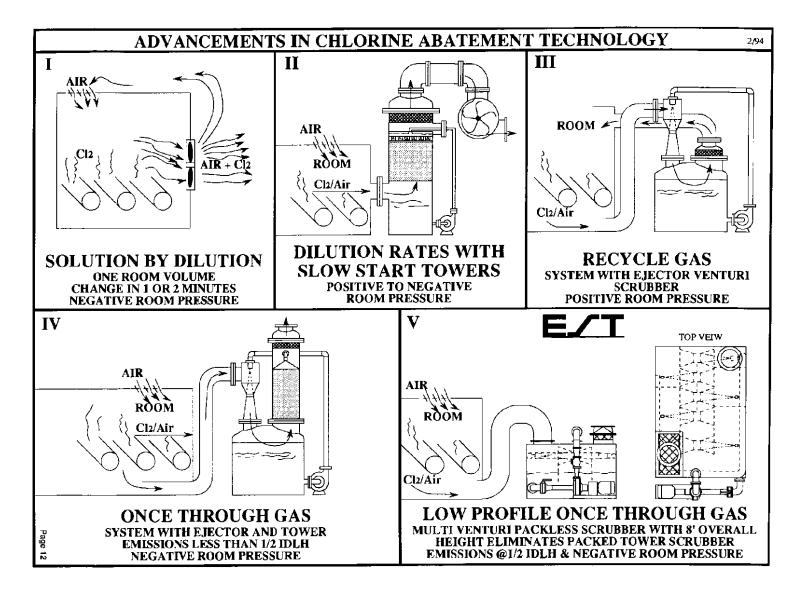
Automatic Valve Shutoff Systems

Advantages	Disadvantages
Fully automatic system	One system required for each tank in service
 Simple to operate and maintain 	 Increases time to change out tank
Available for cylinders and containers	
Safety	Safety
 Protect against line leaks 	
	 Does not protect against plug or tank failure
Completely automated	
Ŭ	tank failureSome gas leaks in room prior to

Emergency Chlorine Scrubbers

Emergency Chlorine Scrubber Highlights

Wet or Dry Scrubbers Available


Major Components: 1) Instrumentation for activation 2) Exhaust Blower, 3) Treatment System 4) Vents to Atmosphere

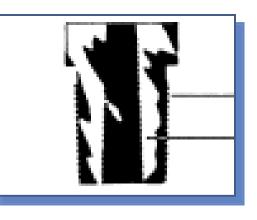
Fully automatic – Start and stop based

Chlorine Room Design Very Important

Typical Emergency Chlorine Scrubbers System

Emergency Chlorine Scrubber History

Emergency Chlorine Scrubber Design


FUSIBLE PLUG WORST-CASE

- Melts at approximately 160 °F
- Cl₂ at 80 °F = 117 psia vapor pressure
- Cl₂ at 160 °F = 325 psia vapor pressure
- 0.34" diameter orifice = 437 lbs/min at 160 °F
- Ton Container liquid plug empties ~ 5 minutes
- 437 lbs/min = 2380 scfm


Keep room at negative pressure

- Trend is to specify 3,000 scfm systems for one-ton containers.
- 150 lb Cylinders: Gas Leak Rate is 20 lbs/min = 110 scfm
- Scrubber Rate: Typically 250 cfm

Gas Chlorine Room Design

Typical Gas Chlorine Room

Room Containment Design Considerations

Chlorine gas is heavier than air

Must Contain gas and Liquid Chlorine

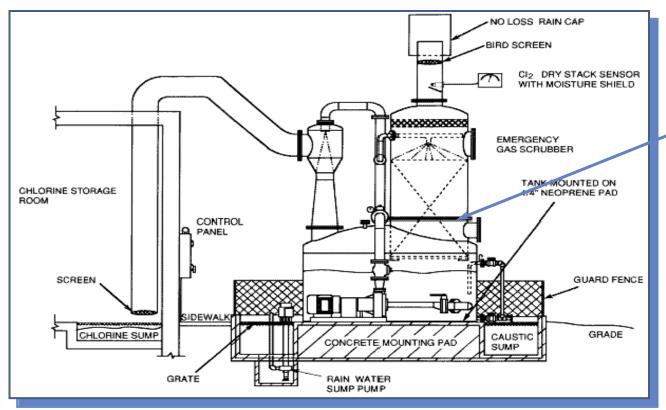
Pick up duct should be 12-18 inches above floor

Slope floors – confined corner sump

Step down doorways, gratings covered

Flood room to check for liquid escape routes

Gas Detector 12 inches off floor


Dual Rooms – Dual Intakes

Emergency Chlorine Scrubbers

Types of Emergency Chlorine Scrubber Systems

- 1. Wet Packed Emergency Chlorine Scrubber Systems
 - Utilizes caustic to neutralize chlorine
 - $Cl_2 + 2 \text{ NaOH} \Rightarrow \text{NaOCl} + \text{NaCl} + H_2O + 628 \text{ BTU/lb } Cl_2(g)$
 - Upwards airflow, downwards chemical flow
 - Produces hazardous waste material
- 2. Wet Pack-less Emergency Chlorine Scrubber Systems
 - Same chemical reaction as packed tower
 - $Cl_2 + 2 \text{ NaOH} \Rightarrow \text{NaOCl} + \text{NaCl} + H_2O + 628 \text{ BTU/lb } Cl_2(g)$
 - Utilizes ejector venturi
 - Produces hazardous waste material

Emergency Chlorine Scrubbers

High Performance Packing Media

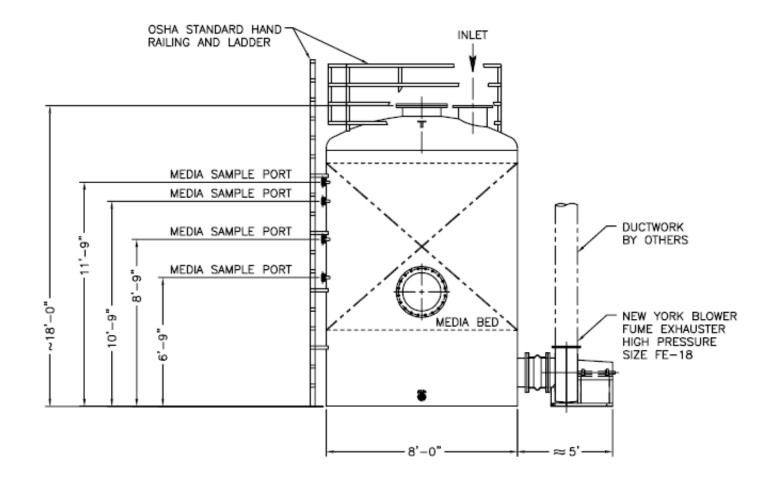
Typical Wet Ejector Venturi / Packed Tower

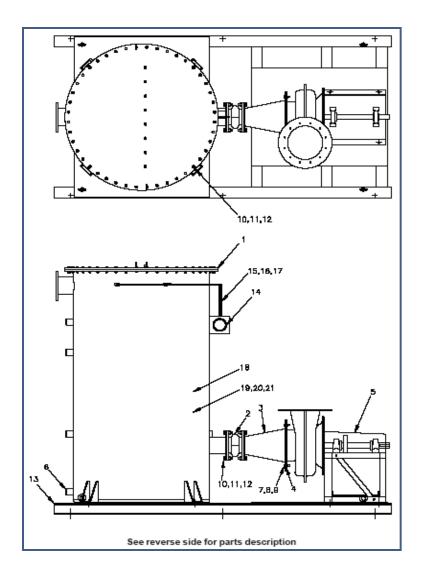
Dry Emergency Chlorine Scrubbers

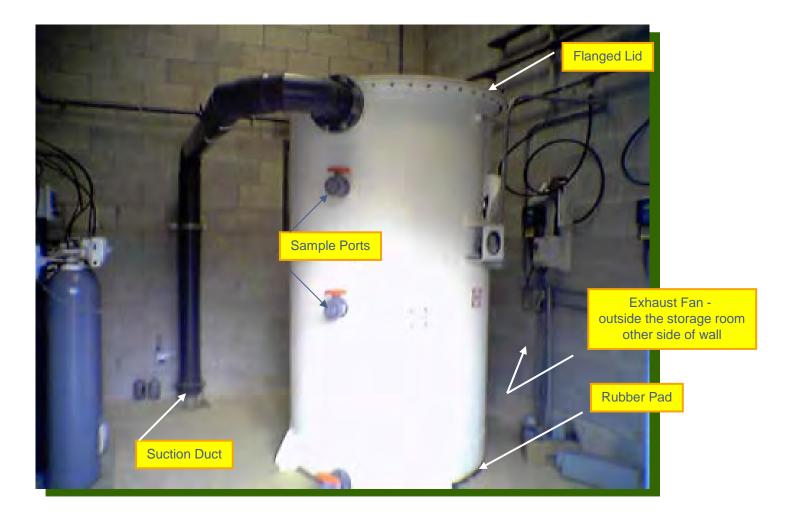
- 3. Dry Emergency Chlorine Scrubber Systems
 - Latest innovation in emergency scrubbers
 - Utilize dry 4 mm impregnated activated alumina beads
 - Cl2 + STS media \Rightarrow NaCl (Salt)
 - No liquid chemicals required –media lasts forever
 - Produces non-hazardous waste material landfill
 - Automatic operation minimum maintenance

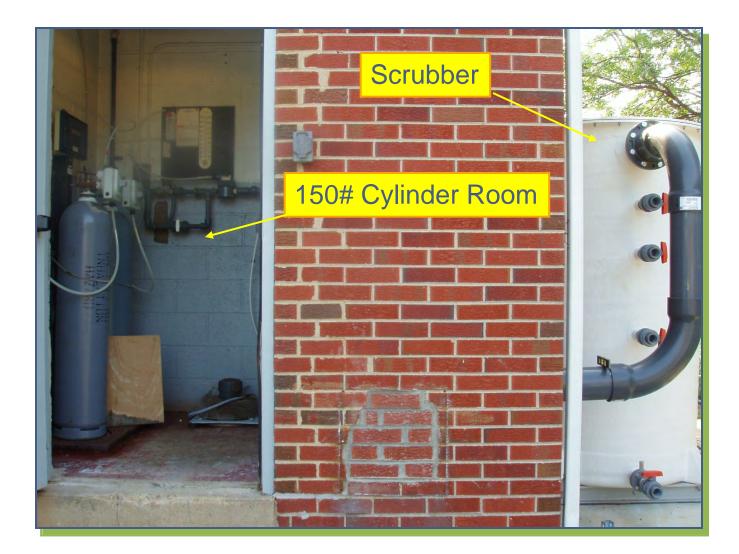
Dry Media Scrubber Features & Benefits as Compared to Traditional Caustic Scrubbers

- No chemical maintenance
- New as well as exhausted media is non-hazardous
- One moving part blower
- No chemical pumps
- Chemical leak containment is not required
- No heaters required in cold climates
- Safe
- User-friendly
- Dependable operation
- Tested and certified
- Low cost of ownership




Type "STS" 4 mm impregnated activated alumina beads


Dry Media Scrubber (one ton container)


Skid Mounted Dry Scrubber for 150 Lb Cylinder

150 # Cylinder Scrubber Installed In Storage Room

Dry Scrubber Installed Outside Storage Room

Dry Scrubber Skidded Assembly

Scrubber Dry Media Refill

Frent Services 45

VENT EXHAUST GAS ARRESTOR

- Treat vacuum regulator vent line
- Reduces room corrosion and outside releases
- Five gallon HDPE disposable bucket
- Dimensions are 10" Square x 15" Tall
- Passive No fans required
- Pressure loss is less than same length of tubing
- Weighs 35 pounds with 'STS' 4 mm media beads
- Scrubs over 3 pounds of chlorine
- Media is non-toxic in fresh or spent forms
- Stackable for gas-side series mounting
- Visible Exhaustion Indicating Strips

Emergency Chlorine Dry Scrubbers

Advantages	Disadvantages			
Fully automatic systems	 Like insurance – often are never used because not needed 			
Dry media scrubbers require minimum maintenance	Room design considerations			
Medium capital cost				
 Cost benefit to using gas significant 				
Safety	Safety			
 Recommended by Ten States 	Cannot enter room without safety equipment until cleared			
Reduce liability significantly				
Proven safe and reliable				

Safety Option Matrix – Cost vs Benefit

<u>Safety</u> Option	Description	Capital Cost	<u>O&M</u> Costs	Cost of Chlorine	Room Coverage	Ease of Operation	Operator Safety
1	<u>Gas - Auto Value</u>	Low	Low	Low	Valve Only	Easy	Medium
2	<u>Gas – Container System</u>	High	Low	Low	Cylinder	Medium	Medium
<u>3</u>	Gas- Wet Scrubber	High	High	Low	Full Room	Medium	High
4	<u>Gas - Dry Scrubber</u>	High	Low	Low	Full Room	Easy	High
5	<u>Commercial Sodium</u> <u>Hypochlorite</u>	Low	Low	High	None	Easy	High
<u>6</u>	<u>On-site Hypochlorite</u> <u>Generation</u>	High	Medium	Medium	None	Easy	High

Summary

- Chlorine gas, commercial hypochlorite and on-site hypochlorite are all very effective methods of disinfecting wastewater
- Commercial hypochlorite avoids many of the safety issues associated with chlorine gas but the cost is significantly more per pound of chlorine
- On-Site hypochlorite generation also avoids many of the safety issues associated with chlorine gas but with a lower cost per pound of chlorine than commercial hypochlorite
- There are various methods to improve chlorine gas safety including containment systems, automatic shutoff valves and emergency scrubbers
- Dry media emergency scrubbers have significantly less operation and maintenance costs compared to wet scrubbers
- A life cycle cost analysis should be completed to properly assess the costs and benefits of each safety solution

Contact:

Gary M. Lohse, P.E. Regional Sales Manager Severn Trent Services 3000 Advance Lane Colmar, Pa 18915 Cell: (215) 859 - 3814 Direct: (215) 997-4052 Fax: (215) 997-4062 Email: glohse@severntrentservices.com

www.severntrentservices.com

