# CHLOROTHIAZIDE FOR TREATMENT IN TOXEMIAS OF PREGNANCY 

by
M. D. Adatia, M.D., F.C.P.S. F.I.C.S., D.G.O., Bombay.

Chlorothiazide is now becoming a very popular and an ideal diuretic. It is an extremely potent and orally effective non-mercurial diuretic agent, and was synthesized by Novello \& Sprague in 1957. Its principal action is substantially different from mercurial and other diuretic agents and is also effective in combination with standard hypotensive drugs for the treatment of hypertension. 'Chlotride', manufactured by Merck, Sharp \& Dohme, was tried in cases of toxemia of pregnancy and its effects were studied.

## Chemistry and Pharmacology

It is known chemically as 6-chloro7 -sulfamyl-1, 2, 4-benozothiadiazine1, 1-dioxide, and has been designated by the generic name of 'chlorothiazide'. It belongs to a class of heterocyclic compounds of which the parent compound is benzo- $1,2,4$-thiadiazine.

It is a colourless crystalline compound with a molecular weight of 295.7. It has low solubility in water but is readily soluble in dilute aqueous sodium hydroxide. It is soluble in buffer or urine to the extent of about 50 and 150 mg . per $100 \mathrm{c.c}$. at pH 4 and 7 , respectively.

Its clinical trials have been preceded by extensive studies in laboratory animals, showing that even when
taken by mouth, it is uniformly and rapidly absorbed; its action starts within a few hours (Baer et al). It does not develop tolerance even after prolonged administration, and is virtually free from gastrointestinal or other disturbing side effects. It is eliminated rapidly by the kidney. At effective doses the compound does not alter significantly glomerular filtration rate or renal plasma flow. It has also ability to counteract the salt retention of adrenocortical steroids. It has a high therapeutic index, the oral acute lethal dose being 8.5 gm. per kilogram of body weight in mice and more than 10 gm . per Kg . in rats, i.e. hundreds of times in excess of the maximum therapeutic dosage in man.

It is mainly a saluretic agent, markedly increases the excretion of sodium and chloride and also possesses carbonic anhydrase inhibitory action (Ford \& Moyer). This effect seems to be specific for the renal tubular mechanism. The compound is not concentrated in erythrocytes or the brain in sufficient amounts to influence the activity of carbonic anhydrase. It does not produce acidosis, or any electrolyte imbalance.

## Etio-pathology

The exact cause of toxemia of pregnancy is still not known but one
thing seems to be certain that there is some metabolic defect which leads to abnormal handling of water and electrolytes. Dieckman has demonstrated that elimination of water ingested or injected is delayed in pregnant women and to a greater degree in women with toxemia of pregnancy. Hughes \& Venning have observed that sodium retention in toxemic women is due to increased excretion of adrenocortical steroids. In any case factors responsible for excessive sodium retention or increased reabsorption should be responsible in the pathogenesis of toxemia of pregnancy (Chesley).

Increased ingestion of water leads to diuresis but with this excretion of sodium is diminished. Slight edema is easily cleared out by administration of ammonium chloride. But when edema is more it does not bring satisfactory diuresis. Assali has found that toxemic women who have decreased sensitivity to ammonium chloride are unable to mobilize the retained amounts of sodium. Mercurials bring good diuresis in cases of edema with congestive cardiac failure, but are not advisable for cases of nephritis because they might damage the tubular mechanism by their direct toxic action. Recent biopsy studies have shown that the lesion of toxemia resembles nephritis (Dieckman \& Potter), and thus it would be inadvisable to use mercurials for toxemic patients.

Acetazolamide gives excellent diuretic effect in edema states of pregnancy but develops resistance by prolonged administration and is unable to control edema in congestive cardiac failure. A synthesis of a non-mercurial compound possessing
biological properties of both organic mercurials and carbonic anhydrase inhibitors has brought into existence 'Chlorothiazide'. It has undergone repeated trials and research (Novello \& Sprague).

Ford \& Spurr have studied and shown that Chlorothiazide is efficient in congestive heart failure and in pregnancy edema. Acetazolomide is reported to have developed drug resistance (Hanley et al) while chlorothiazide maintains effective diuresis even after prolonged administration and is effective in many cases that do not respond to other diuretic agents (Finnerty et al). It is also suggested by observation and study (Finnerty et al) that possibly the action of chlorothiazide is not through inhibition of carbonic anhydrase but possibly by direct action on renal tubular transport mechanism. Trials made by Freis et al show that oral administration of chlorothiazide has antihypressive effect and it also potentiates the effects of the hypotensive drugs and thus is a more suitable drug for toxemic cases. It is observed by some workers that the antihypertensive effects of chlorothiazide, apart from the effect of excessive salt depletion, may be due to direct hypotensive action (Hollander and Wilkins). It is also interesting to note that the blood pressure of normotensive is not reduced by this drug.

Another advantage is that potassium level is not disturbed by even prolonged administration of chlorothiazide. Possibly because it is rapidly absorbed and starts its action immediately and gets eliminated very soon by the kidney. The patients get sufficient time to get satisfactory distribution of ingested potassium be-
fore the second dose is given. Thus electrolyte depletion is not likely to take place within the dosages advocated even if it is continued for a long time. Only in exceptional circumstances when the drug is continued in combination with diets very low in sodium or when external loss is occurring due to protracted vomiting, diarrhoea or fever, that it might lead to severe electrolyte imbalance when potassium administration might be required. But further experience and time is necessary to determine the effectiveness of the drug in such conditions.

## Clinical Material and Results

40 cases of pre-eclampsia were tried with 'Chlotride' and are compared with a control series of 40 other cases. The patients were clinically examined and their blood pressure, record of weight and complete urine analysis were done. They were checked up at weekly interval: Out of them, 10 patients were kept indoors for an additional therapy of a hypotensive drug. These patients had history of previous hypertension or their blood pressure was more than 150 systolic. Serpasil tablets of 0.25 mgms . were given twice a day to them.

## Doses and Duration

All patients in trial series were given one tablet of 'chlotride' 500 mgms. twice a day. The treatment was continued for two weeks to ten weeks, depending upon the clinical response. In the control series calcium tablets were given in exactly similar way.

## Results

The weight loss was found to be varying from about 0 lb . to 18 lbs . per week. The complete clearance of edema was seen in 29 patients, only decrease of edema was seen in 7 patients and 4 patients showed no change in edema. About 20 mm . reduction of systolic blood pressure was seen in $80 \%$ of the cases. The decrease in the amount of albuminuria was noted as follows:-
$4+$ to 0 in 6 patients, 3 4 to 0 in 11 patients and $2+$ to 0 in 23 patients. Their ages varied from 18 to 40 years and parity from I to XI, out of which seven were primiparous. Studies of plasma electrolyte concentrations were not done in the series.

## Dosage and Toxicity

The dose administered was 1000 mgms. per day. One tablet of 500 mgms , was given in the morning and the other in the afternoon. The onset of action was occurring in first two hours and the peak of action was in 4 to 6 hours.

The only toxic manifestation noted when chlorothiazide was given to pregnant patients was mild nausea in 3 patients and occasional paresthesia of extremities, malaise and fatigue in 2 patients. But continued administration did not give relief in 4 patients.

In the control series similar cases were selected. They were also clinically examined every week and their blood pressure, weight and urine were also checked up. In every case there was marked increase in weight. The weight gain varied from 8 to 13 lbs. in a week. They were given calcium tablets as placebo. Out of


| 19. | K.E.S. 18 |  | (58) 124, 116, 109 | $\begin{aligned} & 190 / 130,170 / 130,340 / 100, \\ & 140 / 100 \end{aligned}$ | Nil | Weak, Hospitalized | Weak, 2-12 | Cleared | $t+t$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20. | A.D.v. 20 | 1 | 147, 137 | 140/90, 120/80 | Nil | Good | Good, 6-6 | Decreased | +++ | " |
|  | $\text { A.A.M. } 23$ | $\text { ii, } 1 \text { FTND }$ | $\begin{aligned} & 144,138,136,131 \\ & 131,126,122 \end{aligned}$ | $140 / 80,120 / 80,110 / 70$, <br> $130 / 90 ; 130 / 90,120 / 80$ | Nil | Weak | Good, 8 lbs | .Cleared | ++ | Cleared ${ }^{\text {\% }}$ |
|  | B.C.S. 25 | iii, 2 FTND 1 | 115, 110 | 140/70, 120/80 | Nil | Good | Good, 5-3 | Cleared | + + | 3 |
|  | B.J.S. 29 | iv, 3 FTND 1 | 130, 127, 123, 120 | $\begin{aligned} & 130 / 70,120 / 80,100 / 80, \\ & 115 / 80 \end{aligned}$ | Nil | Good | Gcod, 7-3 | Cleared | ++ |  |
| 24. | B.H.M. 23 | iii, 1 FTND <br> 1 LSSC, <br> Pl. Previa | 135, 127, 127, 128 | $\begin{aligned} & 140 / 110,140 / 110,140 / 90, \\ & 120 / 80 \end{aligned}$ | Paresthesia \& Fatigue | Good | Good, 6-1 | Decreased | +++ | " |
| 25. | C.J.P. 32 | v, 3 FTND, | $113,102,104$ | 150/90, 150/100, 110/80 | Nil | Weak | Good, 5-12 | Cleared | ++ | " |
| 26. | D.D.J. 20 | ii, 1 Premature, 8 mths . stillborn | $\text { 107, 98, } 96$ | 160/100, 120/80, 120/80 | Nil | Hospitalized | Good, 6-2 | Cleared | +++ | " |
| 27. | D.H.M. 31 | $\mathrm{v}, 4$ FTND | 11, 106, 104 | 140/100, 140/100, 120/80 | Nil | Good | Good, 5-8 | Cleared | + + |  |
| 28. | D.K.B. 27 | vi, 5 FTND | 144, 145, 147, 147 | $\begin{aligned} & 120 / 80,140 / 100,130 / 100, \\ & 130 / 110 \end{aligned}$ | Nil | Good | Good, 7 | No change | + + | $1$ |
|  | L.D.D. 25 | iii, 2 FTND | 160, 156, 154 | 140/90, 140/90, 120/80 | Nil | Good | Good, 8-8 | Cleared | + + | * |
| 30. | L.T.J. 35 | viii, 3 F'TND <br> 4 Abortions. | $134,128,127,12$ | $\begin{aligned} & 150 / 90,140 / 90,140 / 90, \\ & 120 / 80 \end{aligned}$ | Nil | Good | Good, 7-13 | Cleared | +++ | " |
| 31. | L.M.T. 30 | vi, 6 FTND | 156, 151, 146 | 140/90, 130/90, 120/70 | Nil | Good | Good, 7-7 | Decreased | $+$ | $\cdots$ |
| 32. | L.L.K. 29 | viii, 4 FTND, <br> 2 Abortions. | $, 138,138,121$ | 140/90, 130/80, 130/90 | Nausea | Good | Good, 7-2 | Cleared | ++ |  |
| 33. | L.B.M. 27 | iv, 3 FTND 1 | 143, 134, 134 | 140/100. 120/80, 120/80 | Nil | Good | Good, 7-2 | Cleared | + + + |  |
| 34. | L.V.M. 22 | ii, 1 FTND | 147, 139, 136 | 150/100, 150/100, 140/90 | Nil | Good | Good, 5-4 | Cleared | + + + |  |
| 35. | L.P.P. 38 | viii, 7 FTND 1 | 118, 109 | 170/110, 140/90 | Nil | Hospitalized | Good, 5-14 | Decreased | $++$ | $\because$ |
| 36. | L.C.S. 35 | ii, 1 FTND | 146, 140, 131 | $\begin{aligned} & 160 / 100,150 / 100,140 / 90, \\ & 130 / 90 \end{aligned}$ | Nil | Hospitalized | Good, 6-8 | Cleared | + + + | 4 |
| 37. | M.K.T. 25 | iv, 3 FTND | 132, 132, 134, 136 | $\begin{aligned} & 140 / 80,140 / 80,120 / 80, \\ & 120 / 90 \end{aligned}$ | Nil | Good | Good, 7-10 | No change | + + |  |
| \% | M.K.M. 33 | viii, 7 FTND | 111, 93, 92, 91, 94 | $\begin{aligned} & \text { 230/126, 210/120//180/110, } \\ & 150 / 100.140 / 90 \end{aligned}$ | Nil | Weak, Hospitalized | Stillborn | Cleared | $t++$ |  |
| 39. | M.M.K. 22 | i | 143, 131, 131 | 140/100, 130/90, 130/90 | Nil | Good | Good, 6-7 | Decreased | ++ | " |
| 40. | M.S.M. 38 | xi, 8 FTND, <br> 2 Abortions. | $\text { ,164, 157, } 146$ | 150/100, 140/90, 130/90 | Nil | Good | Good, 7-2 | Cleared | + + | " |

JOURNAL OF OBSTETRICS AND GYNAECOLOGY OF INDIA

|  |  |  |  | Control | Series |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. Name |  | Para | Weight | Blood pressure | Toxic symptoms | General condition | Child | Edema | Albuminuria |
| 1. S.P.R. |  | iv, 3 FTND 1 | 120, 123, 126, 132, | 140/90, 146/110, 150/100, | Nil | Good | Good, 6-10 | Present | $t+t$ |
|  |  |  | 134, 138 | 150/100, 160/110 |  |  |  |  |  |
| 2. S.J.S. | 29 | iii, 2 FTND 1 | 154, 164, 169, 173 | $\begin{aligned} & 140 / 80,140 / 80,140 / 80, \\ & 130 / 80 \end{aligned}$ | Nil | Obesity | Good, 8-8 | Present | + + + |
| 3. S.K.J. | 30 | xi, 8 FTND, 2 Abortions. | $92,98,96$ | 130/90, 130/90, 120/90 | Nil | Good | Good, 4-15 | Decreased | $t++$ Cleared |
| 4. S.S.D. | 30 |  | $121,120,126,128$ | $\begin{aligned} & 140 / 80,120 / 80,140 / 90, \\ & 140 / 70 \end{aligned}$ | Nil | Good | Good, 5-5 | Present | + + + |
| 5. S.V.G. |  | $\begin{aligned} & \text { iii, } 1 \text { FTND, } \\ & 7 \text { mths. } \\ & 1 \text { Premature, } \end{aligned}$ | $118,118,122$ | 170/110, 150/100, 160/100 | Nil | Goad | Good, 6-5 | Present | + + + |
| 6. S.N.B. | 30 | $\text { v, } 4 \text { FTND }$ | $\begin{aligned} & 140,149,149,152, \\ & 154 \end{aligned}$ | $\begin{aligned} & 124 / 80,170 / 120,130 / 100, \\ & 160 / 110,180 / 120 \\ & \hline \end{aligned}$ | Nil | Good | Good, 5-8 | Present | 4++ |
| 7. S.G.P. | 28 | iii, 2 Abor- 1 tions. | $112,115,115,121$ | $\begin{aligned} & \text { 140/90, } 160 / 100,160 / 100, \\ & 170 / 100 \end{aligned}$ | Nil | ?PI. Previa | Good, 6-9 | Present | $+$ |
| 8. S.R.G. |  | vii, 6 FTND, 3 girls, living, 3 boys died. | $\begin{aligned} & 174,172,176,180, \\ & 188,189 \end{aligned}$ | $\begin{aligned} & 140 / 100,120 / 80,120 / 80, \\ & 150 / 100,180 / 110,180 / 90 \end{aligned}$ | Nil | Good | Good, 6-12 | Present | $\div++$ |
| 9. R.A.M. | 23 | iii, 2 FTND ${ }^{\circ}$ | $\begin{aligned} & 96,100,104,109 \text {, } \\ & 109 \end{aligned}$ | $140 / 90,120 / 80,140 / 100,$ <br> $150 / 110,140 / 80$ | Nil | Good | Good, 6-8 | Present | + + + |
| 10. R.S.G. | 25 | v, 4 FTND 9 | 98, 106, 104 | 120/80, 130/90, 140/80 | Nil | Good | Good, 7-14 | Decreased | $t++$ |
| 11. R.K.S. | 35 | v, 1 Premature, 1 F"TND, 1 Abort, 1 ectopic. | $151,150,164$ | $\begin{aligned} & 150 / 100,130 / 90,170 / 110, \\ & 190 / 120 \end{aligned}$ | Nil | Good | Stillborn | Present | +++ |
| 12. R.S.M. | 30 | vii, 5 F"TND, <br> 1 Abortion | $\text { 205, 199, 204, } 206$ | $\begin{aligned} & 140 / 100,140 / 80,140 / 80, \\ & 140 / 100 \end{aligned}$ | Nil | Weak | Good, 5-2 | Increased | + + + |
| 13. S.S.T. | 33 | vii, 6 FTND 1 | 116, 121, 122 | 130/80, 140/100, 140/80 | Nil | Good | Good, 8-12 | Present | $\underline{+}+$ |
| 14. SR.S. | 24 | 1 | 112, 114, 117, 121 | $140 / 90,130 / 90,130 / 100$, $150 / 110,150 / 100$ | Nil | Good | Good, 5-7 | Present | ++++ |
| 15. S.V.S. | 35 | vi, 4 FTND, <br> 1 Abortion. | $99,98,100,105$ | $\begin{aligned} & 158 / 120,130 / 90,160 / 110, \\ & 220 / 150 \end{aligned}$ | Nil | Post-partum psychosis 2 years back | Stillborn | Increased | $t++$ |
| 16. S.KS. | 30 | $\text { iv, } 3 \text { FTND } 1$ | $137,146,156,153$ | $\begin{aligned} & 140 / 90,130 / 80,120 / 100, \\ & 140 / 100 \end{aligned}$ | Nil | Good | Good, 8-9 | Present | + + |
|  | ${ }_{-}^{24}$ | ii, 1 FTND | $\frac{123,7125,128,129}{}$ | $\begin{aligned} & 140 / 80,130 / 80,140 / 80, \\ & 130 / 80 \end{aligned}$ | Nil | Good | S. Good, 8-4 | Present | ++ Cleared |

## CHLOROTHIAZINE FOR TREATMENT IN TOXEMIAS OF PREGNANCY

| $\mathfrak{o}_{18 .} \text { S.V些. }$ |  | iii, 2 FIND | $131,141,140,143,$ | $\begin{aligned} & 160 / 100,150 / 90,160 / 90, \\ & 150 / 90,150 / 90 \end{aligned}$ | Nil | P.P.H., Blood transfusion | nod, 5-8 | Increased | +++ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19. S.K.J! | 33 | vi, 5 FTND | 102, 103, 105, 105 | $\begin{array}{ll} 140 / 80, & 140 / 90, \\ 150 / 90, & 160 / 100 \end{array}$ | Nil | Good | Good, 7-10 | Present | ++ |
| 20. S.T.V. | 19 | ii, 1 FTND | 108, 111, 112 | 140/90, 140/70, 140/80 | Nil | Good | Good, 6-1 | Present | ++ Cleared |
| 21. S.K. | 19 | i | 106, 116, 119 | 140/80, 140/100, 140/100 | Nil | Good | Stilliborn | Present | $t+$ + |
| 22. S.C.B. | 24 | iii, 2 FTND | 147, 155, 158 | 130/80, 130/90, 130/90 | Nil | Good | Good, 6-10 | Present | +++ |
| 23. V.K.P. | 30 | vii, 6 FTND | D107, 117, 119 | 120/80, 130/90, 130/90 | Nil | Good | Good, 7-6 | Present | + + |
| 24. V.J.P. | 24 | iv, 3 Abor- tions | $101,108,119$ | 130/50, 130/90, 140/100, | Nil | Caesarean Section | Good, 7-4 | Present | +++ |
| 25. V.P.R. | 34 | vi, 3 FTND, <br> 2 Abortions | $137,140,144$ | 130/80, 140/90, 140/100 | Nil | Good | Good, 6-2 | Present | ++ |
| 26. V.B.D. | 35 | vi, 4 FTND, <br> 1 Premature | $107,117,109,112$ | $\begin{aligned} & 130 / 80,160 / 100,150 / 110, \\ & 170 / 110 \end{aligned}$ | Nil | Anaemic | Good, 5-2 | Decreased | +++ |
| 27.- U.K.M. | 21 | ii, 1 Abortion | n104, 114, 114, 119 | $\begin{aligned} & 130 / 90,130 / 90,140 / 100, \\ & 130 / 90 \end{aligned}$ | Nil | Good | Good, 6 | Present | +++ |
| 28. Y.P.M. | 25 | i | 120, 128, 130, 131 | $\begin{aligned} & 130 / 90,172 / 125,180 / 120, \\ & 160 / 120 \end{aligned}$ | Nil | Breech Delivery. | Weak | Present | + + + |
| 29. T.M.M. | 39 | vii, 6 FTND | 127, 129, 129, 129 | $\begin{aligned} & 130 / 80,130 / 90,140 / 100, \\ & 140 / 100 \end{aligned}$ | Nil | Good | Good, 6 | Decreased | +t+ |
| 30. T.D.B. | 35 | viii, 6 FTND, <br> 1 Abortion. | $, 140,142,143,143$ | $\begin{aligned} & 130 / 90,160 / 110,130 / 100, \\ & 130 / 100 \end{aligned}$ | Nil | Good | Good, 7-3 | Present | ++ Cleared |
| 31. T.B.P. | 26 | v, 3 FTND, <br> 1 Abortion. | $109,112,113,115$ | $\begin{aligned} & 125 / 90,154 / 100,130 / 90, \\ & 160 / 110 \end{aligned}$ | Nil | Treated with Digoxin | $\begin{aligned} & \text { Twins, } \\ & \text { \& } 4-4 \end{aligned}$ | Present | +++ |
| 32. S.B.S. | 32 | v, 4 FTND | 166, 168, 173, 164 | $\begin{aligned} & 130 / 90,140 / 100,150 / 105, \\ & 150 / 110 \end{aligned}$ | Nil | Good | Good, 6-4 | Present | +++ |
| 33. S.U.G. | 38 | viii, 5 F"TND, 2 Abortions. | $\text { ,128, 136, 139, } 140$ | $\begin{aligned} & 110 / 90,130 / 90,130 / 90, \\ & 142 / 110 \end{aligned}$ | Nil | $\begin{aligned} & \text { Mid-Cavity } \\ & \text { Forceps } \end{aligned}$ | Stillborn | Present | +++ |
| 34. R.M.A. | 25 | iv, 2 FTND, <br> 1 Abortion. | $137,139,144$ | 146/100, 150/110, 160/110 | Nil | Good | Good, 5-2 | Present | ++ |
| 35. R.J.C. | 21 | i | 135, 142, 149 | 120/80, 120/80, 130/90 | Nil | Weak | Good, 5-5 | Increased | + + |
| 36. S.K.P. |  | $\text { iv, } 2 \text { FTND, }$ <br> 1 Abortion. | $108,108,107,110$ | $140 / 100,130 / 90,150 / 110$ | Nil | Obstetric Shock | kGood, 7-2 | Present | +++ |
| 37. S.V.G. | 20 | ii, 1 FTND | 110, 114, 119, 124 | $\begin{aligned} & 120 / 80,130 / 90,150 / 100, \\ & 150 / 100 \end{aligned}$ | Nil | Good | Good, 6-12 | Present | +++ |
| 38. S.N.J., | 30 | vi, 5 FTIND | 143, 147, 151 | 140/100, 150/110, 150/110 | Nil | Good | Weak, 4-9 | Present | $+++$ |
| 39. S.J.L. | 30 | vii, 6 FTND | 140, 146, 150 | 130/80, 150/100, 160/110 | Nil | Good | Good, 7 | Present | +++ |
| 40. T.P.B. | 28 | iv, 3 FTND | 114, 124, 125, 128 | $\begin{aligned} & 130 / 80,130 / 90,130 / 90, \\ & 140 / 100 \end{aligned}$ | Nil | Forceps delivery | Good, 7-4 | Present | ++ |

the 40 cases, edema decreased in 4 cases only by bed rest. Five cases showed increase of edema and rest of them showed persistence of edema. Blood pressure also remained high or increased in many cases. The albuminuria was cleared up in 4 cases and the rest of them did not show any change. Their ages varied from 19 to 38 years and parity from I to XI, out of which 6 were primiparaes. So far as the variation in weight was coneerned 2 of them reduced in weight, 3 remained constant and remaining ones increased in weight. The maximum increase of weight was 19 lbs .

## Comments

In $30 \%$ to $40 \%$ of normal pregnant women, edema of varying degrees appears from the fifth or sixth month of gestation without rise of blood pressure or albuminuria, but it subsides with rest in bed, elevation of the foot of the bed and restriction of salt in the diet. These patients under trial were also selected and everyone had definite edema, albuminuria and rise of blood pressure. They were compared with similar cases who were given only bed rest and no medication except calcium tablets.

Initial weight loss in the cases under trial was most marked in the first week. They were all taking usual balanced salt diet. Only excess of salt was omitted. In 4 cases, in whom it was continued for even eight weeks, no reduction of edema was observed, and the tablets were not found to be effective.

Apart from diuretic properties, chlorothiazide also showed definite antihypertensive effect. It had no
toxic effects and nobody developed tolerance but 4 cases did not show reduction of edema. The greatest advantage was that it could be given orally in very simple dosage schedule (twice a day, morning and afternoon). No restriction of salt was imposed on the patients and this created a great pleasing effect on them.
Whenever more reduction of blood pressure was necessary a small dosage of serpasil was added which gave very satisfactory results.
Thus chlorothiazide was an ideal diuretic for the treatment of toxemias of pregnancy. If given alone at the first sign of excessive weight gain or slight elevation of blood pressure it would frequently reverse the toxemic process. This property would enable chlorothiazide therapy to be started at the first prenatal visit, for the hypertensive patient who is more prone to develop toxemia. When given in combination with Serpasil in the patient with severe toxemia, chlorothiazide, in addition to exerting its diuretic effect, greatly enhanced the potency of the antihypertensive agent. Four cases, for unexplainable reasons, did not respond to chlotride.

## Summary

40 patients with edema, albuminuria and hypertension or toxemia received 'Chlorothiazide' and its results are compared with a control series of equal number. It produced very effective diuresis in most of these patients. The reduction of edema and lowering of blood pressure was very significant compared to the control series. It was found to be potent orally, and an active non-toxic
diuretic. It also enhanced the potency of antihypertensive agents.

The absence of toxic manifestations, excepting the symptoms of mild nausea, occasional paresthesia, malaise and fatigue, make it an ideal drug. Only four cases did not respond to chlorothiazide therapy.

Chlorothiazide is thus observed to be a valuable adjunct to current methods of treating pre-eclampsia patients.

## References

1. Assali N. S., Herzig O. and Singh B. P.: J. Appl. Physiol.; 7, 367-374, (Jan.) 1955.
2. Baer J. E., Leidy L. and Brooks A. V.: Fed. Proc.; 16, 278, 1957.
3. Chesley L. C., and Chesley E. R.: Am. J. Obst. \& Gyn.; 45, 748 (May) 1943.
4. Dieckman W. J. and others: Am. J. Obst. \& Gyn.; 58, 1014, (Nov.) 1949.
5. Dieckman W. J., Potter E. L. and McCartney C. P.: Am. J. Obst. \& Gyn.; 73, 1-16, (Jan.) 1957.
6. Finnerty Frank A. (Jr.), Joachim H. Buchholz, and John Tuckmann: Jour. Amer. Med. Asso.; 11, Vanuary 1958.
7. Ford R. V. and Spurr C. L.: Am. J. Med.; 22, 965, (June) 1957.
8. Ford R. V., Moyer J. H., Spurr C. L., and Handley C.: M. Rec. \& Ann; 51, 376-378, (April) 1957.
9. Freis D. Edward, Wanko Annemarie, Wilson Ilse M., Parrish Alvin E.: J. Amer. Med. Asso.; 11, January 1958.
10. Hanley T., and Platts M. M.: J. Clin. Invest.; 35, 20-30, (Jan.) 1956.
11. Hollander W., and Wilkins R. W.: Boston M. Quart.; 8, 69-75, (Sept.) 1957.
12. Hughes E. C., and others: Am. J. Obst. \& Gyn.; 67, 782-800, (April) 1954.
13. Novello F. C., and Sprague J. M.: J. Am. Chem. Society; 79, 20282029, (April 20) 1957.
14. Venning E. H., Carballeira A., and Dyrenfurth L.: J. Clin. Endocrinol; 14, 784, (July) 1954.
