CHM 152 Exam 4 Review - Ch. 1819 KEY

1. Predict whether the entropy change will be positive or negative for the following:
a. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})$
\qquad
--
c. $2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{aq})$
d. $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{NaCl}(\mathrm{aq})$
e. $\mathrm{Cu}(\mathrm{s})\left(100^{\circ} \mathrm{C}\right) \rightarrow \mathrm{Cu}(\mathrm{s})\left(25^{\circ} \mathrm{C}\right)$
\qquad
$\Delta \mathrm{S}$
f. $2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \leftrightarrows \quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
\qquad
$\Delta \mathrm{S}$ $+$
2. Calculate $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})$ using $\Delta H^{\circ}{ }_{\mathrm{f}}$ values.
$\Delta H^{\circ}{ }_{\mathrm{rxn}}=[(2 \mathrm{~mol})(-277.7 \mathrm{~kJ} / \mathrm{mol})+(2 \mathrm{~mol})(-393.5 \mathrm{~kJ} / \mathrm{mol})]-(1 \mathrm{~mol})(-1273.02 \mathrm{~kJ} / \mathrm{mol})=-69.38 \mathrm{~kJ}$

	$\Delta \boldsymbol{H}_{f}{ }^{\circ}(\mathbf{k} \mathbf{J} / \mathbf{m o l})$	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	-1273.02	212.1
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	-277.7	160.7
CO_{2}	-393.5	213.6

3. Calculate $\Delta S^{\circ}{ }_{\mathrm{rxn}}$ and $\Delta S^{\circ}{ }_{\text {surr }}$.
$\Delta S^{\circ}{ }_{\mathrm{rxn}}=[(2 \mathrm{~mol})(160.7 \mathrm{~J} / \mathrm{molk})+(2 \mathrm{~mol})(213.6 \mathrm{~J} / \mathrm{molk})]-(1 \mathrm{~mol})(212.1 \mathrm{~J} / \mathrm{molk})=536.5 \mathrm{~J} / \mathrm{K}$

$$
\Delta S_{\text {surr }}=\frac{-\Delta H_{\text {sys }}}{\mathrm{T}} \quad \Delta S_{\text {surr }}=\frac{-(-69380 \mathrm{~J})}{298.15 \mathrm{~K}}=232.7 \mathrm{~J} / \mathrm{K}
$$

4. Based on your values for $\Delta S^{\circ}{ }_{\mathrm{rxn}}$ and $\Delta S^{\circ}{ }_{\text {surr }}$, is the reaction spontaneous under standard thermodynamic conditions?

Yes, $\Delta S^{\circ}{ }_{r x n / s y s}+\Delta S^{\circ}{ }_{\text {surr }}=536.5 \mathrm{~J} / K+232.7 \mathrm{~J} / K=769.2 \mathrm{~J} / K$. Since this value is >0, it is spontaneous.
5. Is this reaction always spontaneous? If not, determine at what temperatures it changes from spontaneous to non-spontaneous.

With a $-\Delta H^{\circ}$, and $+\Delta S^{\circ}$, this reaction will be spontaneous under all conditions.
6. For the following reaction:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{~s}), \Delta \mathbf{H}_{\mathrm{rxn}}^{0}=\mathbf{- 1 2 0 2} \mathrm{kJ} / \mathrm{mol} ; \Delta \mathrm{S}^{\mathbf{0}}{ }_{\mathrm{rxn}}=-217 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

- Calculate $\Delta \mathrm{G}^{\circ}$ using $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

$$
\Delta \mathrm{G}=-1202 \mathrm{~kJ} / \mathrm{mol}-(298.15 \mathrm{~K})(-0.217 \mathrm{~kJ} / \mathrm{mol} \mathrm{~K})=\mathbf{- 1 1 3 7} \mathbf{k J} / \mathbf{m o l}
$$

- Is the reaction spontaneous under standard conditions? Yes, since $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ (along with 298.15 K) are all under standard conditions (the "o" tells us standard conditions).
- Based on the signs of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$, comment on the spontaneity of this reaction at different temperatures. Spontaneous at "low" temperatures, non-spontaneous at "high" temps.
- At what temperature does the reaction become spontaneous/non-spontaneous?
$0=-1202 \mathrm{~kJ} / \mathrm{mol}-\mathrm{T}(-0.212 \mathrm{~kJ} / \mathrm{mol} \mathrm{K})$
$\frac{1202 \mathrm{~kJ} / \mathrm{mol}}{0.217 \mathrm{~kJ} / \mathrm{molK}}=5540 \mathrm{~K}$ At this temp and higher, the reaction is non-spontaneous.

7. a) Caclculate $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}$ using $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ (assuming 298.15K)

$$
3 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})
$$

	$\Delta \mathrm{H}^{\circ} \mathrm{f}(\mathrm{kJ} / \mathrm{mol})$	$\Delta \mathrm{G}^{\circ} \mathrm{f}(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{mol} \mathrm{K})$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	227.4	209.9	200.9
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$	82.9	129.7	269.2

$\Delta \mathbf{H}^{\circ}{ }_{\mathbf{r x n}}=\left(1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}\right)(82.9 \mathrm{~kJ} / \mathrm{mol})-\left(3 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}\right)(227.4 \mathrm{~kJ} / \mathrm{mol})=\mathbf{- 5 9 9 . 3} \mathbf{~ k J}$
$\Delta \mathbf{S}_{\mathbf{r x n}}^{\circ}=\left(1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}\right)(269.2 \mathrm{~J} / \mathrm{mol})-\left(3 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}\right)(200.0 \mathrm{~J} / \mathrm{mol})=\mathbf{- 3 3 3 . 5} \mathbf{J}$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}=-599.3 \mathrm{~kJ}-(298.15 \mathrm{~K})(-0.3335 \mathrm{~kJ})=\mathbf{- 4 9 9 . 9} \mathbf{~ k J}$
b) Calculate $\Delta \mathrm{G}^{\circ}{ }_{\text {rxn }}$ for the following reaction using $\underline{\mathrm{G}}^{\circ}{ }_{\mathrm{f}}$ only.
$\boldsymbol{\Delta} \mathbf{G}^{\circ}{ }_{\mathbf{r x n}}=\left(1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}\right)(129.7 \mathrm{~kJ} / \mathrm{mol})-(3 \mathrm{~mol})(209.9 \mathrm{~kJ} / \mathrm{mol})=\mathbf{- 5 0 0 . 0} \mathbf{k J}$

- Are the values similar? Should they be? Yes they are. And they should be. You are calculating the same thing, $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{rxn}}$.
- What is the value of the equilibrium constant at 298 K ?

$$
\Delta G=-R T \ln K \quad-\frac{-500.0 \times 10^{3} \mathrm{~J}}{-(8.314 \mathrm{~J} / \mathrm{molK})(298.15 \mathrm{~K})}=\ln \mathrm{K} \quad e^{20.7}=e^{\ln K} \quad \mathbf{K}=\mathbf{3 . 9 5 5} \times 10^{87}
$$

Is this reaction spontaneous at 298 K ? Yes, because $\boldsymbol{\Delta} \boldsymbol{G}_{r x n}<\mathbf{0}$. We could also look at \boldsymbol{K}, which is very large. Each of these shows spontaneity of the reaction at standard comditions.

Calculate $\Delta \mathrm{G}_{\mathrm{rxn}}$ with the product and reactant both starting at 35 atm and 501 K . (Hint, what is the value of Q ?).
$Q=\frac{35}{(35)^{3}}=8.16 \times 10^{-4} \quad \Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$\Delta \mathrm{G}=-500.0 \times 10^{3} \mathrm{~J}+(8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K})(501 \mathrm{~K}) \ln \left(8.16 \times 10^{-4}\right)=\mathbf{- 5 2 9 . 6} \times 10^{\mathbf{3}} \mathbf{J}$ or $\mathbf{- 5 2 9 . 6 k J}$
It is "more spontaneous" under the new conditions.
8. Balance the following equations:

Assume acidic media:

$$
\begin{array}{ll}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) & \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+} & 2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} & 2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-} \\
14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} & 3\left(2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}\right) \\
6 \mathrm{e}^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} & \mathbf{6 C l} \rightarrow 3 \mathrm{Cl}_{2}+6 \mathrm{e}^{-} \\
& \\
14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} 3 \mathrm{Cl}_{2} &
\end{array}
$$

Assume basic media:

$$
\begin{aligned}
& \mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+} \\
& \mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2} \\
& \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-} \\
& 8 \mathrm{H}^{+}+\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
& 2\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}\right) \\
& 8 \mathrm{H}^{+}+\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 4 \mathrm{CO}_{2}+4 \mathrm{e}^{-} \\
& 4 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
& 8 \mathrm{OH}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}+8 \mathrm{OH}^{-} \\
& 8 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}+8 \mathrm{OH}^{-} \\
& 4 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{2-}+2 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{CO}_{2}+8 \mathrm{OH}^{-} \\
& 4 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{CO}_{2}+8 \mathrm{OH}^{-}
\end{aligned}
$$

9. Assign oxidation numbers of all elements in the following reaction:

- $\mathrm{Al}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- $\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaNO}_{3}(\mathrm{aq})$

Reactants: $\mathrm{Al}=0, \mathrm{O}=0$ Products: $\mathrm{Al}=+3, \mathrm{O}=-2$
Reactants: $\mathrm{Mn}=+4, \mathrm{O}=-2, \mathrm{H}=+1, \mathrm{Cl}=-1$ Products: $\mathrm{Mn}=+2, \mathrm{Cl}$ in $\mathrm{MnCl}_{2}=-1 \mathrm{Cl}$ in $\mathrm{Cl}_{2}=0, \mathrm{H}=+1, \mathrm{O}=-2$
$\underline{\text { Reactants: }} \mathrm{H}$ in both reactants $=+1, \mathrm{~N}=+5, \mathrm{Na}=+1, \mathrm{O}$ in both reactants $=-2$, Products: $\mathrm{H}=+1, \mathrm{O}$ in both products $=-2, \mathrm{Na}=+1, \mathrm{~N}=+5$

- For each reaction determine what is reduced and what is oxidized.

O: $0 \rightarrow-2$, reduced; Al: $0 \rightarrow+3$, oxidized
Mn: $+4 \rightarrow+2$, reduced; Cl: $-1 \rightarrow 0$, oxidized
Oxidation numbers for last reaction unchanged; no a REDOX reaction

- For each reaction determine the oxidizing agent and reducing agent.

Oxidizing agent: $\mathrm{O}_{2}(\mathrm{~g})$ Reducing agent: $\mathrm{Al}(\mathrm{s})$ Oxidizing agent: $\mathrm{MnO}_{2}(\mathrm{~s})$ Reducing agent: HCl

When naming "agents", chemists customarily give the entire formula not just the element
10. Draw a voltaic cell diagram using silver and copper (assume the Cu^{2+} ion). Place the anode on the left hand side. Also show the following: salt bridge; direction of electron travel; Indicate which electrode is being dissolved into solution and which electrode is being "plated" (show what the ions are doing at each electrode).

a. Give the short-hand notation for the copper/silver cell.
$C u(s)\left|\mathrm{Cu}^{2+}(a q) \| \mathrm{Ag}^{+}(a q)\right| A g(s)$
b. Would CuCl_{2} make a good salt for the salt bridge in this cell? Explain.

No. The Ag^{+}ion will react with Cl^{-}from the salt bridge forming a precipitate. Also, Cu^{2+} is part of the chemical reaction, this might also complicate matters (Usually we use $\mathrm{NaNO}_{3}, \mathrm{KNO}_{3}$, etc....).
c. Write the balanced chemical reaction for the cell.

$$
\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)
$$

d. What is the E° cell for the cell above?

```
\(\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \quad E^{\circ}{ }_{\text {red }}=0.34 \mathrm{~V}\)
\(\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag} \quad E^{\circ}\) red \(=0.80 \mathrm{~V}\)
```

Since copper is oxidized, $E^{\circ}{ }_{o x}=-0.34 \mathrm{~V}$. Thus E° cell $0.80 \mathrm{~V}+(-0.34 \mathrm{~V})=0.46 \mathrm{~V}$
e. Based on your value and sign of E° cell is it spontaneous?

Explain.

$$
\begin{array}{ll}
\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} & E_{\text {red }}^{\circ}=0.34 \mathrm{~V} \\
\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag} & E_{\text {red }}^{\circ}=0.80 \mathrm{~V}
\end{array}
$$

Yes. Since the E° cell is positive, it means the reaction will be spontaneous $\left(\Delta G^{\circ}<0\right)$
f. Calculate the equilibrium constant (K) for the cell.

$$
\begin{aligned}
& E^{\circ}{ }_{\text {cell }}=\frac{R T}{n F} \ln K \quad 0.46 \mathrm{~V}=\frac{\left(8.314 \frac{J}{\operatorname{mol} \mathrm{~K}}\right)(289.15 \mathrm{~K})}{\left(2 \mathrm{~mol} \mathrm{e}^{-}\right)\left(96,500 \frac{J}{V \mathrm{~mol}}\right)} \ln K \\
& 35.82=\ln K \\
& e^{35.82}=e^{(\ln K)} \quad K=3.6 \times 10^{15}
\end{aligned}
$$

g. Based on your value and sign of K , is the reaction spontaneous? Explain.

Yes. $K \gg 1$ is spontaneous and "product favored".

\boldsymbol{h}. Which species is the oxidizing agent in the cell? $\mathrm{Cu}(\mathrm{s}) \mathrm{Cu}^{2+}(\mathrm{aq}) \quad \operatorname{Ag}(\mathrm{s}) \quad \boldsymbol{A g}^{+}(\boldsymbol{a q})$
i. Which species loses electrons? $\boldsymbol{C u}(\boldsymbol{s}) \quad \mathrm{Cu}^{2+}(\mathrm{aq}) \operatorname{Ag}(\mathrm{s}) \mathrm{Ag}^{+}(\mathrm{aq})$
j. Based on your answers from c, g and h , determine if the following reaction is spontaneous. Explain.

$$
2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq})
$$

No, the reaction a written above is not spontaneous. Based on the spontaneous reaction written in part $c, C u(s)$ is more likely to give up electrons and $\mathrm{Ag}^{+}(\mathrm{aq})$ is more likely to accept electrons. The reaction as written in part " j ", is in the reverse direction of the spontaneous reaction. Thus, it is non-spontaneous.
k. Calculate $\Delta \mathrm{G}^{\circ}$ for the voltaic cell.

$$
\Delta G^{\circ}=-n F E_{\text {cell }}^{\circ} \quad \Delta G^{\circ}=-\left(2 \mathrm{~mol}^{-}\right)\left(96,500 \frac{\mathrm{~J}}{V \mathrm{~mol}}\right)(0.46 \mathrm{~V}) \Delta G^{\circ}=-89,000 \mathrm{~J} 0 \mathrm{or}-89 \mathrm{~kJ}
$$

1. Calculate the $E_{\text {cell }}$ if the $\left[\mathrm{Cu}^{2+}\right]=2.00 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=0.0111 \mathrm{M}$

$$
\begin{aligned}
& E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{R T}{n F} \ln Q
\end{aligned} Q=\frac{\left[C u^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}=\frac{[2.00]}{[0.0111]^{2}}=16000 .
$$

11. Based on reduction potentials, which of the following reactions should be spontaneous? Explain.

- $\quad \underline{2 A l(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Al}^{3+}(a q)+6 \mathrm{Cl}^{-}(a q)}$
- $2 \mathrm{Al}^{3+}(\mathrm{aq})+6 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& \mathrm{Al}^{3+}+3 e^{-} \rightarrow \mathrm{Al} \quad E_{\text {red }}^{\circ}=-1.66 \mathrm{~V} \\
& \mathrm{Cl}_{2}+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-} \quad E_{\text {red }}^{\circ}=1.36 \mathrm{~V}
\end{aligned}
$$

Since Aluminum has the largest negative reduction potential, we know that it will be the reducing agent ($\mathrm{Al}(\mathrm{s}$) is being oxidized). If we were calculating cell potential, we would "flip" this half-reaction to show oxidation potential. When we "flip" the Al half-reaction, $\mathrm{Al}(\mathrm{s})$ is on the reactants side. Thus, the reaction will $\mathrm{Al}(\mathrm{s})$ on the reactant side is the spontaneous reaction.

Another way to think about this is if to compare $\mathrm{Al}(\mathrm{s})$ vs. $\mathrm{Al}^{3+}(\mathrm{aq})$. The $\underline{\mathbf{A l}(\mathbf{s})}$ form is more likely to give up electrons as the reducing agent (being oxidized), since you can think of Al^{3+} as already oxidized. (oxidation number for $\mathrm{Al}(\mathrm{s})=0, \mathrm{Al}^{3+}=+3$)
12. Based on reduction potentials, which of the following reactants should give a spontaneous reaction? (HINT: Pay attend to states of matter...which should give up electrons which should accept electrons) Explain.

$$
\begin{array}{ll}
F_{2}+2 e^{-} \rightarrow 2 F & E_{\text {red }}^{\circ}=2.87 \mathrm{~V} \\
\mathrm{Br}_{2}+2 e^{-} \rightarrow 2 \mathrm{Br}^{-} & E_{\text {red }}^{\circ}=1.07 \mathrm{~V}
\end{array}
$$

a. $\quad \mathrm{F}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{l})$
b. $\underline{F}_{2}(g)+2 \mathrm{Br}^{-}(\boldsymbol{a q})$
c. $2 \mathrm{~F}^{-}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})$
d. $2 \mathrm{~F}^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{l})$

Based on reduction potentials, since Bromine has the smallest positive reduction potential, it will be the reducing agent (becoming oxidized) and the half-reaction that will be "flipped". Once the bromine half-reaction is flipped, $\underline{\boldsymbol{B r}^{-}(\mathbf{a q}) \text { is on the reactant side. The reaction with fluorine will }}$ not be flipped, and has $\underline{\boldsymbol{F}}_{2}(\boldsymbol{g})$ on the reactant side. Thus, those forms of Bromine and Fluorine will react spontaneously, $\mathrm{F}_{2}(\mathrm{~g})$ and $\mathrm{Br}^{-}(\mathrm{aq})$.

Another way to think about this is to compare the $\mathrm{Br}_{2}(\mathrm{l})$ and $\mathrm{Br}^{-}(\mathrm{aq})$ forms. Br^{-}is more likely to give up electrons as the reducing agent (it becomes oxidized), since you can think of the $\mathrm{Br}_{2}(1)$ form as already oxidized (oxidation number for $\mathrm{Br}^{-}=-1, \mathrm{Br}_{2}=0$). For Fluorine, the opposite is true: The $\mathrm{F}_{2}(\mathrm{~g})$ is more likely to accept electrons than the $\mathrm{F}^{-}(\mathrm{aq}), \mathrm{F}^{-}(\mathrm{aq})$ is already reduced.

