Name: _____

Date: _____

CHEMISTRY TEST REVIEW

Please check solutions at http://leetz.weebly.com

1. Determine if the compound is ionic or covalent, then name the c	compound.
--	-----------

Compound	Ionic/Covalent	Name
MgO	Ionic/Covalent	Magnesium oxide
OCl ₄	Ionic/Covalent	Oxygen tetrachloride
Li ₃ P	Ionic/Covalent	Lithium phosphide
NCl ₃	Ionic/Covalent	Nitrogen trichloride
Be ₃ N ₂	Ionic/Covalent	Beryllium nitride
Li ₂ S	Ionic/Covalent	Lithium sulphide
B ₂ O ₃	Ionic/Covalent	Diboron trioxide
CaBr ₂	Ionic/Covalent	Calcium bromide
Si ₂ Cl ₆	Ionic/Covalent	Disilicon hexachloride
N ₄ S ₅	Ionic/Covalent	Tetranitrogen pentasulfide

2. Determine if the compound is ionic or covalent, then give the formula of the compound.

Compound	Ionic/Covalent	Formula			
Hexaboron carbide	Ionic/Covalent	B ₆ C			
Magnesium chloride	Ionic/Covalent	$Mg^{2+} Cl^{1-} \rightarrow Mg_1Cl_2 \rightarrow MgCl$	2		
Lithium oxide	Ionic/Covalent	$Li^{1+} O^{2-} \rightarrow Li_2O_1 \rightarrow Li_2O$			
Dinitrogen trioxide	Ionic/Covalent	N ₂ O ₃			
Beryllium nitride	Ionic/Covalent	$Be^{2+} N^{3-} \rightarrow Be_3N_2$			
Fluorine pentachloride	Ionic/Covalent	FCl ₅			
Fluorine disulfide	Ionic/Covalent	FS ₂			
Aluminum sulfide	Ionic/Covalent	$Al^{3+} S^{2-} \rightarrow Al_2S_3$			
Sodium silicide	Ionic/Covalent	t $Na^{1+} Si^{4-} \rightarrow Na_4S_1 \rightarrow Na_4S$ Neither of these v			
Potassium carbide	Ionic/Covalent	$K^{1+} C^{4-} \to K_4 C_1 \to K_4 C$	be on the test		

3. Write the formula, then draw the bonding diagram for the following ionic compounds.

a. Lithium & Fluorine l Formula: LiF Bonding Diagram:	_i ¹⁺ F ¹⁻	b. Magnesium & Chlori Formula: MgCl ₂ Bonding Diagram:	•
Before	After	Before	After
Li •→•F •	[Li]+[:Ĕ:]⁻	Mg• Çi :	[Mg] ²⁺ [:Ci:]⁻
	-1 + 1 = 0	, Ç .	-2 + 2 = 0
c. Potassium & Oxyger Formula: K ₂ O Bonding Diagram:	ו K ¹⁺ O ²⁻	d. Aluminum & Fluorine Formula: AlF3 Bonding Diagram:	e Al ³⁺ F ¹⁻
Before	After [K]+ [K]+ +2 - 2 = 0	Before	After [AI] ³⁺ [:F:] ⁻ [:F:] ⁻ [:F:] ⁻ +3 - 3 = 0
e. Sodium & Nitrogen Formula: <mark>Na₃N</mark> Bonding Diagram:	Na ¹⁺ N ³⁻	f. Aluminum & Sulfur Formula: Al ₂ S ₃ Bonding Diagram:	Al ³⁺ S ²⁻
Before	After	Before	After
Na Na Na	[Na]+ [Na]+ [Na]+ [Na]+ +3 - 3 = 0	AI S S S	$[AI]^{3+} [:S:]^{2-}$ $[AI]^{3+} [:S:]^{2-}$ $[:S:]^{2-}$ $+6 - 6 = 0$
g. Calcium & Nitrogen Formula: Ca ₃ N ₂ Bonding Diagram:	Ca ²⁺ N ³⁻	h. Beryllium & Phosphe Formula: Be ₃ P ₂ Bonding Diagram:	orus Be ²⁺ P ³⁻
Before Ca Ca Ca	After $\begin{bmatrix} Ca \end{bmatrix}^{2+} \\ \begin{bmatrix} \vdots & \vdots \end{bmatrix}^{3-} \\ \begin{bmatrix} Ca \end{bmatrix}^{2+} \\ \begin{bmatrix} \vdots & \vdots \end{bmatrix}^{3-} \\ \begin{bmatrix} Ca \end{bmatrix}^{2+} \\ +6 - 6 = 0 \end{bmatrix}$	Before Be Be Be	After $[Be]^{2+}$ [: P :] 3- $[Be]^{2+}$ [: P :] 3- $[Be]^{2+}$ +6 - 6 = 0

4. Draw the Lewis diagram for the following covalent compounds. Some compounds will have double bonds.

a. SF ₂	b. NF3	c. SO₂ Don't Do	d. CO₂
e. CF4	f. PCl ₃	g. OCl₂	h. SiO₂
i. BH₃ Don't Do	j. H₂S	k. SCl4 Don't Do	

5. Counting Atoms

3 Fe ₂ S ₃		2 FeSO4		4 Na ₂ CO ₃	
Number of Molecules:	3	Number of Molecules:	2	Number of Molecules:	4
Element:	Number:	Element: N	lumber:	Element: N	lumber:
Iron (Fe)	6	Iron (Fe)	2	Sodium (Na)	8
Sulfur (S)	9	Sulfur (S)	2	Carbon (C)	4
Total Number of Atom	s: 15	Oxygen (O)	8	Oxygen (O)	12
		Total Number of Atoms:	12	Total Number of Atoms	24
3 C9H8O4		4 NaC2H3O2		5 NaOH	
Number of Molecules:	3	Number of Molecules:	4	Number of Molecules:	5
Element:	Number:	Element: N	lumber:	Element: N	lumber:
Carbon (C)	27	Sodium (Na)	4	Sodium (Na)	5
Hydrogen (H)	24	Carbon (C)	8	Oxygen (O)	5
Oxygen (O)	12	Hydrogen (H)	12	Hydrogen (H)	5
Total Number of Atoms	s: 12	Oxygen (O)	8	Total Number of Atoms:	15
		Total Number of Atoms:	32		

5. Bohr Rutherford (BR) Diagrams (Neutral and Charged). Assume the number of protons matches the number of neutrons.

Element	BR diagram (atom)	# electrons gained/lost	BR diagram (ion)	charge
Beryllium	p = 4 n = 4	2 lost	2+	+4-2= +2
Potassium		1 lost		+19-18= +1
Calcium		2 lost	2+	+20-18= +2
Oxygen		2 gained	p = 8 n = 8	+8-10= -2
Fluorine	p = 9 n = 9	1 gained	p = 9 n = 9	+9-10= -1
Nitrogen	p = 7 n = 7	3 gained	9 = 7 n = 7	+7-10= -3

6. Fill in the table.

Atomic Component	Charge	Location	Size
Proton	positive	nucleus	large (=neutron)
Electron	negative	orbital	very small
Neutron	neutral	nucleus	large (=proton)

7. What is the difference between Atomic Number, Mass Number and Atomic Mass?

Atomic Number : Number of protons in an atom, number of electrons in a neutral atom Mass Number : Number of protons + Number of neutrons Atomic Mass : Average weight of the different isotopes of the atom, in atomic mass units (amu)

8. For the each element given below, state the symbol, number of protons, and whether the element is a metal (M) or non-metal (NM).

Tellurium	Te, 52, NM	Arsenic	As, 33, NM	Mercury	Hg, 80, M
Lithium	Li, 3, M	Bromine	Br, 35, NM	Astatine	At, 85, NM
Radon	Rn, 86, NM	Cerium	Ce, 58, M	Iridium	Ir, 77, M

9. Using the atomic mass, calculate the number of neutrons for each element.

Vanadium	(23)	50.94=51, 51-23= 28	Silicon	(14)	28.09=28, 28-14= 14
Bismuth	(83)	208.98=209, 209-83= 126	Germanium	(32)	72.64=73, 73-32= 41
Iodine	(53)	126.90=127, 127-53= 74	Tin	(50)	118.71=119, 119-50= 69

10. Answer the following questions with the help of a periodic table:

a) Which element is in group 17 and period 3?	b) Which element is in group 5 and period 5?
Chlorine	Niobium
c) Which element is in group 6B and period 6?	d) How many valence electrons does Rubidium have?
Tungsten	1 (Rubidium is in group 1)
e) Which element is in group 6A and period 6?	f) Which element has atomic number 58?
Polonium	Cerium
g) In which period can Selenium be found?	h) In which group can Krypton be found?
4	18 or 8A – Noble Gases

11. Complete the following density calculations

a) A block of mystery metal has a mass of 32.4 g. The length, width and height of the block are 1 cm, 3 cm and 4 cm respectively. . What is the density and identity of the metal?

Iron = 7.87 g/cm^3		Silver = 10.49 g/cm^3	Aluminum	Aluminum = 2.70 g/cm³	
<u>Volume</u> (L×W×H)	<u>List</u>	<u>Formula</u>	<u>lug In</u>	Answer	
1 cm \times 3 cm \times 4 cm = 12 cm ³	M = 32.4 g V = 12 cm ³ D = ?	$D = \frac{M}{V}$	$D=\frac{32.4}{12}$	D = 2.7 g/cm	

Therefore Statement (Include density and identity)

Therefore the density is 2.7 g/cm^3 and the metal is aluminum.

b) A mystery metal has a mass of 0.03147 kg, and a volume of 3 cm³. What is the density and identity of the metal? (correction above)

Iron = 7.87	g/cm³ s	Silver = 10.49 g/cm ³	Aluminum = 2	.70 g/cm³
<u>Conversion</u>	<u>List</u>	<u>Formula</u>	<u>Plug In</u>	Answer
0.03147 kg x $\frac{1000 \text{ g}}{1 \text{ kg}}$ = 31.47g	M = 31.47g V = 3 cm ³ D = ?	$D = \frac{M}{V}$	$D=\frac{31.47}{3}$	D = 10.49 g/cm ³

Therefore Statement (Include density and identity)

Therefore the density is 10.49 g/cm^3 and the identity of the metal is silver.

c) A mystery metal has a mass of 13500 mg, and a volume of 5 cm³. What is the density and identity of the metal? Silver = 10.49 g/cm^3 $Iron = 7.87 \text{ g/cm}^3$ Aluminum = 2.70 g/cm^3 Conversion Formula Plug In List Answer M = 13.5 g $D = 2.7 \text{ g/cm}^3$ 13.5 13500 mq x $V = 5 \text{ cm}^{3}$ D =1000 ma 5 D = ?= 13.5 g

Therefore Statement (Include density and identity)

Therefore the density is 2.7 g/cm^3 and the metal is aluminum.

- 12. Complete the following density calculations. Use the triangle to find the appropriate formula. Round to one decimal place if necessary.
- a) Brass, an alloy of copper and zinc, has a density of 8.5 g/cm³. A sample of brass weights 4320 mg. What is the volume of the brass sample?

Therefore Statement

Therefore the volume of the brass sample is 0.5 cm³.

b) Steel, an alloy of iron and carbon, has a density of 7.8 g/cm³. A sample of steel weighs 24 g. What is the volume of the steel?

<u>List</u>	<u>Formula</u>	<u>Plug In</u>	<u>Answer</u>
M = 24 g V = ? D = 7.8 g/cm ³	$V = \frac{M}{D}$	$V = \frac{24}{7.8}$	V = 3.1 cm ³

<u>Therefore Statement</u>

Therefore the volume of the steel sample is 3.1 cm³.

c) Zinc has a density of 7.10 g/cm³. A block of steel has a length of 2 cm, a width of 5 cm and a height of 4 cm. What is the mass of the block of zinc?

<u>Volume</u> (L×W×H)	<u>List</u>	<u>Formula</u>	<u>Plug In</u>	<u>Answer</u>
2cm × 5cm × 4cm = 140 cm³	M = ? V = 40 cm ³ D = 7.10 g/cm ³	M = D × V	M = 7.10 × 40	M = 852 g

Therefore Statement (Include density and identity)

Therefore the mass is 852 g.

d) Lead has a density of 11.30 g/cm³. A sample of lead has a volume of 16 cm³. What is the mass of the sample?

<u>List</u>	<u>Formula</u>	<u>Plug In</u>	<u>Answer</u>
M = 16 g V = ? D = 11.30 g/cm ³	$M = D \times V$	M = 11.30 × 16	M = 542.4 g
<u>Therefore Statement</u>			

Therefore the mass is 542.2 g.

13. Fill in the table for each isotope.

Isotope	Element	Atomic Number	Mass Number	# Protons	# Neutrons
³² ₂₆ S	Sulfur	26	32	26	6
Sulfur – 33	Sulfur	26	33	26	7
³⁵ ₁₇ Cl	Chlorine	17	35	17	18
Chlorine – 37	Chlorine	17	37	17	20
Vanadium – 50	Vanadium	23	50	23	27
⁵¹ ₂₃ V	Vanadium	23	51	23	28
Germanium - 74	Germanium	32	74	32	42
76 32Ge	Germanium	32	76	32	44
⁷⁰ ₃₂ Ge	Germanium	32	70	32	38
Germanium - 72	Germanium	32	72	32	40
⁷³ ₃₂ Ge	Germanium	32	73	32	41

13. Antimony – 121 has an atomic mass of 120.9038 amu at an abundance of 57.21%. Antimony 123 has an atomic mass of 122.9042 amu, at an abundance of 42.79%. What is the average atomic mass of Antimony?

57.21%	=	0.5721	120.9038	×	0.5721	=	69.17
42.79%	=	0.4279	122.9042	×	0.4279	=	52.59
							121.76 amu

14. Calculate the average atomic mass of magnesium using the information in the table below.

Magnesium-24	23.9850 amu	78.99%	or	0.7899	23.9850	×	0.7899	=	18.95
Magnesium-25	24.9858 amu	10.00%	or	0.1000	24.9858	×	0.1000	=	2.50
Magnesium-26	25.9826 amu	11.01%	or	0.1101	25.9826	×	0.1101	=	2.86
			-						

15. History of the atom.

Scientist & Date	Name & Features of Model	Improvements on previous model	Problems with the model
Democritus (400 BCE)			
John Dalton (1807)	S.E.	E You	<u>NR</u>
J.J. Thomson (1897)		otes An An	
Ernest Rutherford (1909)	7-5)	(TBO	
Niels Bohr (1913)			
James Chadwick (1932)			

16. Based on your knowledge of the patterns in the periodic table, draw a Lewis diagram for each of the following elements. Also determine if the element is a metal, non-metal or metalloid.

Cesium	Arsenic	Radon	Radium
Cs•	•As	:Rn:	Ra•
metal / nonmetal / metalloid			

18. Which is more reactive, hydrogen or helium? Why?

c. What are some benefits and drawbacks of this property?

Definitions:	
PARTICLE THEORY OF MATTER	PURE SUBSTANCE
MIXTURE	HITEROCINEOUS MIRTERE
HOMOGENEOUS MIXTURE	ALLOY
ELEMENT	CHEMICAL PROPERTIES
QUALITATIVE PROPERTY	UALITITA IVE PLOPERTY
VISCOSITY	PHY ICL CALGE
BOILING POINT	ALKALI METALS
CHARACTERISTIC PHYSICAL PROPERTY	DENSITY
FREEZING POINT	MELTING POINT
PHYSICAL PROPERTY (LIST AT LEAST 5)	CHEMICAL CHANGE (LIST THE SIGNS OF A CHEMICAL CHANGE)

Γ

Definitions:	
ELEMENT SYMBOL	COMPOUND
METAL	NON-METAL
METALLOID	GROUP
PERIOD	ATOM
ELECTRON	PROTON
NEUTRON	ALKA LINE EAP H METALS
HALOGENS	ISOTOLE
ATOMIC MASS	BOOK
NOBLE GASES	MOLECULAR ELEMENT (WHAT ARE THEY?)
MOLECULAR COMPOUND	ION
ANION	CATION
IONIC COMPOUND	COVALENT COMPOUND