Name: \qquad Date:

CHEMISTRY TEST REVIEW

Please check solutions at http://leetz.weebly.com

1. Determine if the compound is ionic or covalent, then name the compound.

Compound	Ionic/Covalent	
MgO	Ionic/Covalent	Mame
OCl_{4}	Ionic/Covalent	Oxygen tetrachloride
$\mathrm{Li}_{3} \mathrm{P}$	Ionic/Covalent	Lithium phosphide
NCl_{3}	Ionic/Covalent	Nitrogen trichloride
$\mathrm{Be}_{3} \mathrm{~N}_{2}$	Ionic/Covalent	Beryllium nitride
$\mathrm{Li}_{2} \mathrm{~S}$	Ionic/Covalent	Lithium sulphide
$\mathrm{B}_{2} \mathrm{O}_{3}$	Ionic/Covalent	Diboron trioxide
CaBr_{2}	Ionic/Covalent	Calcium bromide
$\mathrm{Si}_{2} \mathrm{Cl}_{6}$	Ionic/Covalent	Disilicon hexachloride
$\mathrm{N}_{4} \mathrm{~S}_{5}$	Ionic/Covalent	Tetranitrogen pentasulfide

2. Determine if the compound is ionic or covalent, then give the formula of the compound.

Compound	Ionic/Covalent	Formula	
Hexaboron carbide	Ionic/Covalent	$B_{6} C$	
Magnesium chloride	Ionic/Covalent	$\mathrm{Mg}^{2+} \mathrm{Cl}^{1-} \rightarrow \mathrm{Mg}_{1} \mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2}$	
Lithium oxide	Ionic/Covalent	$\mathrm{Li}^{1+} \mathrm{O}^{2-} \rightarrow \mathrm{Li}_{2} \mathrm{O}_{1} \rightarrow \mathrm{Li}_{2} \mathrm{O}$	
Dinitrogen trioxide	Ionic/Covalent	$\mathrm{N}_{2} \mathrm{O}_{3}$	
Beryllium nitride	Ionic/Covalent	$\mathrm{Be}^{2+} \mathrm{N}^{3-} \rightarrow \mathrm{Be}_{3} \mathrm{~N}_{2}$	
Fluorine pentachloride	Ionic/Covalent	FCl_{5}	
Fluorine disulfide	Ionic/Covalent	FS_{2}	
Aluminum sulfide	Ionic/Covalent	$\mathrm{Al}^{3+} \mathrm{S}^{2-} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$	
Sodium silicide	Ionic/Covalent	$\mathrm{Na}^{1+} \mathrm{Si}^{4-} \rightarrow \mathrm{Na}_{4} \mathrm{~S}_{1} \rightarrow \mathrm{Na}_{4} \mathrm{~S}$	Neither of these will be on the test
Potassium carbide	Ionic/Covalent	$\mathrm{K}^{1+} \mathrm{C}^{4-} \rightarrow \mathrm{K}_{4} \mathrm{C}_{1} \rightarrow \mathrm{~K}_{4} \mathrm{C}$	

3．Write the formula，then draw the bonding diagram for the following ionic compounds．
a．Lithium \＆Fluorine $\mathrm{Li}^{1+} \mathrm{F}^{1-}$
Formula：Li
Bonding Diagram：
Before

After

$$
-1+1=0
$$

b．Magnesium \＆Chlorine $\mathrm{Mg}^{2+} \mathrm{Cl}^{1-}$
Formula： MgCl_{2}
Bonding Diagram：

Before

After

d．Aluminum \＆Fluorine $\mathrm{Al}^{3+} \mathrm{F}^{1-}$
c．Potassium \＆Oxygen $\mathrm{K}^{1+} \mathrm{O}^{2-}$
Formula： $\mathrm{K}_{2} \mathrm{O}$
Bonding Diagram：
Before

After

$$
+2-2=0
$$

Formula： AlF_{3}
Bonding Diagram：

Before

After

$$
\left[\begin{array}{ll}
{[8 ⿻ 日 禸}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
{\left[8, \theta_{6}\right]}
\end{array}\right]
$$

$$
+3-3=0
$$

e．Sodium \＆Nitrogen $\mathrm{Na}^{1+} \mathrm{N}^{3-}$
Formula： $\mathrm{Na}_{3} \mathrm{~N}$
Bonding Diagram：
Before

After

$+3-3=0$
g．Calcium \＆Nitrogen $\mathrm{Ca}^{2+} \mathrm{N}^{3-}$
Formula： $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
Bonding Diagram：

After

f．Aluminum \＆Sulfur $\mathrm{Al}^{3+} \mathrm{S}^{2-}$
Formula： $\mathrm{Al}_{2} \mathrm{~S}_{3}$
Bonding Diagram：

Before

After

$$
+6-6=0
$$

h．Beryllium \＆Phosphorus $\mathrm{Be}^{2+} \mathrm{P}^{3-}$
Formula： $\mathrm{Be}_{3} \mathrm{P}_{2}$
Bonding Diagram：

After

4. Draw the Lewis diagram for the following covalent compounds. Some compounds will have double bonds.

a. SF_{2}	b. NF_{3}	c. SO_{2}	d. CO_{2}
$\begin{gathered} \stackrel{\circ}{F}: \stackrel{\bullet}{\circ}: \\ \bullet \cdot: \end{gathered}$		Don't Do 60	$: \stackrel{\bullet}{\circ}: 8 \mathrm{C}: \stackrel{\bullet}{\circ}:$
e. C_{4}		g. OCl_{2} $\begin{array}{r} \circ \mathrm{Cl}_{\circ}^{\circ} \circ \mathrm{O}_{\bullet \circ}^{\circ} \\ \bullet \mathrm{Cl}_{\circ}^{\circ} \end{array}$	h. SiO_{2}
i. BH_{3} Don't Do	$\text { j. } \mathrm{H}_{2} \mathrm{~S}$	k. SCl_{4} Don't Do 0	

5. Counting Atoms

$3 \mathrm{Fe}_{2} \mathrm{~S}_{3}$	$2 \mathrm{FeSO}_{4}$	$4 \mathrm{Na}_{2} \mathrm{CO}_{3}$
Number of Molecules: 3	Number of Molecules: 2	Number of Molecules: 4
Element: Number:	Element: Number:	Element: Number:
Iron (Fe) 6	Iron (Fe) 2	Sodium (Na) 8
Sulfur (S) 9	Sulfur (S) 2	Carbon (C) 4
Total Number of Atoms: 15	Oxygen (0) 8	Oxygen (0) 12
	Total Number of Atoms: 12	Total Number of Atoms: 24
$3 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$	$4 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	5 NaOH
Number of Molecules: 3	Number of Molecules: 4	Number of Molecules: 5
Element: Number:	Element: Number:	Element: Number:
Carbon (C) 27	Sodium (Na)	Sodium (Na) 5
Hydrogen (H) 24	Carbon (C) 8	Oxygen (0) 5
Oxygen (0) 12	Hydrogen (H) 12	Hydrogen (H) 5
Total Number of Atoms: 12	Oxygen (0) 8	Total Number of Atoms: 15

5. Bohr Rutherford (BR) Diagrams (Neutral and Charged). Assume the number of protons matches the number of neutrons.

Element	BR diagram (atom)	\# electrons gained/lost	BR diagram (ion)	charge
Beryllium		2 lost		$+4-2=$ $+2$
Potassium		1 lost		$\begin{array}{r} +19-18= \\ +1 \end{array}$
Calcium		2 lost		$\begin{array}{r} +20-18= \\ +2 \end{array}$
Oxygen	$\left\{\left(\begin{array}{l} 0-0 \\ p=8 \\ n=8 \end{array}\right)\right\}$	2 gained	2-	$\begin{array}{r} +8-10= \\ -2 \end{array}$
Fluorine		1 gained		$\begin{array}{r} +9-10= \\ -1 \end{array}$
Nitrogen	$\left\{\left(\begin{array}{l} 0-0 \\ 0=7 \\ n=7 \\ 0 \end{array}\right)\right\}$	3 gained	3-	$\begin{array}{r} +7-10= \\ -3 \end{array}$

6. Fill in the table.

Atomic Component	Charge	Location	Size
Proton	positive	nucleus	large (=neutron)
Electron	negative	orbital	very small
Neutron	neutral	nucleus	large (=proton)

7. What is the difference between Atomic Number, Mass Number and Atomic Mass?

Atomic Number : Number of protons in an atom, number of electrons in a neutral atom
Mass Number : Number of protons + Number of neutrons
Atomic Mass: Average weight of the different isotopes of the atom, in atomic mass units (amu)
8. For the each element given below, state the symbol, number of protons, and whether the element is a metal (M) or non-metal (NM).

Tellurium	Te, 52, NM	Arsenic	As, 33, NM	Mercury	$\mathrm{Hg}, 80, \mathrm{M}$
Lithium	$\mathrm{Li}, 3, \mathrm{M}$	Bromine	$\mathrm{Br}, 35, \mathrm{NM}$	Astatine	$\mathrm{At}, 85, \mathrm{NM}$
Radon	Rn, 86, NM	Cerium	$\mathrm{Ce}, 58, \mathrm{M}$	Iridium	$\mathrm{Ir}, 77, \mathrm{M}$

9. Using the atomic mass, calculate the number of neutrons for each element.

| Vanadium | $(23) \quad 50.94=51,51-23=28$ | Silicon | $(14) \quad 28.09=28,28-14=14$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Bismuth | $(83) \quad 208.98=209,209-83=126$ | Germanium | $(32) \quad 72.64=73,73-32=41$ |
| Iodine | $(53) \quad 126.90=127,127-53=74$ | Tin | (50) $\quad 118.71=119,119-50=69$ |

10. Answer the following questions with the help of a periodic table:

a) Which element is in group 17 and period 3?	b) Which element is in group 5 and period 5?
Chlorine	Niobium
c) Which element is in group 6B and period 6?	d) How many valence electrons does Rubidium have?
Tungsten	1 (Rubidium is in group 1)
e) Which element is in group 6A and period 6?	f) Which element has atomic number 58?
Polonium	Cerium
g) In which period can Selenium be found?	h) In which group can Krypton be found?
4	18 or 8 A - Noble Gases

11. Complete the following density calculations

a) A block of mystery metal has a mass of 32.4 g . The length, width and height of the block are $1 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm respectively. What is the density and identity of the metal?

$$
\text { Iron }=7.87 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { Silver }=10.49 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { Aluminum }=2.70 \mathrm{~g} / \mathrm{cm}^{3}
$$

| Volume $(L \times W \times H)$ | List | Formula | Plug In |
| :--- | :--- | :--- | :--- |\quad Answer

Therefore Statement (Include density and identity)
Therefore the density is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$ and the metal is aluminum.
b) A mystery metal has a mass of 0.03147 kg , and a volume of $3 \mathrm{~cm}^{3}$. What is the density and identity of the metal? (correction above)

$$
\text { Iron }=7.87 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { Silver }=10.49 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { Aluminum }=2.70 \mathrm{~g} / \mathrm{cm}^{3}
$$

Conversion	List	Formula	Plug In	Answer
$0.03147 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}$ $M=31.47 \mathrm{~g}$ $V=3 \mathrm{~cm}^{3}$ $D=?$ $D=\frac{M}{V}$ $D=\frac{31.47}{3}$	$D=$ $=31.47 \mathrm{~g}$			

Therefore Statement (Include density and identity)

Therefore the density is $10.49 \mathrm{~g} / \mathrm{cm}^{3}$ and the identity of the metal is silver.
c) A mystery metal has a mass of 13500 mg , and a volume of $5 \mathrm{~cm}^{3}$. What is the density and identity of the metal?

$$
\text { Iron }=7.87 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { Silver }=10.49 \mathrm{~g} / \mathrm{cm}^{3} \quad \text { Aluminum }=2.70 \mathrm{~g} / \mathrm{cm}^{3}
$$

Conversion	$\underline{\text { List }}$	Formula	Plug In	Answer
$13500 \mathrm{mg} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}$ $M=13.5 \mathrm{~g}$ $V=5 \mathrm{~cm}^{3}$ $D=?$ $D=\frac{M}{V}$ $D=\frac{13.5}{5}$	$D=2.7 \mathrm{~g} / \mathrm{cm}^{3}$			

Therefore Statement (Include density and identity)

Therefore the density is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$ and the metal is aluminum.
12. Complete the following density calculations. Use the triangle to find the appropriate formula. Round to one decimal place if necessary.

a) Brass, an alloy of copper and zinc, has a density of $8.5 \mathrm{~g} / \mathrm{cm}^{3}$. A sample of brass weights 4320 mg . What is the volume of the brass sample?

Conversion	List	Formula	Plug In	Answer
$M 320 \mathrm{mg} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}$ $M=4.32 \mathrm{~g}$ $V=?$ $D=8.5 \mathrm{~g} / \mathrm{cm}^{3}$ $V=\frac{M}{D}$ $V=\frac{4.32}{8.5}$	$V=0.5 \mathrm{~cm}^{3}$			
$=4.32 \mathrm{~g}$				

Therefore Statement

Therefore the volume of the brass sample is $0.5 \mathrm{~cm}^{3}$.
b) Steel, an alloy of iron and carbon, has a density of $7.8 \mathrm{~g} / \mathrm{cm}^{3}$. A sample of steel weighs 24 g . What is the volume of the steel?

List	Formula	PlugIn	Answer
$M=24 \mathrm{~g}$	$V=\frac{M}{D}$	$V=\frac{24}{7.8}$	$V=3.1 \mathrm{~cm}^{3}$
$V=?$			

Therefore Statement

Therefore the volume of the steel sample is $3.1 \mathrm{~cm}^{3}$.
c) Zinc has a density of $7.10 \mathrm{~g} / \mathrm{cm}^{3}$. A block of steel has a length of 2 cm , a width of 5 cm and a height of 4 cm . What is the mass of the block of zinc?

Volume (L×W $\times H)$	List	Formula	Plug In	Answer
$2 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4 \mathrm{~cm}$	$M=?$	$M=D \times V$	$M=7.10 \times 40$	$M=852 \mathrm{~g}$
$=140 \mathrm{~cm}^{3}$	$V=40 \mathrm{~cm}^{3}$			
	$D=7.10 \mathrm{~g} / \mathrm{cm}^{3}$			

Therefore Statement (Include density and identity)
Therefore the mass is 852 g .
d) Lead has a density of $11.30 \mathrm{~g} / \mathrm{cm}^{3}$. A sample of lead has a volume of $16 \mathrm{~cm}^{3}$. What is the mass of the sample?

$\underline{\text { List }}$	Formula	Plug In	Answer
$M=16 \mathrm{~g}$	$M=D \times V$	$M=11.30 \times 16$	$M=542.4 \mathrm{~g}$
$V=?$			
$D=11.30 \mathrm{~g} / \mathrm{cm}^{3}$			

Therefore Statement
Therefore the mass is 542.2 g .
13. Fill in the table for each isotope.

Isotope	Element	Atomic Number	Mass Number	\# Protons	\# Neutrons
${ }_{26}^{32} \mathrm{~S}$	Sulfur	26	32	26	6
Sulfur - 33	Sulfur	26	33	26	7
${ }_{17}^{35} \mathrm{Cl}$	Chlorine	17	35	17	18
Chlorine - 37	Chlorine	17	37	17	20
Vanadium - 50	Vanadium	23	50	23	27
${ }_{23}^{51} \mathrm{~V}$	Vanadium	23	51	23	28
Germanium - 74	Germanium	32	74	32	42
${ }_{32}^{76} \mathrm{Ge}$	Germanium	32	76	32	44
${ }_{32}^{70} \mathrm{Ge}$	Germanium	32	70	32	38
Germanium - 72	Germanium	32	72	32	40
${ }_{32}^{73} \mathrm{Ge}$	Germanium	32	73	32	41

13. Antimony - 121 has an atomic mass of 120.9038 amu at an abundance of 57.21%. Antimony 123 has an atomic mass of 122.9042 amu , at an abundance of 42.79%. What is the average atomic mass of Antimony?

$57.21 \%=0.5721$	120.9038×0.5721	$=69.17$
$42.79 \%=$	0.4279	122.9042×0.4279

121.76 amu
14. Calculate the average atomic mass of magnesium using the information in the table below.

| Magnesium-24 | 23.9850 amu | 78.99% | or 0.7899 | 23.9850×0.7899 | $=18.95$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Magnesium-25 | 24.9858 amu | 10.00% | or 0.1000 | 24.9858×0.1000 | $=2.50$ |
| Magnesium-26 | 25.9826 amu | 11.01% | or 0.1101 | 25.9826×0.1101 | $=2.86$ |
| correction \uparrow | | | | 24.31 amu | |

15. History of the atom.

|
 Date | Name \& Features of
 Model | Improvements on
 previous model | Problems with the model |
| :--- | :---: | :---: | :---: | :---: |
| Democritus
 (400 BCE) | | | |

16. Based on your knowledge of the patterns in the periodic table, draw a Lewis diagram for each of the following elements. Also determine if the element is a metal, non-metal or metalloid.

Cesium	Arsenic	Radon	Radium
metal / nonmetal / metalloid			

18. Which is more reactive, hydrogen or helium? Why?

19. Answer the following ques ons pertaining wate a. What is special about the density of liquid water compared to solid water?

c. What are some benefits and drawbacks of this property?

