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Abstract

Current theories suggest that physical pain and social rejection share common neural mechanisms, 

largely by virtue of overlapping functional magnetic resonance imaging (fMRI) activity. Here we 

challenge this notion by identifying distinct multivariate fMRI patterns unique to pain and 

rejection. Sixty participants experience painful heat and warmth and view photos of ex-partners 

and friends on separate trials. FMRI pattern classifiers discriminate pain and rejection from their 

respective control conditions in out-of-sample individuals with 92% and 80% accuracy. The 

rejection classifier performs at chance on pain, and vice versa. Pain-and rejection-related 

representations are uncorrelated within regions thought to encode pain affect (for example, dorsal 

anterior cingulate) and show distinct functional connectivity with other regions in a separate 

resting-state data set (N = 91). These findings demonstrate that separate representations underlie 

pain and rejection despite common fMRI activity at the gross anatomical level. Rather than co-

opting pain circuitry, rejection involves distinct affective representations in humans.

The neural and psychological mechanisms of social rejection are the subject of intense 

study1–5; rejection is experienced as painful, and is an important risk factor for physical and 

mental illnesses6,7 and other functional impairments8. How rejection experiences are 

represented in the brain has great theoretical significance for understanding social and 

emotion processes9 and translational implications for assessing and treating medical 

conditions influenced by social factors10,11.
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The ‘shared representation’ theory of social pain, the most influential theory of adverse 

social experience, suggests that rejection and related experiences piggyback on brain 

systems evolved to represent physical pain1–3. Experiences of social rejection and physical 

pain indeed have many common psychological and biological attributes. For example, both 

are often described using very similar words1 and involve similar biological regulatory 

systems, such as endogenous opioids and oxytocin12,13. Critically, recent functional 

magnetic resonance imaging (fMRI) findings suggest that physical pain and social rejection 

activate common brain regions. These findings have been interpreted as evidence that pain 

and rejection share common brain representations2,4,5. Although the ‘shared representation’ 

theory does not claim that the neural systems underlying pain and rejection are exactly the 

same, it claims that shared representations exist in the brain regions thought to represent 

affective and sensory information in a modality-independent way. These regions include 

those important for representing affective distress across many conditions (for example, the 

dorsal anterior cingulate [dACC] and anterior insula [aINS])2,14–16 and those that represent 

somatosensory information more specifically (for example, dorsal-posterior insula [dpINS] 

and S2)4,5.

However, overlapping fMRI activity within these regions does not necessarily imply shared 

representations at all levels of analysis (for example, neuronal population codes)17–19. For 

example, dACC and aINS show similar fMRI activity during the experience of positive and 

negative emotions20 and also during diverse sensory and cognitive processes that have little 

to do with pain or rejection21,22. Thus, fMRI-based summaries of these regions often focus 

on potential common functions, such as surprise23 or salience24. However, the dACC 

contains multiple, functionally specific subpopulations of neurons25, including nociceptive-

specific ones26 and those that code for various motivationally relevant events, such as 

reward expectancy27 or predicted cognitive demands28. Even if the fMRI activity evoked by 

pain, rejection and other states is overlapping, their underlying neural representations may 

be non-overlapping. Thus, the question of whether representations of pain and rejection 

within dACC, aINS, dpINS, and S2 are common or distinct is unresolved.

In this paper, we take a fresh look at the question of shared neural representations for pain 

and rejection, using multivariate pattern analysis (MVPA)29 combined with a rigorous 

inferential logic, the ‘separate modifiability’ criterion30, for assessing shared versus distinct 

representations at the fMRI multivariate pattern level. The ‘separate modifiability’ criterion 

requires two different measures (here, two fMRI multivariate patterns) to be separately 

modulated by two manipulations without cross-influences. For example, if two fMRI 

multivariate patterns can be identified such that one pattern responds to manipulations of 

pain but not rejection, and the other pattern responds to rejection but not pain, the patterns 

are separately modifiable30. This criterion is well suited for ruling out a single-process 

account of function, such as intensity or salience. The rationale for this is laid out in detail in 

the Discussion and ref. 30, but briefly, if two brain measures are separately modified by the 

two manipulations, then no single process is sufficient to account for the results. Therefore, 

separate modifiability can provide strong evidence for the existence of distinct brain 

representations for pain and rejection.
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We examined the following three specific questions in this paper: (i) whether global and 

local multivariate fMRI patterns that are separately modifiable by pain and rejection can be 

identified (aim 1), (ii) whether or not those multivariate patterns for pain and rejection are 

correlated within and across regions (aim 2) and (iii) whether the multivariate patterns for 

pain and rejection engage distinct functional brain networks (aim 3). Even if standard fMRI 

activation is insufficient to capture activity in distinct neural circuits, multivariate patterns of 

fMRI activity may be able to capture neuronal population codes specific to distinct sensory 

and affective experiences17,31,32. Thus, it may still be possible to identify multivariate 

patterns that respond only to manipulations of pain or rejection, and thus demonstrate 

separate modifiability of the two processes within and across brain regions.

In Study 1, 60 participants were scanned with fMRI while they experienced physical pain 

and social rejection stimuli on separate trials (Fig. 1a). We recruited individuals who 

recently experienced an unwanted break-up with their romantic partners and felt intensely 

rejected. In the social rejection task, in order to elicit emotions of social rejection, 

participants viewed a headshot photograph of their ex-partner (‘Ex-partner’ condition) or a 

close friend (‘Friend’ condition). In the somatic pain task, we delivered painful heat (‘Heat-

pain’ condition) or warm heat (‘Warmth’ condition) to the left volar forearm. Data from part 

of this sample (N = 40) were previously published4,32, but the analyses we performed here 

are qualitatively different from those in previous reports; here we focus on identifying an 

fMRI multivariate pattern for rejection and assessing its relationship with somatic pain 

representations (see Discussion for additional details).

Through a series of analyses, we challenge the ‘shared representation’ theory by identifying 

whole-brain fMRI multi-variate patterns separately modifiable by pain and rejection. In 

addition to separate modifiability at the whole-brain level, multivariate patterns coding for 

pain and rejection within the dACC, aINS, dpINS, and S2 are uncorrelated and separately 

modifiable. Resting-state connectivity analyses on a separate sample (Study 2, N = 91) 

reveal that two multivariate patterns for pain and rejection encoded in the same set of dACC 

voxels have distinct functional connectivity patterns with the rest of the brain. These 

findings suggest that pain and rejection are distinct types of affect, with independent 

representations co-localized in similar gross anatomical regions.

Results

Behavioural results

In Study 1, both the Heat-pain and Ex-partner conditions elicited substantial negative affect 

on numerical rating scales (MHeat-pain = 4.07±0.55 (s.d.); MEx-partner = 4.28±0.39 on a five-

point scale), compared with their respective control (Friend and Warmth) conditions, 

tHeat-pain versus Warmth (59) = 29.07, P<0.001, tEx-partner versus Friend (59) = 28.37, P<0.001. 

Pain and rejection manipulations elicited equally strong increases in negative affect (for 

Heat-pain versus Ex-partner, , t (118) = 0.26, P = 0.80).

Participants provided verbal descriptions of their experiences while viewing their ex-

partner’s photo after the experiment. A word frequency analysis of these descriptions using 

the LIWC2007 software33 revealed that, as expected, the photos elicited painful emotions: 
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9.7% of all negative emotion words provided by participants were pain-related words (for 

example, painful, hurt and so on), with 23% of participants using at least one pain-related 

word. The photos also evoked other negative emotions, including sadness (for example, sad, 

cry; 40.3% of negative emotion words used, and 85% of participants), anger (for example, 

angry, mad; 23.3% of negative emotion words, and 97% of participants) and stress (for 

example, upset, confused; 14.2% of negative emotion words, and 77% of participants). 

Thus, rejection-related stimuli did not only evoke ‘painful’ experiences, but they also 

elicited multiple intense, negative emotions.

Separate modifiability of fMRI pattern-based classifiers

To identify multivariate patterns of fMRI activity that are separately modifiable by pain and 

rejection (aim 1), we trained linear support vector machines (SVMs) to discriminate Heat-

pain versus other conditions and Ex-partner versus other conditions with a leave-one-

subject-out cross-validation35. We used whole-brain activation parametric maps that were 

masked by an a priori meta-analytic map associated with ‘pain’, ‘emotion’ and ‘social’22 

(see Methods and Supplementary Fig. 1). In order to identify pain-and rejection-specific 

activation patterns if they exist, it is desirable to train the classifier on Heat-pain versus all 

other conditions (including Ex-partner) or Ex-partner versus others (including Heat-pain) 

rather than Heat-pain versus Warmth and Ex-partner versus Friend because the latter 

contrasts could capture signal from a single process, such as salience or general 

aversiveness. With the identified patterns for pain and rejection, we tested for separate 

modifiability by testing them on out-of-sample participants for Heat-Pain versus Ex-partner 

or Ex-Partner versus Heat-Pain, Heat-Pain versus Warmth and Ex-partner versus Friend 

contrasts.

As shown in Fig. 2a and Supplementary Fig. 2, the pain classifier discriminated Heat-pain 

versus Ex-partner with 100% accuracy in the test participants (95% confidence interval (CI): 

100–100%, P<0.00001) and Heat-pain versus Warmth with 92% accuracy (CI: 84–99%, 

P<0.00001). However, it performed at chance for Ex-partner versus Friend (accuracy = 

59%, with 95% CI: 47–72%, P = 0.193), demonstrating responsivity only to somatic pain. 

The rejection classifier discriminated Ex-partner versus Heat-pain with 88% accuracy (95% 

CI: 80–96%, P<0.00001) and Ex-partner versus Friend with 80% accuracy (95% CI: 69–

90%, P<0.00001). However, it performed at chance for Heat-pain versus Warmth (accuracy 

= 59%, with 95% CI: 47–72%, P = 0.193), demonstrating responsivity only to rejection. 

These findings provide the first evidence for separate modifiability of whole-brain fMRI 

multivariate patterns for pain and rejection, suggesting the existence of functionally 

independent neural representations for pain and rejection.

Figure 2b displays the classifier voxel weights that reliably contribute to the classification of 

pain and rejection, respectively, based on bootstrap tests with 10,000 iterations (thresholded 

at P<0.001 uncorrected for display only; all voxel weights were used in classification). Heat-

pain versus Warmth was predicted by activation in many regions associated with 

nociceptive processing and endogenous pain control36,37, such as right (contralateral) 

dpINS, bilateral S2, medial thalamus and periaqueductal gray (PAG). Ex-partner versus 

Friend was predicted by increased activity in dorsomedial prefrontal cortex (dmPFC), right 
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temporal parietal junction (TPJ) and precuneus, which are reliably associated with 

mentalizing about others38,39, and several other regions associated with negative emotion 

and its regulation20,40,41, including thalamus, supplementary motor area and inferior frontal 

gyrus.

To statistically compare the two pattern maps for pain and rejection (aims 2, 3), we 

conducted a bootstrap test with 10,000 iterations: for each iteration, we trained linear SVMs 

for pain and rejection and calculated (i) their spatial correlation across voxel weights and (ii) 

the difference weight values at each voxel. The two pattern classifiers were uncorrelated 

with each other, r = −0.04, P = 0.28, and showed different weights in the following brain 

regions: Activation was more strongly predictive of pain in the supramarginal gyrus, middle 

insula, dpINS and ventral insula, PAG, amygdala and thalamus (warm colours in Fig. 3a, q 

< 0.05, false discovery rate [FDR] corrected; for the full list of the regions, see 

Supplementary Table 1). Activation was more strongly predictive of social rejection in 

dmPFC, right inferior frontal gyrus, ventromedial prefrontal cortex, perigenual anterior 

cingulate cortex, TPJ and precuneus (cool colours in Fig. 3a). The significant weight 

differences in these regions were mainly driven by significant positive weights for pain or 

rejection (Fig. 3b), but in some regions by significant negative weights; in particular, by 

negative weights for rejection in amygdala and thalamus.

Multi-voxel pattern similarity analysis

Pain and rejection-related patterns included significantly different weights in some known 

targets of ascending nociceptive pathways42, including dpINS, thalamus and PAG, but not 

others (for example, dACC, aINS and S2). All of these regions were activated in standard 

general linear model (GLM) analyses by both Heat-pain versus Warmth and Ex-partner 

versus Friend contrasts (Supplementary Fig. 3). Common GLM activations such as these 

results have been interpreted in terms of shared neural representations between pain and 

rejection in previous papers2–4.

For this reason, and to identify shared local representations if they exist (aim 2), we 

examined whether the individual patterns of fMRI activity within these nociceptive pain-

processing regions were similar or different for each participant with multi-voxel pattern 

similarity analysis17,43. The pattern correlations within dACC, aINS, S2 and dpINS were 

calculated for each individual participant (i) between the SVM weights for pain and 

rejection across voxels, and (ii) between the first-level contrast activation maps for Heat-

pain versus Warmth and Ex-partner versus Friend (see Supplementary Fig. 4 for the detailed 

analysis procedure). 95% CIs and P-values were calculated based on bootstrap tests with 

10,000 iterations (for the correlations between SVM weights) or based on group statistics 

(for the correlation between contrast images).

Pattern similarity analysis results supported the conclusion that pain- and rejection-related 

representations within pain-processing regions were distinct (Fig. 4a). No core pain-

processing regions showed a significant correlation between (i) SVM classifier weights for 

pain and rejection (Fig. 4b, left) or (ii) fMRI contrast images for pain and rejection (Fig. 4b, 

right). Use of rank correlations yielded the same results.
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Cross-classification test results with local classifiers

Although pain- and rejection-related fMRI patterns were uncorrelated within core pain-

processing regions, this does not imply that there are no shared representations anywhere in 

the brain. To identify regions with shared and non-shared local patterns between pain and 

rejection (aims 1, 2), we conducted ‘cross-classification’ tests using a local pattern-based 

classification approach (cf. ref. 44). The cross-classification tests consisted of three steps. (i) 

Local regions were defined using spherical searchlight regions around centre voxels45 or 

using functional parcellations46. (ii) Multivariate pattern classifiers using a defined local 

region were trained separately for Heat-Pain versus Warmth and Ex-partner versus Friend 

with leave-one-subject-out cross-validation. In this analysis, training classifiers on one 

condition versus its control condition is more desirable than the one condition versus all 

other conditions approach because here we sought to identify ‘shared’ local representations 

across pain and rejection, not specific and unique representations of pain and rejection. (iii) 

With the identified local patterns for pain and rejection, we tested for separate modifiability 

by applying them to out-of-sample participants for the Heat-Pain versus Warmth and Ex-

partner versus Friend contrasts. Steps ii and iii were repeated for each local region across the 

whole brain.

If neural representations for pain and rejection are shared within a local region, the cross-

validated accuracy for each classifier should be significant for both within- and cross-

modality test contrasts. For example, a pattern trained on Heat-Pain versus Warmth would 

classify above chance for both Heat-Pain versus Warmth (within-modality) and Ex-partner 

versus Friend (cross-modality) in out-of-sample participants. To assess the robustness of the 

procedure across variations in the method, we conducted the cross-classification tests with 

four different local region definitions, including 6- and 10-mm radius spherical 

searchlights45, and 200- and 400-region functional parcellations46. As the results were 

comparable across all local region definitions (Supplementary Fig. 5), here we focus on the 

results of 6-mm radius spherical searchlights (Fig. 5 and Supplementary Fig. 6).

As shown in Fig. 5 and Supplementary Table 2, a number of regions showed significant 

cross-classification between pain and rejection (yellow in Fig. 5), implying shared 

representation at the local pattern level. These included the left parahippocampal and 

fusiform gyri, retrosplenial cortex, right TPJ, posterior cingulate cortex and striatum 

(q<0.05, FDR corrected). Critically, none of these regions are primary ‘pain-processing’ 

regions36,42. Many other regions showed significant classification accuracy for both pain 

and rejection (orange in Fig. 5), but without significant cross-classification (that is, separate 

modifiability). Such regions did include those targeted by primary nociceptive afferents (for 

example, dACC, aINS and dpINS/S2).

Distinct functional connectivity with dACC patterns

In Study 2, we tested whether the distinct multivariate patterns for pain and rejection in the 

same local region of interest within the dACC are functionally connected to similar or 

different brain networks in a separate resting-state fMRI data set (N=91; aim 3). In previous 

sections, we showed that the dACC was commonly activated by both pain and rejection 

(Fig. 4a), but we identified distinct multivariate fMRI patterns within the dACC, which were 
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separately modifiable by pain and rejection (Fig. 5). However, it is unknown whether these 

multivariate patterns for pain and rejection within the dACC connected to distinct brain 

circuits that correspond to distinct affective processes and large-scale brain networks.

To examine this question, we used the Study 1 data to obtain dACC local-region patterns—

defining the region as the portion of dACC that showed strong separate modifiability in the 

previous analyses—separately for Heat-Pain versus Warmth and Ex-partner versus Friend. 

This yielded dACCpain and dACCrejection multivariate patterns optimized to specifically 

detect each experience (Fig. 6a). Then, we calculated the expression of each pattern at each 

time point in the Study 2 resting-state fMRI data, yielding two ‘seed’ time courses based on 

the two patterns. In order to calculate the strength of expression of each pattern, we used the 

dot-product of a vectorized activation map within the dACC region of interest with the 

pattern classifier weights. Finally, we performed random-effects GLM analyses to estimate 

functional connectivity with each seed’s time course across the brain and the connectivity 

difference maps.

Figure 6a shows the multivariate pattern classifiers within dACC for pain and rejection and 

the cross-validated classification accuracy results, indicating that the dACC patterns for pain 

and rejection were distinct, r = −0.04, P = 0.23 and separately modifiable by pain and 

rejection, as we expected. The whole-brain functional connectivity patterns for dACCpain 

and dACCrejection (Fig. 6b) and their difference map (Fig. 6c) showed that dACCpain and 

dACCrejection engage distinct functional connectivity patterns. For example, dACCpain 

showed stronger functional connectivity with thalamus, posterior insula, midbrain regions, 

ventral and anterior part of medial frontal regions, posterior cingulate cortex and cerebellum 

(yellow in Fig. 6c), whereas dACCrejection was more strongly associated with ventral and 

dorsal lateral prefrontal cortex, parietal cortex, temporal pole and middle temporal lobe, 

dmPFC and TPJ (blue in Fig. 6c). These networks correspond well to the regions with 

differential predictive weights for pain and rejection in Study 1, but they were identified 

using distinct methodology (resting-state fMRI connectivity) in an independent sample in 

the absence of overt pain or social rejection.

Discussion

The idea that there is substantial overlap in the neural representations of pain and rejection 

within core pain-processing regions such as dACC and aINS has been influential in various 

fields1,47. However, claims about shared representation in the previous studies have been 

based on findings of overlapping univariate fMRI activity between pain and rejection2,4,5, 

which is not anatomically specific enough to bear on the question of whether the underlying 

neural representations are similar. Here we used a more fine-grained analysis technique to 

demonstrate that the overlapping activity arises from distinct neural representations18. 

MVPA is more likely to reflect population codes across neurons43,45,48, as they have 

demonstrably greater sensitivity and specificity to particular types of mental events17,31,32. 

We demonstrate that multivariate patterns encoding the intensity of pain and rejection are 

separately modifiable30 by showing that pain and rejection each influenced distinct, 

uncorrelated fMRI patterns at the whole-brain level and within ‘pain-processing’ regions.
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The criterion of separate modifiability, which is a stronger version of the classic ‘double 

dissociation’ logic, strongly implies the existence of distinct, non-shared neural 

representations for pain and rejection. The criterion also rules out a single-process 

interpretation (for example, based on salience, arousal or general aversiveness) of the fMRI 

multivariate patterns that we observed within and across regions. The logic of this claim is 

laid out more completely in ref. 30, but it deserves a brief treatment here. We start by 

hypothesizing that the effects of both pain and rejection manipulations on dACC (or any 

other region discussed here) are related to a single process (for example, salience), and 

asking whether this hypothesis can be falsified with the separate modifiability criterion. Let 

us call the pain-related fMRI pattern in dACC ‘Pattern A.’ If rejection does not activate 

Pattern A, then there are three possibilities: (i) Pattern A does not reflect a common process 

engaged by both pain and rejection; (ii) Pattern A is not sensitive to the common process 

(for example, is too noisy) or (iii) rejection activates the common process too weakly. We 

can rule out (ii), because pain does activate Pattern A. Alternative (iii) is possible, although 

we note that subjective ratings of distress were comparable across pain and rejection (Fig. 

1b). Now, let us consider that rejection activates Pattern B, but pain does not. If Pattern B 

also reflects activation of the same common process (for example, salience), then (iii) is 

ruled out, because rejection is demonstrated to be a more potent manipulation of Pattern B 

than pain. Thus, we conclude (i): ‘Pattern A does not reflect a common process engaged by 

both pain and rejection’. The same logic applies to Pattern B, and we can infer that neither 

pattern encodes a mental process that is shared by both pain and rejection. This is important 

in relation to recent literature interpreting fMRI activity in the dACC, aINS and other 

regions in terms of general processes (for example, both regions are part of the ‘salience 

network’24). Based on our findings and the separate modifiability logic, standard brain 

activation results may reflect non-specific, domain-general processes, but the multivariate 

patterns we identify here cannot.

The existence of at least some neural dissociation of pain and rejection is trivial, in part 

because pain and rejection-related stimuli are initially processed in different sensory systems 

(that is, somatosensory versus visual), and also because they differ in their cognitive 

associations and implications. What is at stake, however, is whether core affective processes 

(for example, ‘pain affect’) are shared2,47, and whether the type of emotional distress 

elicited during pain is the same as that elicited during social rejection. Germaine to this 

issue, pain- and rejection-related multivariate patterns were uncorrelated and separately 

modifiable even within the regions thought to encode ‘pain affect,’ including the dACC and 

aINS. In addition, although both pain and rejection activate somatosensory areas, such as S2 

and dpINS, we demonstrate here that they activate different multivariate patterns within 

these areas. Thus, together, the findings indicate separable neural representations that are co-

localized at the gross anatomical level.

It is important to consider how the multivariate patterns we identified might relate to those at 

more spatially precise levels of analysis, including optical imaging and single-unit 

recording. Ultimately, neural processes that underlie representations of mental constructs 

can be investigated at multiple levels of analysis. Among methods available in healthy 

humans, fMRI multivariate patterns may be particularly useful in inferring representational 

similarity43, as such patterns can be sensitive to population codes distributed across large 
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numbers of individual neurons. FMRI multivariate patterns have obvious limitations in 

spatial resolution compared with single-unit recording49, in large part because blood-

oxygen-level-dependent (BOLD) fMRI is sensitive to changes in microvascular beds that 

subserve many neurons, and the BOLD response thus acts as a spatial low-pass (blurring) 

filter sensitive to some, but not all, neuronal-level processes48,50. Because of the spatial 

blurring properties of fMRI, finding that two manipulations activate similar fMRI patterns 

does not necessarily imply similar neuron-level representations. However, finding 

dissociable fMRI patterns, as we did here, implies that the neuron-level population codes are 

different. An additional advantage of working at the fMRI pattern level is that fMRI can 

detect representations encoded across millions or billions of neurons, including interactions 

among large-scale brain networks, complementing approaches at finer spatial scales.

It is also important to note that our findings do not imply that there are no shared 

representations anywhere in the brain. To the contrary, we identified a number of regions 

showing similar fMRI patterns for pain and rejection. However, these regions were located 

outside of core pain-processing brain systems36,42. Thus, shared representations may exist 

(proviso considerations outlined above), but they are not likely associated with nociceptive 

pain. Rather, they are likely to be broadly associated with processes related to context, 

memory, motivated action, social inferences, and/or endogenous regulation (for example, 

opioid response in striatum13,51), among other processes. However, following the logic 

outlined above, we cannot claim that regions showing similar fMRI patterns are also similar 

at lower levels of analysis.

The idea that pain and rejection share neurophysiological mechanisms has also been 

supported by neurochemical and pharmacological findings11,13,52, which at first may seem 

contradictory to our conclusion. However, similar neurochemical responses to pain and 

rejection (for example, endogenous opioids and oxytocin12) may reflect common 

physiological regulatory responses to general aversive events (for example, stress). For 

example, the endogenous opioid system, implicated in both pain and rejection, also plays a 

key role in stress-induced analgesic effects53, which could explain the analgesic effects of 

acute experiences of social exclusion or separation54,55. In addition, the effects on rejection 

experience of ‘pain medications’ like acetaminophen11 may be related to nonspecific 

neurochemical pathways for aversive affective states, such as the serotonin system56. 

Therefore, the involvement of common neuropeptides and regulatory mechanisms in both 

pain and rejection do not necessarily imply shared neural representations.

More broadly, the multivariate pattern-based approach we use here has potential for 

identifying and targeting many types of affective processes more specifically, which could 

enable significant progress in understanding the structure of emotion and its regulatory 

mechanisms9 and providing more specific and robust links between brain representations 

and psychopathology57. Importantly, our results do not imply that there is no functional 

relationship between pain and rejection, or that one cannot influence the other. In fact, such 

interactions may underlie, for example, the increased rate of pain disorders observed 

following emotional trauma58. Developing and using fMRI pattern-based markers that are 

sensitive and specific to different psychological experiences will provide new leverage 

points for examining their underlying neural processes, the regulatory effects on the 
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processes, and inter-relationships among different psychological processes. This approach 

could ultimately contribute to developing tailored interventions for specific psychological 

problems by identifying unique components of each condition, and it could also guide 

diagnosis and treatment of mental disorders by providing provisional fMRI-based 

biomarkers for them59.

This study also has implications for how networks are identified in fMRI studies. We 

showed that fMRI activity within localized anatomical regions (for example, the dACC 

region corresponding to Vogt’s anterior mid-cingulate zone60) can be decomposed into two 

orthogonal multivariate patterns that, when used as ‘seed’ patterns in connectivity analyses, 

are associated with two distinct large-scale brain networks. This finding supports the idea 

that local regions such as dACC can contain multiple, distinct neural population codes25 that 

encode distinct mental processes. Previous neuroimaging studies have generally assessed 

functional connectivity by averaging activity within localized ‘seed’ regions into a single 

variable, which implicitly assumes that all voxels within the ‘seed’ region share a common 

pattern of connectivity. Therefore, the current approach is qualitatively different from the 

traditional approach to functional connectivity, and has broad implications for network 

analysis in future fMRI studies.

Previously, we published two papers using part of the current data set (N = 40, compared to 

N = 60 currently)4,32. The first publication4 reported overlapping fMRI activity across pain 

and rejection within many pain-processing regions, based on univariate GLM analyses. We 

interpreted these findings in terms of shared representations between pain and rejection. The 

co-localized representations may still point to important interactions between pain and 

rejection. However, the current findings at the multivariate pattern level suggest that the 

representations of pain and rejection are in fact distinct within and across regions. This 

conclusion, which differs from our previous interpretation of the data, does not result from 

the addition of 20 more participants (see Supplementary Fig. 7), but rather from the different 

level of analysis. The second previous publication32 used part of this data set (N = 40) to test 

the cross-study sensitivity and specificity of an fMRI-based brain marker for experimental 

pain. The focus of the current study is qualitatively different: The previous paper32 focused 

on the development of a new fMRI-based marker for pain, whereas the current study focuses 

on examining, and ultimately challenging, current notions of shared representation across 

social and physical pain. We believe the current study provides a more comprehensive 

picture of the relationship between pain and rejection than previous work, and provides a 

step towards a better understanding of the interaction between pain and rejection and 

developing tailored interventions for each of them.

More specifically, the following analyses have been conducted only in the current study, not 

in the previous studies4,32: (i) we identified a multivariate fMRI pattern sensitive and 

specific to rejection; (ii) we demonstrated that the rejection pattern is qualitatively different 

from the pain pattern, and the rejection pattern did not respond to pain; (iii) we showed that 

pain and rejection yielded distinct multivariate patterns even in the overlapping regions 

activated by both pain and rejection; (iv) we identified brain regions with similar neural 

patterns for pain and rejection using a searchlight approach; and finally, (v) we showed that 
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the distinct multivariate patterns for pain and rejection within the dACC engaged distinct 

functional brain networks using a separate resting-state data set (N = 91).

The present study has limitations that should be addressed in future studies. Given that we 

used a five-point Likert scale for pain and emotion ratings and applied only two different 

intensity levels of stimulation for both pain and rejection, the multivariate patterns we 

identify here may not be sensitive to fine-grained differences in the subjective intensity of 

pain and rejection experience. Therefore, these multivariate patterns cannot be regarded as 

fully characterized representations of pain and rejection experience. We cannot also rule out 

the possibility that some of the activity in the multivariate patterns we identified could be 

related to response preparation, attention and other consequences, instead of mental 

representations central to the experience of pain and rejection. This is an important issue 

with all MVPA analyses and fMRI results in general61, and therefore future work will be 

required to identify fMRI representations of pain and rejection by characterizing their 

specificity and generalizability across different tasks, individuals and studies. Particularly, 

the stimuli used in the current social rejection task (for example, ex-partner photos) refer to 

past experience and only indirectly to present circumstance, whereas the somatic pain task 

elicits acute thermal pain. Therefore, other social rejection tasks eliciting acute feelings of 

exclusion (for example, the Cyberball game task62) might provide a good additional 

comparison condition, although they are likely to elicit less intense rejection-related 

emotions than the current task. We also focused only on pattern-based classification across 

individuals because this approach is more stable and generalizable than the within-subject 

approach. However, identifying individual-specific multivariate patterns might also be 

informative about the relationship between pain and rejection.

In conclusion, our results provide the first neuroimaging evidence that pain and rejection do 

not share neural representations within core pain-processing brain regions. Instead, the 

present findings suggest that pain and rejection are represented in distinct mesoscopic neural 

systems whose locations are conserved across individuals. This new approach, and the 

evidence for separately modifiable multivariate patterns for each type of ‘pain,’ can move 

the field beyond the search for shared processes across pain and rejection and provide a step 

towards identifying their unique components, developing tailored interventions for each of 

them, and obtaining a better understanding of the interactions between these two distinct 

affective processes.

Methods

Participants

Sixty healthy, right-handed participants (31 females, Mage = 20.8, SDage = 3.0) completed 

the social rejection and somatic pain tasks while undergoing scanning with fMRI (Study 1). 

All participants experienced an unwanted romantic relationship break-up within the past 6 

months, and indicated that they felt rejected when thinking about their break-up; all 

participants rated high on a 1 (not at all rejected) to 7 (very rejected) scale asking how 

rejected they felt when they thought about their rejection experience (M = 5.52, s.d. = 1.08). 

Participants were recruited via flyers posted around Manhattan and advertisements posted on 

Facebook and Craigslist. The sample was comprised of 63% Caucasian, 15% Asians, 10% 
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African Americans, 3% Hispanic and 8% other. All participants were native English 

speakers and received $175 for their participation. FMRI task data (for example, trial onset 

times) were lost for one participant. Thus, all imaging analyses were completed on 59 

participants. The study was approved by the Columbia University’s Institutional Review 

Board.

In addition, 91 healthy, right-handed participants (48 females, Mage = 20.8, SDage = 2.8) 

completed the resting-state fMRI task (Study 2), separately from the social rejection and 

somatic pain tasks. The sample was comprised of 87% Caucasian, 4% Asians, 2% African 

Americans and 7% Hispanic. All participants were native English speakers and received $50 

for their participation. The study was approved by the University of Colorado Boulder’s 

Institutional Review Board.

All participants provided written informed consent. Participants were screened to ensure that 

they did not suffer from any neurological or psychiatric illness, experience chronic pain, 

take psychoactive medications, antihistamine or steroids, have metal in their bodies, or have 

a history of substance use or abuse.

Social rejection task stimuli

The social rejection task was designed after the following two lines of research: (i) fMRI 

research where photos provided by participants were used to elicit powerful emotions (for 

example, maternal love, romantic love and rejection)51 and (ii) behavioural research where 

cues were used to recall autobiographical experiences of social rejection and to effectively 

reactivate distress related to social rejection63. The social rejection stimuli consisted of: (i) a 

headshot photograph of each participant’s ex-partner or a same-gendered friend with whom 

they shared a positive experience around the time of their break-up, and (ii) cue phrases 

displaying beneath each photograph that led participants to focus on a specific experience 

they shared with each person. Participants provided these cue phrases before the day of 

fMRI scanning using a procedure developed in prior research64: they first wrote a specific 

description of break-up experience with their ex-partner and positive experience with their 

friend. Subsequently, they created a cue-phrase to capture the gist of their experience. They 

were reminded of the cues they generated and the experiences they referred to on the day of 

scanning following established procedures. We cropped all images to ensure the total area of 

the photograph taken up by the face to be constant across Ex-partner and Friend images. 

Ratings of the picture quality and attractiveness by a group of ten individuals who were 

blind to the study goals and hypotheses indicated that the level of picture quality and 

attractiveness for each photograph did not differ between Ex-partner and Friend 

photographs.

Somatic pain task stimuli

For somatic pain stimuli, thermal stimulations were delivered to left volar forearm, 

consisting of two levels: non-painful (rated as level 2 on a 10-point scale by participants) 

versus very painful (rated as level 8 on a 10-point scale; near the limit of pain tolerance). 

With a calibration procedure65, we chose two temperatures on a participant-by-participant 
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basis to be sure that the subjective pain intensity was constant across participants. We 

carried out the calibration task before the day of fMRI scanning.

Pain calibration task

Pain calibration consisted of 24 trials where participants rated the pain induced by thermal 

stimulation (10°Cs−1 ramp up, 7 s at target temperature, 10°Cs−1 ramp down) applied using 

a TSA-II Neurosensory Analyzer (Medoc Ltd) with a 16-mm thermode end-plate. 

Participants provided verbal ratings with a 0 (no sensation) to 10 (unbearable pain) scale. 

Thermal stimulations were applied in a fixed order through eight different, nonadjacent 

candidate skin sites on the participant’s left volar forearm. On each trial, we used an 

adaptive procedure to estimate temperatures corresponding to level 2, 5 and 8 (referred to as 

‘low,’ ‘medium’ and ‘high’). For the estimation procedure, a linear regression model 

continuously fit the data collected up to that point during the calibration session with 

temperature as the independent variable and pain ratings as the dependent variable. 

Although the temperature-pain relationship is not perfectly linear, it is relatively robust to 

noise and can be fit with few observations. To make the calibration more robust to 

idiosyncratic behaviour on individual trials, we defined trials for which the absolute value of 

the residual based on the initial regression was greater than three times the median absolute 

deviation as outliers, and the model was re-fit without the outliers. The predicted low, 

medium and high temperature levels from the regression model were used to determine the 

temperature applied on the subsequent trial. Throughout the calibration, we used a fixed, 

counterbalanced order of heat-levels (high, medium or low). The order was chosen to 

equalize the transitional probabilities and to balance stimulation at high, medium and low 

temperatures across the eight skin locations.

Pre-scan task training

Before fMRI scanning, the experimenter described each step of the Social Rejection task 

(referred to as the ‘Photograph’ task to participants) and the Somatic Pain task (referred to as 

the ‘Heat’ task to participants). The experimenter explained that during the ‘Photograph’ 

task, participants would see photographs of their ex-partner and friend and cue-phrases 

beneath each photograph. Participants were asked to look directly at each photograph and 

reflect on the thoughts and emotions each photograph-cue pair elicited in them. During the 

Somatic Pain task, participants were asked to stare at the fixation cross during each trial and 

focus on the sensations elicited by the somatic stimulus. Participants were then instructed 

how to rate their affect following each type of trial and how to perform the visuospatial 

control task (see Fig. 1a for a detailed description of these tasks).

Pain and affect ratings and post-scan questionnaire

Following each trial, participants rated how they felt or the pain intensity they experienced 

using five-point Likert scales (1 = ‘very bad’ or ‘very painful’, 5 = ‘very good’ or ‘not 

painful’). For display purposes, these scores were reversed such that higher scores indicate 

worse mood or more pain (Fig. 1b). After participants exited the scanner, they were asked to 

write freely about the thoughts that came to mind regarding (i) their recent romantic 
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relationship break-up and (ii) their positive experience with friends during the experiment in 

the fMRI scanner.

Resting-state fMRI task

During the resting-state fMRI task (5 min 34 s), participants were asked to relax with their 

eyes closed while remaining awake.

FMRI acquisition and preprocessing for study 1

Whole-brain fMRI data were acquired on a GE 1.5 T scanner using a T2*-weighted spiral 

in-out sequence developed by Dr Gary Glover: repetition time (TR) = 2,000 ms, echo time 

(TE) = 40 ms, flip angle = 84 and field of view = 22 cm, 24 axial slices (3.5 × 3.5 × 4.5 mm3 

voxels) parallel to the anterior commissure-posterior commissure line. Structural data were 

acquired with a T1-weighted spoiled gradient-recalled sequence: 1 × 1 × 1 mm3, TR = 19 

ms, TE = 5 ms, flip angle = 20. Stimulus presentation and behavioural data acquisition were 

controlled using E-Prime software (PST Inc.).

Structural T1-weighted images were co-registered to the mean functional image for each 

subject using the iterative mutual information-based algorithm implemented in SPM8 and 

manual adjustment of the starting point until the co-registration was satisfactory. Structural 

images were normalized to Montreal Neurological Institute space using SPM8. Before 

preprocessing of functional images, we removed the first four volumes to allow for image 

intensity stabilization. We also identified image-intensity outliers by computing the mean 

and standard deviation (across voxels) of intensity values for each image for all slices to 

remove intermittent gradient and severe motion-related artefacts present to some degree in 

all fMRI data. To identify outliers, Mahalanobis distances for the matrix of slice-wise mean 

and standard deviation values (concatenated) × functional volumes (time) were computed, 

and any values with a significant χ2 value (corrected for multiple comparisons based on the 

more stringent of either FDR or Bonferroni methods) were considered outliers (less than 1% 

of images were outliers). Each time-point identified as outliers was included as a separate 

nuisance covariate in the first-level models.

Then, functional images were corrected for differences in the acquisition timing of each 

slice and were motion (realignment) corrected using SPM8. The functional images were 

warped to SPM’s normative atlas using warping parameters estimated from co-registered, 

high-resolution structural images, interpolated to 2 × 2 × 2 mm voxels, and smoothed with 

an 8-mm FWHM Gaussian kernel. This smoothing level has been shown to improve inter-

subject functional alignment, while retaining sensitivity to mesoscopic activity patterns that 

are consistent across individuals48,66.

FMRI acquisition and preprocessing for Study 2

Whole-brain fMRI data were acquired on a 3T Siemens Trio system (Siemens) with a 12-

channel receiver head coil using a T2*-weighted functional EPI sequence: TR = 2,000 ms, 

TE = 29 ms, matrix size = 64 × 64 × 33, flip angle = 75, slice thickness = 3.5 mm, field of 

view = 24 cm. The first four volumes of the resting state data were first removed to allow for 

image intensity stabilization, followed by detection of frame-to-frame motion and intensity 
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outliers using the Artifact Detection Toolbox. Skull stripping was then conducted using 

FSL’s Brain Extraction Tool (v5, FMRIB, Oxford, UK), followed by slice timing and 

motion correction (realignment). Functional images were smoothed with an 8-mm FWHM 

Gaussian kernel, and warped to the Montreal Neurological Institute template using FMRIB’s 

Linear Image Registration Tool. Using the Conn SPM toolbox67, data were temporally 

filtered using a bandpass filter to retain frequencies between 0.009 and 0.08 Hz. Non-neural 

sources of variance were removed by regressing out the six estimated head movement 

parameters (x, y, z, roll, pitch and yaw) and their first temporal derivatives, the top five 

principal components from the signal averaged in the white matter and ventricles, and the 

frames identified as motion or intensity outliers, and the residual was retained for analyses 

of functional connectivity.

Behavioural analysis

Affect rating data (Fig. 1b) were analysed using a multilevel GLM analysis67 (http://

wagerlab.colorado.edu/tools). Linguistic Inquiry and Word Count software (LIWC33)—a 

word frequency-based text analysis tool—was used for text analysis (Fig. 1c). The written 

descriptions of participants’ stream of thoughts while watching their ex-partner’s photos 

were first filtered with the negative emotion category in the LIWC dictionary. Then, we 

calculated the word frequency for each negative emotion category using the sub-categories 

within the negative emotion category.

First-level fMRI analysis for Study 1

SPM8 was used to conduct first-level GLM analyses by modelling task regressors 

corresponding to the 15-s photo/heat period, the 5-s affect/pain rating period and the 18-s 

visuospatial control task period. The fixation-cross epoch was designated the unmodelled 

baseline. For each task regressor, a Boxcar function was convolved with SPM8’s canonical 

haemodynamic response function. A high-pass filter of 180 s, which is well suited for pain 

and emotion elicited for longer duration, was then applied. Other regressors of non-interest 

(that is, nuisance variables) included (i) ‘dummy’ coding regressors for each run (intercept 

for each run); (ii) linear drift across time within each run; (iii) the six estimated head 

movement parameters (x, y, z, roll, pitch and yaw; mean-centered) and their squares, their 

derivatives and squared derivative for each run (24 columns per run); (iv) indicator vectors 

for outlier time points identified based on their multivariate distance from the other images 

in the sample (see above); (v) indicator vectors for the first two images in each run. Voxel-

wise statistical parametric maps for different trial types were calculated for each participant 

and then entered into MVPA (Figs 2–5) or random-effects group GLM analyses 

(Supplementary Fig. 3). Robust regression analysis was implemented for the group-level 

GLM analyses69. All results were thresholded at q < 0.05, FDR corrected, two-tailed.

Multivariate voxel pattern analysis

We used linear SVMs34 to train multivariate pattern classifiers for pain and rejection. For 

global pattern classifiers (Figs 2 and 3), we first conducted feature selection to maximize 

predictability and generalizability of SVMs. A priori voxels associated with ‘pain’, 

‘emotion’ and ‘social’ terms were selected based on the union of forward and reverse 
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inference maps from the automated large-scale meta-analytic database of more than 5,800 

published neuroimaging studies (http://neurosynth.org22; see Supplementary Fig. 1). The 

SVMs were implemented using custom Matlab code based on the Spider toolbox (http://

people.kyb.tuebingen.mpg.de/spider). The pattern classifiers were trained on first-level 

contrast images for four different conditions (that is, Heat-Pain, Warmth, Ex-partner and 

Friend) to separately discriminate ‘Heat-Pain’ and ‘Ex-partner’ from the respective three 

other conditions using the one-against-all approach34 (that is, Heat-pain against other 

conditions, including Ex-partner, and Ex-partner against other conditions, including Heat-

pain). Bootstrap tests were conducted to provide P-values for voxel weights in order to 

threshold the classifier weights for display and interpretation (Fig. 2b). We constructed 

10,000 bootstrap sample sets (with replacement) and ran SVMs on each. Two-tailed, 

uncorrected P-values were calculated for each voxel based on the proportion of weights 

above or below zero. With a leave-one-subject-out cross-validation procedure, we assessed 

classification accuracy of the SVM classifiers using the forced-choice test, where pattern 

expression values (that is, the dot-product of a vectorized activation image with the classifier 

weights) were compared for two conditions tested within the same out-of-sample individual, 

and the higher was chosen as pain or rejection. We calculated the accuracy for Heat-pain 

versus Ex-partner or Ex-partner versus Heat-pain, Heat-pain versus Warmth and Ex-partner 

versus Friend. We also conducted a multi-voxel pattern similarity analysis and a cross-

classification test (Figs 4 and 5), and functional connectivity analysis with resting-state 

fMRI data (Study 2). For more details of these analyses, see Results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Behavioural results
(a) Experimental paradigm. The social rejection and somatic pain tasks each consisted of 

two consecutively administered runs of eight trials (that is, 16 total trials). The order of the 

two tasks was counterbalanced across participants. (i) Social rejection task: each trial in the 

social rejection task lasted 45 s and began with a 7-s fixation cross. Subsequently, 

participants saw a headshot photograph of their ex-partner (‘Ex-partner’ condition) or a 

close friend (‘Friend’ condition) for 15 s. A cue-phrase beneath each photo directed 

participants to think about how they felt during their break-up experience with their ex-

partner or a specific positive experience with their friend. Subsequently, participants rated 

how they felt using a five-point scale. To reduce carryover effects between trials, 

participants then performed an 18-s visuo-spatial control task in which they saw an arrow 

pointing left or right and were asked to indicate which direction the arrow was pointing. Ex-

partner versus Friend trials were randomly presented with the constraint that no trial 

repeated consecutively more than twice. (ii) Somatic pain task: the structure of somatic pain 

trials was identical to rejection trials with the following exceptions. During the 15-s thermal 

stimulation period, participants viewed a fixation cross and focused on the sensations they 

experienced during a hot (painful) or warm (non-painful) stimulus that was delivered (1.5-s 

temperature ramp up/down, 12 s at peak temperature) to their left volar forearm at 

temperatures calibrated for each person (for details, see Methods). They then rated the pain 

they experienced using a five-point scale. (b) Behavioural data from trial-by-trial pain and 

emotion rating (n = 60, eight trials for each condition). Error bars represent within-subject 

standard errors of the mean (s.e.m.). (c) Relative word frequency for negative emotion word 

categories among negative emotional words that participants used to describe the stream of 

thoughts while they were viewing the ex-partner’s photo in the scanner after the fMRI 

scanning. We used the Linguistic Inquiry and Word Count dictionary33 (LIWC) to 

categorize emotional words. ***P<0.001, multi-level generalized linear model.
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Figure 2. Separate modifiability of fMRI pattern-based classifiers for pain and rejection
(a) Cross-validated (leave-one-subject-out) accuracy in two-choice classification tests (n = 

59). The results demonstrated separate modifiability (each can be changed independent of 

the other) of the fMRI pattern-based classifiers. The dashed line indicates the chance level 

(50%), and the error bars represent standard error of the mean across subjects. (b) The 

distributed fMRI pattern maps in which voxel activity reliably contributes to the 

discrimination of pain (top panel) and rejection (bottom panel) from other conditions. The 

maps show thresholded voxel weights based on bootstrapping (10,000 samples) of SVMs for 

display only; all weights were used in classification. r between two pattern maps denotes 

Pearson’s correlation of voxel weights. ***P<0.001, binomial test.
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Figure 3. The difference map between the fMRI pattern-based classifiers for pain and rejection
(a) The difference map in which values represent reliable differences between two 

discriminant weights (SVM weights for pain minus SVM weights for rejection) based on 

bootstrapping of SVMs (10,000 samples). The difference map is thresholded at q<0.05, FDR 

corrected. AMG, amygdala; dpINS, dorsal posterior insula; IFG, inferior frontal gyrus; 

midINS, middle insula; PAG, periaqueductal gray; pgACC, pregenual anterior cingulate 

cortex; preSMA, pre-supplementary motor area; SMG, supramarginal gyrus; Thal, thalamus; 

TPJ, temporal parietal junction; vINS, ventral insula; vmPFC, ventromedial prefrontal 

cortex. (b) Mean SVM weights for contiguous regions within the difference map (10,000 

samples). The error bars represent standard error of the mean based on bootstrapping. 

*P<0.05, **P<0.01, ***P<0.001, one-sample t-test.
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Figure 4. Multi-voxel pattern similarity analysis for pain-processing regions
(a) SVM classifier weight patterns within regions-of-interest (ROIs) from group-level GLM 

results. The regions were activated in both contrasts, Heat-pain versus Warmth and Ex-

partner versus Friend, and have been implicated in both pain and rejection. Here, a liberal 

threshold (P<0.05, uncorrected) was applied to use large enough regions for multi-voxel 

pattern similarity analyses (the averaged number of voxels across six ROIs= 213). For GLM 

results corrected for multiple comparisons, see Supplementary Fig. 3. The patterns presented 

here are the averaged SVM classifier weights from bootstrap tests (10,000 samples). aINS, 

anterior insula; dACC, dorsal anterior cingulate cortex; dpINS, dorsal posterior insula; S2, 

secondary somatosensory cortex. (b) Left: the bootstrap test results for SVM classifier 

weight correlations. Right: the group-level correlations between fMRI activations of contrast 

images for pain and rejection (n = 59). The short red lines in the left panel indicate 95% 

confidence intervals obtained from bootstrap tests (10,000 samples). No regions showed 

significant correlations between SVM classifier weights, and no regions showed significant 

average correlations between patterns of contrast values across participants.
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Figure 5. Cross-classification test results with local pattern classifiers
We conducted whole-brain searches for candidate regions for shared neural processes 

between pain and rejection with 6-mm radius spherical searchlights around centre voxels. To 

determine the candidate regions, we conducted cross-classification tests (with leave-one-

subject-out cross-validation) among the regions that accurately classify both pain (Heat-pain 

versus Warmth) and rejection (Ex-partner versus Friend). The cross-classification test 

consisted of the following steps: (i) A local classifier was trained and cross-validated 

separately for one condition, and (ii) the classifier was tested on the other condition in the 

same leave-one-subject-out cross-validation test sample. Here we thresholded all results at 

FDR q<0.05 (P<0.0038) and visualized the 6-mm sphere coverage. PCC, posterior cingulate 

cortex; PHG, parahippocampal gyrus; RSC, retrosplenial cortex; TPJ, temporal parietal 

junction. The anatomical atlas was from the SPM anatomy toolbox70.
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Figure 6. Difference in functional connectivity patterns with dACC pattern classifiers for pain 
and rejection
(a) The multivariate pattern classifiers for pain and rejection within the dorsal anterior 

cingulate cortex (dACC) region-of-interest (ROI) (a top). The dACC ROI was defined by 

the searchlight analysis results presented in Fig. 5, which showed that the dACC ROI 

contained information for both pain and rejection conditions, but the patterns were distinct 

and non-transferrable. Using the dACC ROI, we trained linear SVMs to discriminate pain 

and rejection from their respective control conditions, and tested on out-of-sample 

participants. The pattern weights were uncorrelated with each other, r= −0.04. The cross-

validated (leave-one-subject-out) accuracy in two-choice classification tests demonstrated 

separate modifiability of the pattern classifiers (a bottom). The dotted line indicates the 

chance level (= 50%), and the error bars represent standard error of the mean across 
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subjects. **P<0.01, ***P<0.001, binomial test. (b) Seed-based functional connectivity with 

dACC pattern classifiers for pain and rejection. Here seeds were pattern expression values 

(the dot-product of a vectorized activation map and SVM weights within dACC) for pain 

and rejection. The functional connectivity for each condition was calculated with 

independent resting-state fMRI data (n = 91). These maps were thresholded at family-wise 

error rate (FWER)<0.05 using Bonferroni correction. Here we used Bonferroni correction 

instead of false discovery rate (FDR) because the latter provided too liberal thresholds for 

these functional connectivity patterns (uncorrected P<0.03) and therefore yielded non-

sensible maps. (c) Paired t-test results between two seed-based functional connectivity 

patterns. The results were thresholded at FDR<0.05.
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