
Choosing the Right Cross-Platform Framework for Mobile Development | 1www.globallogic.com

Choosing the Right

for Mobile Development

Cross-Platform
Framework

Choosing the Right Cross-Platform Framework for Mobile Development | 2

In this white paper, GlobalLogic’s Mobile Practices
Team rates the various features of cross-
platform mobile frameworks to help readers
choose the best technology stack for developing
or expanding a mobile application. We also
provide recommendations on when to apply
which technologies for different types of mobile
applications.

Authors:
Oleksandr Furdylo
Ajay Chaudhary
Denys Bratchuk

Abstract

Choosing the Right Cross-Platform Framework for Mobile Development | 3

Introduction

Common Mobile Development Approaches
 Native Toolkits vs. Cross-Platform Frameworks

Technology Stack Assessments
 Native App Toolkits Assessment
 Cross-Platform Framework Assessments
 PhoneGap
 Xamarin Native
 React Native
 Flutter
 Progressive Web App (PWA)

Technology Stack Recommendation
 Mobile Application Only
 Mobile and Desktop Applications
 Mobile and Web Application

4

5
6

8
9
10
10
11
12
13
14

16
16
17
19

Contents

Choosing the Right Cross-Platform Framework for Mobile Development | 4

As the world becomes increasingly mobile,
businesses must ensure that their digital solutions
can continue to evolve in terms of scalability and
extensibility. Users expect their mobile apps to
continuously offer new features and services, as
well as be available on any device, any place.

When building a new mobile solution, or evolving
an existing one, businesses must carefully consider
which technology stack and development approach
to use. Using a cross-platform framework to develop
apps across multiple platforms (versus developing
individual app instances via native iOS and Android
toolkits) has become an especially attractive option.

Each cross-platform framework option has its
advantages and disadvantages, and choosing
which technology to use depends on a huge variety
of factors, including cost, industry trends, and future
product roadmaps.

Introduction

As a digital product engineering specialist,
GlobalLogic has developed hundreds of mobile
products for industry-leading businesses. We
also have a dedicated Mobile Practices Team that
explores the latest technologies around mobile
development.

Based on this expertise, we have assessed the
most popular cross-platform frameworks across
a variety of factors to help readers select the best
technology stack for their unique project. We
have also provided recommended strategies for
how to use these technologies to support mobile
applications across web and desktop formats, as
needed.

Choosing the Right Cross-Platform Framework for Mobile Development | 5

Below is a quick overview and comparison of the
three most common approaches to mobile app
development.

Native app toolkits support single platforms only.
They provide faster performance, extremely handy
navigation, experience optimized for the target
platform, and full access to native capabilities.

Cross-platform frameworks enable the creation
of mobile applications tailored for different
platforms and contain cross-platform code written
in JavaScript, C#, or C++, as well as platform-
specific code wrappers for iOS, Android, and
other platforms. Cross-platform frameworks save
development efforts while coding applications.

Common Mobile
Development
Approaches

Browser-based solutions provide a universal
platform support. These are normally based on
well-established web technologies and require
centralized application hosting, but lack access
to native features. Browser-based solutions save
development efforts while coding, compiling, and
deploying applications.

For the purposes of this paper we will focus on
cross-platform frameworks, using native toolkits
simply as a means of comparison.

Choosing the Right Cross-Platform Framework for Mobile Development | 6

Native Toolkits vs. Cross-
Platform Frameworks
Below is a quick overview and comparison of the
three most common approaches to mobile app
development.

Native app toolkits support single platforms only.
They provide faster performance, extremely handy
navigation, experience optimized for the target
platform, and full access to native capabilities.

Cross-platform frameworks enable the creation
of mobile applications tailored for different
platforms and contain cross-platform code written
in JavaScript, C#, or C++, as well as platform-
specific code wrappers for iOS, Android, and
other platforms. Cross-platform frameworks save
development efforts while coding applications.

Browser-based solutions provide a universal
platform support. These are normally based on
well-established web technologies and require
centralized application hosting, but lack access
to native features. Browser-based solutions save
development efforts while coding, compiling, and
deploying applications.

For the purposes of this paper we will focus on
cross-platform frameworks, using native toolkits
simply as a means of comparison.

When cross-platform development frameworks
appeared, they became very popular due to the
fact that most of the code is shared, and therefore
development efforts can be optimized. In addition,
only one core team is needed to support all
platforms, and applications can have a common
set of documentation (including SRS and design
specifications).

Shared Code 0%

Shared Code More Than 80%

However, cross-platform mobile applications have
drawbacks as well:

1. Application performance will be lower compared
to native applications due to an introduced
intermediate level (a bridge between the
common and native code).

2. Some device-specific functionality cannot
be easily implemented using cross-platform
instruments (e.g., push notifications, behaviour
in sleep mode, multithreading, data-storages
etc.). These functions can be supported by
cross-platform frameworks to some extent, but
in this case the system will include an additional
abstraction level, which makes the system more
complicated and harder to maintain.

Choosing the Right Cross-Platform Framework for Mobile Development | 7

Native Toolkits vs. Cross-
Platform Frameworks (cont.)

3. Plugins and libraries used during cross-platform
development are normally less stable than native
tools and may contain bugs and issues that are
hard or impossible to fix on the developer’s side.

4. User experience in different platforms varies. For
instance:

 - Typical iOS applications include a TabBar
at the bottom to switch screens (Home, Profile,
Search etc.), whereas the navigation bar is
normally at the top and it includes Title, Back,
and Action items.

 - Even though Android also has a navigation
bar, it is used differently and normally doesn’t
contain buttons.

 - There is a SegmentedActivity element
supported by Android, which looks similar to
iOS TabBar but has totally different mechanics
(e.g., iOS TabBar doesn’t enable you to swipe
screens, whereas it is a common practice in
Android).

5. Cross-platform applications require large
regression testing cycles, as the changes in an
application can affect multiple platforms.

Choosing the Right Cross-Platform Framework for Mobile Development | 8

In this section, we will assess each mobile toolkit
across a variety of factors, with each factor being
ranked on a scale from 1-5 (“1” being the lowest
value and “5” being the highest).

Technology
Stack
Assessments

Below is an overall comparison of each of these
technologies. Continue reading for additional
details and recommendations about each unique
technology stack.

Choosing the Right Cross-Platform Framework for Mobile Development | 9

Native App Toolkits
Assessment
Although they are costly to develop, native apps are
undoubtedly more efficient and maintainable from
a technical standpoint. They also provide better
performance and user experience for animation-
heavy applications. To provide a base level for
comparison purposes, below is our assessment of
native app toolkits.

However, cross-platform mobile applications have
drawbacks as well:

1. Application performance will be lower compared
to native applications due to an introduced
intermediate level (a bridge between the
common and native code).

2. Some device-specific functionality cannot
be easily implemented using cross-platform
instruments (e.g., push notifications, behaviour
in sleep mode, multithreading, data-storages
etc.). These functions can be supported by
cross-platform frameworks to some extent, but
in this case the system will include an additional
abstraction level, which makes the system more
complicated and harder to maintain.

Choosing the Right Cross-Platform Framework for Mobile Development | 10

Cross-Platform Framework
Assessments
PhoneGap

Applications based on PhoneGap use WebView
and have a simple implementation: create a small,
native application that displays the built-in web
browser and single-page HTML. There are no
native controls or direct access to the API, as all
the interface elements inside the web page are
simply stylized as native ones. The application has
access to the system functionality using special
plug-ins that add JavaScript methods to the inside
of the web browser and associate them with native
implementation on each platform.

For application development on PhoneGap,
engineers need experience in HTML, JavaScript,
CSS, and also native instruments such as Objective
C and Java. Additionally, engineers must have good
engineering knowledge about integrating native and
cross-platform parts.

Our opinion is that using PhoneGap or similar
technology would not provide any significant benefits
for mobile application development.

Choosing the Right Cross-Platform Framework for Mobile Development | 11

Xamarin Native

Xamarin Native is a cross-platform mobile app
development framework based on the .NET
framework. It uses C# to create applications for
mobile platforms, and it is natively compiled. As
a result it enables us to build high-performing
applications with close-to-native design. The
framework uses native libraries for cross-platform
development and can access native APIs.

Xamarin Native is a popular choice for cross-
platform application development. It is often
considered while building mid-size business mobile
applications for different platforms, especially those
integrated with MS-based backend.

Choosing the Right Cross-Platform Framework for Mobile Development | 12

React Native

Similarly to PhoneGap, React Native (sponsored
by Facebook) lets developers build mobile apps
using only JavaScript. It uses the same design as
React, letting you compose a rich mobile UI from
declarative components. As opposed to PhoneGap,
React Native enables you to render native
components, not just a web view.

With React Native, you don’t build a “mobile
web app,” an “HTML5 app,” or a “hybrid app.” It
enables you to create a real mobile app that is
indistinguishable from an app built using Objective-C
or Java. React Native uses the same fundamental
UI building blocks as regular iOS and Android
apps; the developer just puts those building blocks

together using JavaScript and React. There is still a
possibility to use native code.

For application development on React Native,
engineers need experience in JavaScript and also
native instruments such as Objective C or Java.

All in all, React Native can be considered as
an alternative to Xamarin Native in the area of
cross-platform development, especially for new
applications created from scratch, as its popularity is
growing (as compared to Xamarin Native), the cost
of development of a new application will be lower
than for native applications, and the performance
will be nearly native.

Choosing the Right Cross-Platform Framework for Mobile Development | 13

Flutter

In terms of the cross-platform space the big two
approaches are still Xamarin and React Native
(backed by Facebook). However, good traction has
recently been shown by Flutter (backed by Google)
and its adoption is slowly increasing, though the
number of applications using Flutter are significantly
less compared to Xamarin or React Native.

Flutter and Dart are two of the fastest-growing
technologies worldwide, and this stack is easy to
learn for developers with native (iOS/Android) or web
background. Also, Google is heavily investing in this
technology.

According to the trend, we can predict that in the
near future, the market will have a lot of competitive
Flutter/Dart developers. The main strengths of Flutter
include:

• Fast onboarding process for new developers
with Web or Android background

• Performance. Flutter application is native and
there are no additional layers between Flutter
and hardware

• Support from the Google community. Google
has developed Flutter itself, as well as a lot of
different UI widgets. This allows the build of
complex UI in short period of time

Choosing the Right Cross-Platform Framework for Mobile Development | 14

Progressive Web App (PWA)

PWA (Progressive Web App) is an approach which
has grown more popular over the last few years.
It enables the extension of the functionality of web
sites and makes them closer to “applications” or
even “mobile applications.” This includes the ability
to work in offline mode, access the camera on
mobile devices, etc.

The main driver of PWA is Google, therefore Android
and Chrome support most of the features. Apple’s
coverage of PWA features is also growing.

PWA is normally used to extend the functionality
of existing websites. This can be done gradually,
by means of adding PWA-related features one by

one. PWA works best with mobile-friendly sites with
responsive design. If a site is already mobile friendly,
it only takes a day or two to convert it into a basic
PWA-application.

One of the main features of PWA applications is
that it can be added to the main screen on mobile
phones, and moving forward, it can be used as if it
were a mobile application.

The main difference between PWA and native
or hybrid mobile apps is that you don’t need to
download PWA from the marketplace, as it can be
downloaded directly from the site.

Choosing the Right Cross-Platform Framework for Mobile Development | 15

PWA (cont.)

Progressive Web Apps cannot be used for
transferring native mobile iOS or Android apps
though. If there is a native mobile application, then
a JavaScript-based PWA application will need to be
created from scratch.

A PWA approach can be used either purely as is
or by means of wrappers such as the Electron JS
framework.

Progressive Web Applications share the following
principles: progressive, responsive, faster after initial
loading, connectivity independent, application-like,
fresh, safe, discoverable and re-engageable. Among
the others, PWA applications normally utilize one
or several of the following technologies: Manifest,
Service Workers, Web Storage, WebAssembly and
Databases.

A PWA approach is mostly useful when creating a
strategy and architecture of new massive software
products and ecosystems, and combining mobile
and web experience. UI/UX design of all existing
web-based applications will need to be adjusted to
be mobile-optimized, and all newly created products
will have to follow a “Mobile-First” approach. It
makes no major sense to replace an existing
native or cross-platform mobile application with
Progressive Web App if there is no plan to build a
web-version of the platform.

Choosing the Right Cross-Platform Framework for Mobile Development | 16

The choice of technology for building a platform
heavily depends on the pros and cons of each
technology, as well as the roadmap of the overall
platform development. Below are GlobalLogic’s
recommendations on how to leverage the previously
discussed cross-platform frameworks based on
how you plan to build or expand your product.

Mobile Application Only
Recommendation: Xamarin Native, React
Native, Fllutter

Taking into account the scope of a typical mobile
application, the technical specifics of different mobile
development approaches, their popularity, and our
experience in using these approaches, we came to
the conclusion that Xamarin Native, React Native,
and Flutter are the best technology choices for a
cross-platform mobile application development.

If you want to build a mobile application from scratch
and support both iOS and Android platforms, we

Technology
Stack
Recommendations

recommend using React Native or Flutter since they
can support multiple platforms, deliver comparatively
high performance, and are growing in popularity.

Exceptions

1. We recommend creating a native application
under the following circumstances:

 - If you want to build a mobile application
 from scratch and support either the iOS or
 Android platform (but not both)

 - If your product has any features that are
 heavily mobile-specific and require complex
 custom implementation

 - If your product has strict performance
 requirements

Choosing the Right Cross-Platform Framework for Mobile Development | 17

2. If you already have a mobile application, we
caution switching to a new platform due to
the cost of rewriting an application and the
potentially negative impact on existing users.
There should be a valid business reason for
switching to another platform, such as major
application-related bottlenecks, or significant
performance or security issues.

Mobile Application
Only (cont.)
Exceptions (cont.)

Mobile and Desktop
Application
Recommendation: Xamarin and WPF

If your goal is to create a desktop application in
addition to the mobile app, we recommend using
a .NET technology stack and, in particular, a WPF
(Windows Presentation Foundation) subsystem. For
the Mobile + Desktop combination, we recommend
utilizing Xamarin.Native (Xamarin.Android + Xamarin.
iOS) for mobile, and Xamarin.Native (Xamarin.Mac)
and WPF for desktop.

The WPF application will be able to partly utilize the
code of the Xamarin.Native mobile application, as
these are both written in C#, and they can become
a part of a larger Microsoft-based ecosystem. WPF
is still popular and more stable than UWP (Universal
Windows Platform), which was introduced in
Windows 10.

Interest over time charts based on Google Trends
results (https://trends.google.com/).

Interest over time charts based on Google Trends
results (https://trends.google.com/).

https://trends.google.com/
https://trends.google.com/

Choosing the Right Cross-Platform Framework for Mobile Development | 18

Tools Matrix

The tools used to develop and test the next
generation of mobile and desktop applications will
certainly evolve over time in collaboration with the
implementation team. However, we have listed a
potential set of tools here as a starting point for

discussion, with the understanding that many of
these tools will be common. This enables the use
of similar — or even the same — development
resources to build and maintain desktop and mobile
applications

Choosing the Right Cross-Platform Framework for Mobile Development | 19

Mobile and Web Application
Recommendation: PWA

If your goal is to build a web application in addition
to mobile apps, we recommend considering the
Progressive Web App (PWA) approach. Unlike
traditional applications, Progressive Web Apps are
a hybrid of regular web pages (or websites) and
a mobile application. This new application model
attempts to combine the features offered by most
modern browsers with the benefits of a mobile
experience. More importantly, the PWA approach
can be used to build desktop applications, as well.

Mobile users can access the PWA through their
mobile browser by URL. On the first use, the PWA
will suggest adding a shortcut on the home screen,
so users can access it as a regular mobile app

later on. Desktop users can open the PWA in their
browser and use it as a website. Additionally, users
can install the PWA onto their desktop through the
Chrome browser, and the application will open in a
separate window and mimic a desktop app.

If you already have a legacy mobile application (e.g.,
Xamarin Native app), GlobalLogic recommends that
you start developing a new PWA as though it were
a regular web application, with a mobile-first UI/
UX design approach. The estimated effort to add
PWA-specific features is approximately an additional
20-30% on top of what is needed to create a usual
web application with the same functionality.

Choosing the Right Cross-Platform Framework for Mobile Development | 20

Pros and Cons of Using PWA

As per Comscore’s report, the reach of the mobile
web is 2.5 times more than that of apps when
considering the top 1,000 sites and apps. Each
step to download an app reduces 20% of users.
PWA reduces the steps between the discovery of
an app and getting it on the home screen, which
thereby eliminates the friction of getting an app
installed.

For example, AliExpress is using PWA with great
results:

• 104% for new users across all browsers
• 82% increase in the iOS conversion rate
• 2x more pages visited per session per user

across all browsers
• 74% increase in time spent per session across

all browsers

Choosing the Right Cross-Platform Framework for Mobile Development | 21

GlobalLogic is a leader in digital product
engineering. We help our clients design and
build innovative products, platforms, and digital
experiences for the modern world. By integrating
strategic design, complex engineering, and vertical
industry expertise—we help our clients imagine
what’s possible and accelerate their transition into
tomorrow’s digital businesses.

Headquartered in Silicon Valley, GlobalLogic
operates design studios and engineering centers
around the world, extending our deep expertise
to customers in the communications, automotive,
healthcare, technology, media and entertainment,
manufacturing, and semiconductor industries.

www.globallogic.com

About GlobalLogic

